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Structure of the presentation

The presentation is structured in distinct units as follows:

1. Posing the question: How to predict which pipes to replace?

2. Answering the question

3. Case studies: Mourati zone & C-Town 

4. C-Town model: expanding its pipe characteristics database

5. Training the pipe failure probability prediction models 

6. Pipe replacement methodology

7. Performance assessment

8. Results

9. Conclusions
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Posing the question: How to predict which pipes to replace?
Optimal replacement strategies must ensure:

1. Technical & Socioeconomic specs.

2. Overall resilience of the Urban Water System.

3. Low associated costs.

The usual practices include:

 Pipeline forecasting.

 Identification of water leaks.

 Identification of pipeline ruptures.

Advantages of the traditional methods:

1. Easy to operate.

2. Zero knowledge of the pipe fracture mechanism.

Disadvantage: Depend on specifics of the studied area. 

The internal components are hard to identify and remain obscure to the stakeholders. 

Traditional methods

Statistical models

Genetic programming

Data-driven techniques

Data mining prediction systems

Machine Learning & AI
ML imputation methods 
combined with survival analysis

Foretelling water mains with 
increased breaking likelihood

Fast and cost effective models
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Answering the question
 The number of ML techniques in pipe failure detection has increased during the last years.

 Only few of them are utilizing data generated from Water Distribution Networks (WDN) simulations.

 Even fewer are operating under complex water usage conditions. 

Results returned from the Dimensions AI tool by entering 
the keywords ML & pipe failure 
https://app.dimensions.ai/discover/publication

How did the current work address the issue?

Train 2 ML 
models

• Real WDN Data from a real network in Greece.
• Pipe failure characteristics recorded (and break history).

Predict failure 
in C-Town

• Pipe characteristics database artificially expanded to include 
information of pipe construction material.

• Assuming the same feeder pipe material distribution as the 
real network.

Replacement 
strategy 

• Varying construction contract budgets. 
• Multiple simulation scenarios

https://app.dimensions.ai/discover/publication
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Case studies: Mourati zone & C-Town 

 A DMA serving ~ 3km2 and multiple uses.
 1640 pipes of external diameters ranging from Ø50 to 

Ø900.
 Materials: (i) gray cast iron, (ii) asbestos cement, (iii) 

galvanized steel, (iv) straight seam steel, (v) PVC and (vi) 
polyethylene MRS100 (encoded in the range [1, 6]).

 Main pipes are mainly manufactured from i, iv and ii.

 Based on a real-world medium sized network.
 1 reservoir, 7 tanks, 388 demand junctions, 429 pipes, 

11 head pumps and 4 valves [3 pressure relief valves 
(PRV), 1 flow control valve (FCV)].

 The C-town model does not include any pipe material 
information.
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C-Town model: expanding its pipe characteristics database 

 The C-town model does not include any pipe material information.

It is assumed that: 

1. The main pipes are following the same materials distribution as the ones of Mourati zone.

2. The secondary & tertiary pipes are assigned to a material by a random choice of uniform selection.
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Training the pipe failure probability prediction models (1/3)

Two models are developed and trained using Scikit-learn in Python:

 Regression model based on k-nearest neighbors (kNN-R).

 The Decision Tree regression model (DTR).

The dataset is including:

1. Numerical features: 

(i) the pipe material encoding; 

(ii) the main flagging (assigned a value of 1 if the pipe is a main one, or 0 if the pipe is secondary or tertiary); 

(iii) the pipe external diameter; 

(iv) the pipe length. 

2. The label: 

Indicates if the corresponding pipe is faulty (broken) or not (with values of 1 and 0).
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Training the pipe failure probability prediction models (2/3)

The percentage of pipes that failed is only a small subset of the dataset (~ 6%). 

Unbalanced dataset: most of 
the ML models could ignore 
such results or exhibit poor 
performance in the minority 
class

What can we do?
Oversample the minority class to 

create a balanced dataset.

Synthetic Minority Oversampling 
Technique (SMOTE) 

Advantages
The new synthetic examples from the 

minority class are plausible, i.e., relatively 
close to real examples!

Disadvantages

Synthetic examples are created without 
considering the majority class →

Ambiguous examples if there is a strong 
overlap between the classes
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Training the pipe failure probability prediction models (3/3)

 The two ML models (kNN-R, DTR) are trained in the oversampled dataset.

 The two models are regressive ones: they produce real numbers (i.e., failure probabilities).

 To make them binary (e.g. translate the probability to failure or non-failure) we choose a threshold (cut-off value).

 It is treated as a hyperparameter and tuned accordingly! 

kNN-R DTR
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Pipe replacement methodology (1/2)
Strategy conceptualization:

 The available budget for pipe replacements is distributed amongst a 5-year construction contract. 

 The contract is allocated to annual sub-contracts.

 A proxy metric of pipe replacement cost is utilized (where L the length and D the diameter).

𝐶𝐶𝑖𝑖 = 𝐿𝐿𝑖𝑖𝐷𝐷𝑖𝑖2

 The available budget for the contract is assumed to be a proportion (p), i.e., 10%, 15% or 20%, of the total 

replacement cost (∑𝐶𝐶) for all WDN’s pipes → three contract cost levels are produced.

 Pipes of the WDN are sorted with their failure probability (as predicted by the 2 ML models).

 In total we get 6 sets of annual schedules (2 models x 3 contract cost levels).

10%

15%

20%

kNN-
R 10%

15%

20%

DTR
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Pipe replacement methodology (2/2)
Annual schedule:

 Formed at the start of the year from the set of pipes that accumulate the annual construction budget.

 They are replaced with new ones.

 The new pipes are assumed failure-proof till the end of the 5-year contract.

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

�𝐶𝐶𝑖𝑖 =
𝑝𝑝 % ∑𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

5

�𝐶𝐶𝑖𝑖 =
𝑝𝑝 % ∑𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

5

1st

year

2nd

year
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Performance assessment
A Monte Carlo scheme regarding pipe failures is employed (simulations in EPANET):

 A daily pipe failure probability is assigned to the WDN 𝐹𝐹 = 0.0005 𝐿𝐿
1000

𝐷𝐷
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

 An ensemble of 100 realizations of the WDN hydraulic simulation, with a duration of 1825 days, is formed.

 For each day and each pipe, a random probability (𝑝𝑝𝑟𝑟) of non-exceedance from the uniform distribution is generated.

 If 𝑝𝑝𝑟𝑟 > 𝐹𝐹 the pipe brakes → An emitter is introduced at the breaking pipe (with WNTR Python package).

o The emitter flowrate (𝒒𝒒) is calculated from node’s pressure (𝒑𝒑) and a burst coefficient (𝒃𝒃).

o The emitter is introduced by splitting the pipe in two parts of equal length.

For the whole simulation period (i.e., all instances of bursts), this set of pipe failures tallies to a total unmet demand.
 If pipes that burst are in the replacement schedule and the replacement has been already applied at the specific 

timestep of burst, the unmet demand that occurs from this burst is tallied to another variable, i.e., unmet demand 
reduction.

𝑞𝑞 = 𝑏𝑏 𝑝𝑝 𝑏𝑏 = 0.75𝐴𝐴
2
𝜌𝜌

Cross-section area

Burst coefficient

Water densityNode’s pressure

Emitter flowrate
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Results
 The performance of each realization is the ratio of unmet demand with the scheduling of pipe replacements versus 

unmet demand, i.e., the reduction ratio of unmet demand. 

 After assessing performance of the whole ensemble of realizations, for each of the six discrete sets of annual 

schedules we compare the results.
Remarks:
o In the truly random replacement of pipes in the network 

the expected outcome would follow the budget level; 
replacing the 10% of pipes would -more or less- result in 
10% unmet demand reduction ratio compared to no 
replacements.

o The kNN-R strategy (albeit in the limited pool of 100 
realizations) seems to offer no benefit compared to a 
random replacement schedule.

o There is an added value of using the DTR strategy, as it 
systematically offers better than randomly expected 
performance. 
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Conclusions

1. A novel coupling of ML prediction models for pipe bursts in WDNs, with strategies of replacement, is presented.

2. We assess their performance with Monte Carlo hydraulic simulations in EPANET, to address uncertainty.

3. The methodology is demonstrated by training the ML models in a real-world system (lacking demand supply and 

control data).

4. Then the replacement strategies are assessed in a synthetic WDN.

5. It is an example case far from a real-world system.

6. Acts as an early schematic prototype of a promising methodology.



Thank you!
pn.dimas@gmail.com
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