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A B S T R A C T   

As the share of renewable energy resources rapidly increases in the electricity mix, the recognition, represen
tation, quantification, and eventually interpretation of their uncertainties become important. In this vein, we 
propose a generic stochastic simulation-optimization framework tailored to renewable energy systems (RES), 
able to address multiple facets of uncertainty, external and internal. These involve the system’s drivers (hy
drometeorological inputs) and states (by means of fuel-to-energy conversion model parameters and energy 
market price), both expressed in probabilistic terms through a novel coupling of the triptych statistics, stochastics 
and copulas. Since the most widespread sources (wind, solar, hydro) exhibit several common characteristics, we 
first introduce the formulation of the overall modelling context under uncertainty, and then offer uncertainty 
quantification tools to put in practice the plethora of simulated outcomes and resulting performance metrics 
(investment costs, energy production, revenues). The proposed framework is applied to two indicative case 
studies, namely the design of a small hydropower plant (particularly, the optimal mixing of its hydro-turbines), 
and the long-term assessment of a planned wind power plant. Both cases reveal that the ignorance or under
estimation of uncertainty may hide a significant perception about the actual operation and performance of RES. 
In contrast, the stochastic simulation-optimization context allows for assessing their technoeconomic effective
ness against a wide range of uncertainties, and as such provides a critical tool for decision making, towards the 
deployment of sustainable and financially viable RES.   

1. Introduction 

The EU has set a target of at least a 32% share of renewable energy in 
the final energy consumption by 2030. Yet today, energy production and 
consumption based on fossil fuels still represent more than 75% of the 
EU’s greenhouse gas emissions, thus boosting EU members towards 
clean energy solutions. Two key objectives that we have been recently 
set by the European Commission for 2030, in the context of the running 
policy framework for climate and energy (also referred to as Climate and 
Energy Framework 2030) are: (a) an ambitious increase of energy effi
ciency up to 40%, regarding both primary and final energy consump
tion, and (b) further deployment of renewables, in order to exceed 40% 
in the final energy consumption in the EU. However, the systematically 
increasing penetration of renewable energy introduces further com
plexities to the global energy scene, due to multiple and interacting 
uncertainties [1,2]. This issue affects the entire life-cycle of renewable 
energy systems (RES), i.e., planning, design, policy management and 

operation [3,4]. 
As shown in Fig. 1, multiple sources of uncertainty exist, from the 

input “fuel” to its conversion to electricity production, and eventually 
the energy market. Their disentangling requires to separate them into 
exogenous (external) and endogenous (internal). The former category 
mainly refers to the inherent uncertainty of the system’s drivers, i.e. 
hydrometeorological processes, also involving highly-complex and un
predictable socioeconomic and environmental factors, as well as con
flicts within the broader energy-society nexus, e.g., land development 
[5]. On the other hand, internal uncertainties refer to conversion pro
cesses and underlying modelling assumptions. 

The fact that renewable energy production is highly varying, inter
mittent and unpredictable across all scales, induces significant chal
lenges to researchers and practitioners, in terms of successfully 
planning, scheduling, utilizing and controlling RES [6,7]. Nevertheless, 
it is recognized that the associated tasks, generally configured as opti
mization problems, can be effectively handled if uncertainties, 
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probabilities, and fluctuating behaviors of renewable energy systems are 
properly represented [8]. 

This research highlights the importance of addressing the major 
facets of uncertainty, external and internal in combination, for two 
crucial life-cycle phases of RES, namely the technical design and the 
economic assessment. This problem is introduced in a generic 
simulation-optimization context, and then specified across the most 
popular types of RES, namely wind, photovoltaic and hydroelectric. The 
key objective is to formalize the endogenous and exogenous un
certainties across the input processes and model hypotheses, and even
tually represent them under a novel uncertainty quantification 
framework, by coupling the methodological triptych of statistics, sto
chastics and copulas. 

As a proof of concept for the effectiveness and generality of the 
proposed framework, we analyze two different cases. The first involves 
the design of a run-of-river small hydropower plant (SHPPs) in Achelous 
River basin, Western Greece, and particularly the estimation of the 
optimal mixing of its turbines. The underlying optimization problem 
aims to maximize the anticipated revenues from the long-term operation 
of the power plant, contrasted to the investment costs of the electro
mechanical equipment and the overall technical efficiency of the proj
ect, expressed in terms of capacity factor. The second case study refers to 
the long-term economic assessment of a planned wind power plant in the 
island of Ikaria (Greece). Both cases are handled through a modular 
scenario-based scheme, starting from the benchmark scenario, i.e., the 
conventional deterministic practice, and redounding to an integrated 
stochastic-probabilistic approach. This allows for capturing the key 
exogenous and endogenous uncertainties, and simultaneously providing 
decision support tools for design, strategic management, and evaluation 
of RES. 

2. The challenges of RES under the uncertainty perspective 

As mentioned, the design, assessment, management and operation of 
RES are subject to multiple uncertainties, spanning from their hydro
meteorological drivers to storage, conversion, and power transfer cycles, 
including transmission capacity, generation availability, load re
quirements, unplanned outages, etc. [9]. Another crucial facet of un
certainty originates from the broader socioeconomic environment, thus 
being associated with governance, market rules, fuel and energy prices 
and market forces [10]. 

The different disciplines that are involved in RES address the issue of 
uncertainty from their own perspectives and methodological means. 
Environmental sciences have focused on capturing external un
certainties, and specifically those stemming from the highly varying 
nature of the input hydrometeorological processes. However, it is 
argued that this source of uncertainty is poorly only reflected when 
using short historical data within simulations [11]. In fact, these data 

may not be fully representative of the actual hydroclimatic regime of the 
process of interest, and cannot capture long-term changes, that are of 
key importance in the assessment of reliability and resilience of RES. A 
more comprehensive approach is offered by stochastic synthesis models 
that are able to reproduce the probabilistic behavior and dependence 
structure of the hydrometeorological process of interest across scales. 

The use of stochastic models for generating long synthetic data, to be 
input to deterministic models, is a common practice in water resources 
and other environmental sciences [12]. The literature reports numerous 
modelling attempts for representing wind, solar and hydrological 
drivers through statistical and, less often, stochastic approaches 
[13–16]. The latter offer a consistent basis for process description, since 
they also account for dependencies in space, i.e. among correlated 
processes [17], and time. Mechanical and electrical engineering sciences 
have mainly explored internal uncertainties associated with the system 
properties (e.g., drop of efficiency due to ageing, maintenance and 
equipment malfunction), as well as model assumptions and parameters 
[18,19]. In general, such approaches refer to the microscale of the power 
machine, in order to capture facets of uncertainty across quite complex 
technical issues, e.g. pitch control to wind turbines [20]. 

However, the combined effects of internal and external un
certainties, as well as the interplay of their cascades and dependencies, 
have received considerably less attention to date [21], although it is 
accepted that the nonlinearities across the inflow-energy conversions 
usually amplify the overall uncertainty [22]. This leads inevitably to a 
fragmented approach in planning and management practices for RES, 
arguably impacting their performance, as quantified in terms of econ
omy and reliability, and the emerging concept of resilience [23]. For 
instance, in the engineering context, conventional practices often ignore 
or, at least, underestimate these uncertainties and their dependencies. 
Yet, it is argued that the ignorance of uncertainty results into fully 
deterministic outcomes (i.e., a unique optimal design), which eventual 
leads to risky decisions, regarding critical technical quantities and the 
economic viability of RES. 

In order to address this gap from a modelling perspective, three 
major research goals are arising, i.e.: 

(a) The recognition of the multiple aspects of uncertainty, their de
pendencies (wherever applicable) and their importance across 
the life-cycle of renewables;  

(b) The representation of uncertainties and their incorporation 
within a simulation-optimization context;  

(c) The quantification and practical interpretation of the model 
outcomes under uncertainty. 

In this vein, and since RES exhibit several common characteristics, a 
generic formulation of the simulation-optimization problem is intro
duced, accompanied by the associated principles for its configuration 
under a holistic uncertainty-aware framework. Herein are presented the 
overall theoretical background, followed by its specification across two 
common practical applications. 

3. Simulation-optimization framework 

3.1. Generic simulation model for RES 

In contrast to power systems using fossil fuels, where energy pro
duction is predictable and controllable, in the case of RES the production 
follows the variability of the inflow source (wind, solar radiation, 
water). This variability can be mathematically described on the basis of 
statistical or stochastic terms, assuming a simulation context to link the 
power production, p , with the hydrometeorological input, x , which are 
both handled as random (better referred to as stochastic) processes (for 
convenience, throughout the text, we apply the underline notation to 
denote stochastic processes). 

Fig. 1. Key sources of uncertainty associated with renewable energy.  
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The transformation of the randomly varying input process, x , to the 
output power, p , is a nonlinear function which is generally expressed as: 

p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x < xmin

η
(

x
)

p0

(

x
)

xmin ≤ x < xmax

I xmax ≤ x < xs
0 x ≥ xs

(1)  

where p0

(

x
)

is the theoretical power, I is the power capacity (also 

referred to as nominal power), and η
(

x
)

is the total efficiency, which 

are both driven by the stochastic process x . The limits xmin and xmax are 
characteristics of the specific RES, while xs represents a cut-out value, 
above which the machine stops for safety reasons. 

The theoretical power depends on the location, layout and particular 
technical characteristics of the RES. In this respect, the theoretical wind 
power is given by: 

p0

(

v
)

=
1
8

ρα π D2v 3 (2)  

where ρα is the air density, D is the diameter of the wind turbine and v is 
the wind velocity. Typical values of vmin, vmax and vs are 3.0, 12.0 and 
25.0 m/s, respectively. 

For the common type of solar energy systems, namely the photo
voltaic (PV) ones, the theoretical power is given by: 

p0

(
r
)
= S r (3)  

where S is the net area of photovoltaic panels and r is the incoming solar 
radiation. The operation of PVs is simpler than other RES, since their 
nominal power is by definition achieved at rmax = 1000 W/m2. 

Finally, the theoretical output power by a hydroelectric system is 
expressed in terms of hydrodynamic power: 

p0

(

h , qT

)

= ρ g h qT (4)  

where ρ is the water density, g is the gravity acceleration, h is the gross 
head, i.e., the elevation difference between the upstream water level and 
the outlet of the power station, and qT is the flow passing through the 
turbines. Regarding the limits qT,min, qT,max and qT,s, these depend on the 
turbine characteristics, as further discussed in the first proof-of-concept 
study (section 4). 

We underline that, in contrast to wind velocity and solar radiation, 
the turbine flow is not a purely natural process, but a spatiotemporal 
transformation (regulation) of the runoff produced over a catchment 
through a system of hydraulic works, employing diversion, storage, 
water transfer, etc. In this respect, the representation of the regulated 
process, qT, implies the use of an operation model of the associated 
water resource system, e.g., hydroelectric reservoir [24]. This model, 

symbolized, qT = Φ
(

q
)

, gets as input the “primary” stochastic process, 

by means of streamflow q , and accounts for the constraints and de
cisions induced by the system’s characteristics (e.g., reservoir and 
penstock capacity, storage-elevation relationship) and assigned man
agement practices, respectively. Similarly, the gross head h derives from 
the operation model, since its variability is mainly dictated by the 
variability of the upstream reservoir level. 

On the other hand, the total efficiency, η
(

x
)

, is the product of in

dividual efficiency values that refer to different components of the 
power transformation system, to express the associated energy losses. 
For instance, in the case of hydropower, this involves the hydraulic 
losses across the water conveyance system (penstock), the hydraulic, 

mechanical and mass losses in the turbines, as well as the power losses in 
the generator and the transformer. In general, these are subject to 
complex physical laws that make hard to establish accurate analytical 
expressions [25]. In this respect, each power machine has its own effi
ciency function, expressed by nomographs that are provided by the 
manufacturer, on the basis of laboratory results. 

Characteristic examples for wind and hydro-turbines, as function of 
the associated input process, x , are demonstrated in Fig. 2. It is inter

esting to remark that in all cases, the function η
(

x
)

is not monotonic. 

Nevertheless, the estimation of efficiency is subject to three key sources 
of uncertainty. The first is due to deviations between the actual per
formance of the power machine in the field and its prototype [26]. A 
characteristic example is the control of the pitch angle of wind turbines, 
which may significantly affect their real performance [27]. The second 
source of uncertainty originates from the drop of efficiency due to 
deterioration, damage and ageing of equipment over time. The last 
feature, which introduces further complexity and thus uncertainty, is the 
dependence of efficiency not only on the input, x , but also on additional 
stochastic processes, such as the sediment transport causing erosion to 
hydro-turbines [28] or the temperature and other meteorological pro
cesses that affect the actual efficiency of PV panels [29]. 

3.2. The design optimization context 

Herein we formalize the design optimization problem in multi
criteria terms, involving the estimation of a key characteristic of the 
RES, namely the determination of the total power capacity and its 
sharing to its individual components. In this respect, we consider a given 
layout of the system, such as a wind park, a solar park or a hydroelectric 
station, where the siting of all supporting infrastructures, by means of 

Fig. 2. Examples of efficiency functions for a wind turbine (up) and a Pelton- 
type turbine (down). 
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civil works (e.g., power station house, road network), are already 
specified. We remark that the design of most of civil infrastructures is 
strongly related the power capacity of the overall system and its indi
vidual components. In this vein, the design variables to optimize are 
expressed as a vector I = [I1, I2, …, INS], where NS is the number of the 
system’s components. 

The standard technoeconomic optimization problem is formalized as 
the maximization of financial quantities, such as the net present value 
(NPV). According to this concept, the discounted value of future net cash 
flows should exceed the investment cost, so as to ensure a sustainable 
investment [30]. In our case, the cash flows derive from the production 
of electrical energy during the entire life-cycle of the system, while the 
investment cost, involving the electromechanical (E/M) equipment and 
the civil works, is directly or indirectly associated with the power 
capacity. 

Following this, by considering a financial period of n years with a 
specific interest rate i, the equivalent annual cost of the investment is 
given by: 

A=C
i (1 + i)n

(1 + i)n
− 1

(5)  

where C is the total investment cost, which is the sum of individual costs, 
Ci. All these costs are subject to the key principle of economy of scale, 
thus expressed as: 

Ci = f
(
Iλ

i

)
(6)  

where λ < 1 is a shape parameter, expressing the reduction of unit cost 
with respect to power capacity. 

In order to implement the aforementioned cash-flow method in a 
risk-aware context, the expression of future revenues should be deter

mined in terms of mean annual energy production, Ea = E
[

p
]

Ta (where 

Ta denotes the annual duration), multiplied by a unit price, u . The 
estimation of power production requires running a simulation model, 
thus Ea is actually a stochastic variable. In addition, the unit price u can 
also generally be considered as a stochastic process [31], since it varies 
in the context of free electricity market trade and supply. Under this 
premise, the objective function of the design optimization problem is 
expressed in annual profit terms as: 

F
(

I, p
)

= u Ea

(

I, p
)

− A(I) (7) 

This function is strongly nonlinear and contains two conflicting 

components, namely the mean annual energy production, Ea

(

I, p
)

, to 

maximize, and the equivalent annual cost, A(I), to minimize. 
To ensure robust solutions, in the multicriteria optimization problem 

we also embed a third component, which is the resulting capacity factor, 
CF, of the system under study. According to its common definition, CF is 
expressed as the ratio of the mean annual electrical energy output to the 
maximum possible one [32], i.e.: 

CF
(

I, p
)

=

Ea

(

I, p
)

Ta
∑N

i=1Ii
(8)  

where Ta is the annual duration. 
Although CF seems being a rather technical quantity, it is actually a 

fundamental performance metric of power systems, thus its interpreta
tion plays key role in the evaluation of the viability of a RES. In 
particular, a low CF is not necessarily associated with poor performance 
in terms of energy production, but may also be due to the application of 
a too large installed capacity that is activated a small portion of time. 

Since the other two criteria are given in monetary terms, the incor
poration of CF within the generic optimization problem is made by 

assigning a penalty term, to achieve CF values over or close to a desir
able threshold, CF*. The latter is site-specific and varies across different 
RES types [33]. Under this premise, the proposed multi-objective 
function to maximize is written as: 

F΄
(

I, p
)

=F
(

I, p
)

− max
[

0, CF
(

I, p
)

− CF*
]

w (9)  

where w is a suitable weighting coefficient. 

3.3. The triptych of statistics, stochastics and copulas in practice 

As shown in Fig. 3, the proposed modelling framework under un
certainty follows the Monte Carlo paradigm, which makes use of three 
tools from the broader probability theory, i.e., stochastics, statistics, and 
copulas. The first two aim at capturing the major aspects of uncertainty 
that originate from the inherently random input processes and the model 
hypotheses, while copulas are used in the post analysis phase, as 
explained herein. 

The Monte Carlo approach is applied to the simulation model, which 
involves most of practical issues of renewable energy (planning, design, 
long-term assessment, short-term control, etc.). This is configured by 
means of equally probable simulation scenarios that correspond to m 
different system’s states and input processes. Each hypothetical state 
runs for N years, which equals the economic life of the project of interest. 
The state is expressed through two key characteristic properties, namely 

the efficiency function η
(

x
)

and the unit price, u . The first is associated 

with the internal operation of the RES per se, while the second derives 
from the uncertain socioeconomic environment. In particular, the 
formulation of efficiency under uncertainty presupposes to introduce an 

analytical formula, symbolized η
(

x , ψ
)

, for the associated machine, 

where ψ is a set of parameters that describe the shape of the curve. 
These are also represented as random variables, in order to capture all 
possible fluctuations from the standard commercial curve. This issue is 
further discussed in the two case studies, providing probabilistic para
metric formulas for the power conversion curves of hydro and wind 
turbines, respectively. 

Under this premise, the Monte Carlo scenarios are configured by 
assigning appropriate distribution functions to ψ and u and then 
employing random sampling to define the m potential states of the 
system. Furthermore, in order to express the external uncertainties 
induced by the local hydrometeorological regime, each scenario is 
driven with long synthetic data of length N for the corresponding input 
processes x . In this respect, a stochastic model is applied to generate m ×

N years of synthetic data, and this sample is then split into m sub-sets, 
also referred to as ensembles. The temporal resolution of the data de
pends on the specific process (e.g., hourly for wind velocity and solar 
radiation, daily for streamflow). 

Consequently, outcomes of the simulation scenarios are m ensem
bles of output processes (e.g., power production) and associated design 
components (e.g., optimized power capacity) and performance assess
ment metrics (e.g., mean annual revenues, capacity factor). In this vein, 
all outputs are represented in stochastic terms, which also allows for 
quantifying their uncertainty through statistical analyses of the corre
sponding simulated data. For instance, we can fit suitable probability 
density functions (pdfs) to individual design and performance assess
ment metrics. Further insight can be provided by accounting for the joint 
uncertainty induced by cross-dependencies between the derived design 
variables and performance metrics. The underlying methodology is 
based on the work of Tsoukalas [34], and relies on the use of (Gaussian) 
copulas to establish the conditional distribution of two (non-Gaussian) 
random variables. A summary of the employed method is provided in 
Appendix A. 

The generic algorithmic procedure for the design case, which also 
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contains the assessment problem, is depicted in Fig. 4. The application of 
the aforementioned framework is demonstrated by means of two 
(simplified) proofs-of-concept, where a modular approach is adopted, 
thus adding progressively more sources of uncertainty within simulation 
and optimization. 

4. Proof of concept A: optimal design of run-off-river 
hydroelectric plant under uncertainty 

4.1. Key principles of hydropower system operation 

The uncertainty-aware framework, in the design context, is stressed 
for a run-off-river (RoR) small hydropower plant, which is a quite 
complex and promising renewable source. This type of hydroelectric 
system diverts part of the streamflow arriving to an intake structure, 
located in the riverbed, to a forebay tanks and then to the power station, 
which is generally located far from the intake, to create a significant 
elevation difference. 

For a given layout, the design problem lies in the selection of an 
optimal mixing of turbines, in order to capture as much as possible of the 
streamflow variability. Let consider a RoR plant comprising two turbines 
of power capacity, I1 and I2, operating within flow ranges (q1,min, q1,max) 
and (q2,min, q2,max), respectively. The range of operation of each turbine 
is determined by its power capacity. In particular, the maximum 
discharge is given by: 

qi,max =
Ii

ρ g ηi,max hn
(10)  

where ηi,max is the total efficiency of the electromechanical equipment, 
and hn is the net head, i.e., the difference between the gross head and 
the hydraulic losses across the water conveyance system. These losses 
can be analytically estimated, on the basis of discharge, diameter and 
other properties. On the other hand, the minimum operational discharge 
is simply expressed as portion of the maximum one, i.e., qi,min = θ qi,max, 
where θ depends on the turbine type. 

Fig. 3. Schematic layout of the proposed framework.  

Fig. 4. Logical flow of the proposed framework regarding the design optimization problem.  
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The mixed scheme operates from the minimum flow between q1,min 

and q2,min, and the sum q1,max + q2,max. A typical operation policy implies 
the use of the large turbine in priority, while the small one receives the 
surplus flow, up to its capacity [35]. In some cases, a safety limit, qs, is 
also imposed, to interrupt the operation of turbines during significant 
flood events [36]. Finally, the turbine efficiency can be expressed 
through the following parametric formula, introduced by Sakki et al. 
[37]: 

n= nmin +

(

1 −
(

1 −

(
q* − θ
1 − θ

)a)b
)

(nmax − nmin) (11)  

where q* = qT/qmax is the rated flow, nmin and nmax are the upper and 
lower efficiency values, and a and b are shape parameters depending on 
the turbine type. The total E/M efficiency is obtained by multiplying 
with an adjusting factor, with typical value 0.95. 

4.2. Study area, data and design assumptions 

The hydropower plant under design is established in a sub-catchment 
of Achelous River in Western Greece, taking advantage of a gross head of 
150 m. The penstock length and diameter are 500 m and 1.5 m, 
respectively. The available historical data comprises daily streamflow 
records for 39 years, with mean annual value 2.15 m3/s [38]. Following 
the Greek legislation, we apply an environmental flow to be released 
downstream of the intake, which equals to 0.25 m3/s. 

The key design objective involves the setting of two Francis-type 
turbines. Their efficiency is approximated by eq. (11), where nmin =

0.30, nmax = 0.93, a = 0.80 and b = 3.75. For the estimation of hy
draulic losses across the penstock, we consider a roughness coefficient 
up to 1.0 mm. 

4.3. Deterministic optimization context 

Since the configuration of the major system components (intake and 
power station sites, layout of diversion, penstock diameter) are already 
specified, their investment costs are fixed. In this respect, the annual 
profit component (eq. (5)) includes the cost of E/M equipment, which 
implies a high percentage (30–40%) of the total budget of a typical small 
hydropower plant [39]. In the literature, this cost is linked with the 
power capacity, I, and the gross head, h, through empirical relation
ships. In the present study we apply the following formula, proposed by 
Aggidis et al. [40]: 

C=C0 Iα hβ (12)  

where C0 = 14 400 €, a = 0.56 and β = − 0.112. 
The rest assumptions for the configuration of the objective function 

(eq. (9)) involve the assignment of selling price of electrical energy and 
the capacity factor threshold, which are set equal to u = 0.087 €/kWh 
and CF* = 0.25, respectively. We remark that, although this price 
should, in general, be handled as a random variable, here we employ a 
fixed value, according to the Greek legislation for small hydroelectric 
plants that are not yet entered the energy market model. On the other 
hand, the selection of CF* is based on engineering evidence, and pro
hibits the derivation of oversized turbines, in order to exploit large yet 
low-frequency streamflows. 

To insight to the optimization problem, we repeat the design pro
cedure for a large number of turbine capacity combinations, driven with 
the historical streamflow data. We highlight that since the formulation 
of the problem is deterministic, it leads to a unique solution, i.e., the 
global optimum of the profit function. Interestingly, as shown in Fig. 5, 
the response surface comprises two regions of attraction, and thus two 
optimal mixings, with quite close performance. These reveal two alter
native operation policies, one by setting in high priority the large tur
bine (global optimum) and the other the small one (local optimum). 

4.4. Building the design procedure under uncertainty 

In order to better reveal the potentials of the stochastic design 
framework over the conventional, deterministic one, we demonstrate 
the modular scheme to disentangle the key sources of uncertainty, 
external and internal. In particular, we establish three settings of the 
optimization problem under uncertainty, herein symbolized A, B and C. 

The two first settings aim to represent the external uncertainty, 
originating from the natural variability of streamflow. In this respect, we 
provide 100 ensembles of synthetic daily streamflow data, each one 
covering a 20-year horizon (i.e., the economic life of small hydropower 
plants, according to the Greek legislation), to drive the optimization 
procedure. In particular, setting A consists a pure statistical approach, 
where 100 × 20 years of daily synthetic data are sampled from a 
Generalized Gamma distribution model. This procedure maintains the 
overall probabilistic structure of the daily streamflow, yet it ignores 
major features of hydrological processes, such as seasonality and de
pendencies across scales. Besides, setting B is more complete, since it is 
based on the stochastic approach for data generation. In this respect, we 
employ the anySim package [41], which is suitable for simulating pro
cesses of any distribution and dependence structure across multiple 
temporal scales. Specifically, anySim is used to generate synthetic data 
that reproduce the stochastic regime of the observed streamflow across 
seasons and across three scales of interest (daily, monthly, annual). 

The more integrated setting C augments the above-mentioned 
setting, by embedding a major source of internal uncertainty, i.e., the 
turbine efficiency. In this vein, we repeat the 100 optimization sce
narios, driven with synthetic streamflow data and with equally probable 
efficiency formulas (Fig. 6). Following the rationale of section 3.3, we 
consider the four parameters of eq. (11) as random variables, thus we 
sample the efficiency bounds ηmin and ηmax from a Beta distribution, and 
the shape parameters a and b from a Normal one. This ensures that the 
derived curves are asymmetrically spread around the standard one, to 
account for the effects of systematic drop of efficiency due to ageing. 

4.5. Results 

Each optimization setting results to scenarios of 100 equally prob
able optimized sets of power capacity values and associated perfor
mance metrics. As shown in Fig. 7, the uncertainty-aware design 
procedure leads to two characteristic patterns across the two regions of 
attraction, already revealed from the deterministic optimization 

Fig. 5. Response surface of the profit function, highlighting the two optima 
points that indicate alternative turbine mixings. 
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approach. The lower right pattern, which implies the use of the larger 
turbine as primary, is well-approximated by a linear relationship, while 
the upper left one formulates an oval scheme. We highlight that as the 
description of uncertainty becomes more detailed, the spread of these 
patterns increases, and, furthermore, their distribution is the objective 
space changes significantly. As shown in Table 1, the incorporation of 
uncertainty leads to a wide range of optimal values across all key 
quantities of the design procedure (total capacity, investment costs, 
etc.). As expected, these differ across the alternative settings. 

In Fig. 8, we fit a probability density function (pdf) to the ensemble of 
optimized total capacity values (for setting C, accounting for both 
external and internal uncertainties) and contrast it with the single value 
provided by the deterministic approach. Furthermore, in Fig. 9, we 
apply the copula theory, in order to quantify the predictive uncertainty 
of the anticipated profits against the total power capacity. In a real- 
world practice, the user can first refer to Fig. 8 for turbine sizing, by 
selecting an appropriate quantile (which represents the risk of the design 
policy), and next take advantage of Fig. 9, in order to quantify the 

predictive uncertainty of the investment. 

5. Proof of concept B: long-term assessment of a wind turbine 
system performance 

The second case study seeks for the long-term assessment of a wind 
power park, by accounting for its main internal and external un
certainties. This is established in a small Aegean island (Ikaria, Greece), 
and consists of two turbines with different power capacity, i.e., 1.0 MW 
and 2.3 MW, different hub heights, i.e., 59 and 85 m, respectively, and 
thus different power curves. These curves are also expressed by the 
parametric formula of eq. (11), where the streamflow is replaced by 
wind velocity and thus v* = vT/vmax is the rated wind velocity, nmin and 
nmax are the upper and lower efficiency values, and a and b are the 
shape parameters. The two curves are demonstrated in Fig. 10. 

The turbines are established in-line and aligned with the prevailing 
wind direction. Since the large turbine is upstream, for the energy 
production we account for the interaction (e.g., due to turbulence ef
fects) between them, by decreasing the wind velocity to the second 
turbine as follows [42]: 

Fig. 6. Equally probable efficiency curves asymmetrically spread around the 
standard (empirical) one to emphasize aging effects. 

Fig. 7. Optimized sets of turbine mixing for the three problem settings.  

Table 1 
Summary of results from the alternative design approaches.  

Design approach Deterministic Setting A Setting B Setting C 

Total capacity (MW) 9.9 8.3–11.0 5.6–13.8 6.7–13.7 
Investment cost (106 €) 3.4 3.0–3.8 2.2–4.4 2.4–4.6 
Mean annual energy 

(GWh) 
16.2 17.0–19.0 12.0–25.0 11.4–24.0 

Capacity factor 0.25 0.22–0.33 0.19–0.25 0.18–0.24  

Fig. 8. Fitting of Beta distribution to the set of optimized total capacity values 
(setting C). 

Fig. 9. Fitting of Gaussian copula to total power capacity and mean annual 
profit (setting C). 
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v= vo

(

1 −
2a

(1 + 2 k L/DL)
2

)

(13)  

where vo is the freestream wind velocity at the hub height level, k is the 
decay coefficient, and a is the induction factor. Here, for the decay co
efficient and the induction factor we are applying the values proposed by 
Vasel-Be-Hagh and Archer [42], i.e., k = 0.038 and a = 0.10. Following 
this, L is the distance between the two wind turbines and DL is the 
diameter of the large turbine, which are equal to 400 m and 71 m, 
respectively. 

The assessment procedure follows the same practice with the design 
proof of concept, thus expressing the internal and external uncertainties 
into three settings. As before, the first two aim at representing the 
external uncertainty, by providing 100 ensembles of synthetic hourly 
wind velocity with 25 years length (i.e., the lifetime of the project). We 
remind that the first setting ignores the dependencies across scales and 
the effects of seasonality, while the second setting reproduces the full 
regime of the observed wind velocities, as demonstrated in Fig. 11. The 
last setting combines the internal and external uncertainties, by 
enhancing the second setting with a more detailed approach for the 
turbine power curve. Specifically, 100 equally probable power curves 
for the two wind turbines are formulated, in order to express the un
certainty that reveals in their real operation. As shown in Fig. 10, the 
uncertainty bounds are negative asymmetrically spread, in order to 
reflect the observed deviation between the manufacturer’s power curve 
and the output power at the site [43]. For all settings, the economic 
performance of the wind power plant is expressed in stochastic terms, by 

applying a randomly varying energy price, which reproduces the sta
tistical characteristics of the historical timeseries for a 5-year period 
(2015–2020). As made with the wind velocity process, 100 ensembles of 
hourly price timeseries for the 25-year period of simulation are gener
ated, via the anySim package. The timeseries of the actual price data and 
one out of 100 synthetic samples are illustrated in Fig. 12. 

Each simulation results to 100 scenarios of characteristic quantities 
of interest for assessing the vitality of the RES, e.g., mean annual energy, 
expected profit, etc. A summary of the key outcomes is demonstrated in 
Table 2. In order to quantify the predictive uncertainty of the mean 
annual income, a copula model if fitted with respect to mean annual 
energy, as demonstrated in Fig. 13. The practical use of this graph is 
discussed in next section. 

6. Discussion: implication for energy planners, managers and 
stakeholders 

Our analyses indicated that the proper representation of uncertainty 
is not just a “game for statisticians”, but has a significant operational 
relevance. Besides the pure technical sector, the proposed uncertainty- 
aware framework involves multiple groups of interest, from energy 
planners and managers to policy-makers and stakeholders. 

From a technical point-of-view, it provides a holistic route to the 
design and economic assessment of RES, by representing their potential 
real-world operation through Monte Carlo scenarios. This is a major step 
forward the running paradigm, hypothesizing a unique future state of 
the system, under known internal and external conditions (i.e., forcing 

Fig. 10. Fitting of power curves to the original prototype for the two wind turbines and associated uncertainty bounds.  

Fig. 11. Stochastic and observed wind velocity data (randomly selected win
dow of one year length). 

Fig. 12. Stochastic and observed price data (randomly selected window of one 
year length). 
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processes and characteristic properties). The resulting shift from the 
unique deterministic solution to the ensemble of possible options allows 
for interpreting the outputs of simulation and optimization in probabi
listic terms. Overall, this approach can be the means to estimate the 
combined risks derived from the multiple sources of uncertainty and 
thus assist in the decision level. For instance, in the design of small 
hydroelectric plants, the coupling of Figs. 8 and 9 offers a decision tool 
for selecting the optimal turbine mixing and quantifying the full range of 
uncertainty with respect to anticipated performance of the system. 

The embedding of uncertainties can also be incorporated in the 
evaluation of renewable energy systems at a more macroscopic level. 
This approach has a twofold value a) for planned projects, it reveals a 
priori their vitality, and b) for existing systems, it highlights their po
tential weaknesses. For instance, the graph shown in Fig. 13 can be used 
as a strategic management tool for both potential and existing projects. 
Specifically, in the case of existing projects with already known per
formance, in terms of mean energy production, we can estimate the 
anticipated range of associated profits, and thus recognizing whether the 
system is effective or not. In addition, in the planning context regarding 
the deployment of potential RES, the stochastic simulation procedure 
offers a priori the valuable information about not only the mean annual 
energy per se but also the expected revenues from their long-term 
operation. 

The abstract information and knowledge gained from the afore
mentioned procedure can be eventually served as a communication 
channel with investors, stakeholders and local communities, which are 
the actual beneficiaries from a proper design and effective operation and 
management of RES. 

7. Conclusions 

An accurate representation of uncertainties is crucial across all as
pects of renewable energy. This research presents and discusses the 
principles of a holistic simulation-optimization approach for such sys
tems, by first recognizing the key sources of uncertainty, external and 
internal, and by setting them within a probabilistic framework. In this 
respect, the representation of uncertainties is made through the proba
bilistic triptych: (a) statistics, accounting for marginal properties of in
dependent variables, (b) stochastics, also accounting for dependencies of 
hydrometeorological drivers, and (c) copulas, for quantifying the joint 
uncertainty of simulated outcomes. As the three most widespread RES 
(wind, solar, hydroelectric) have fundamental similarities, a generic 
procedure for the related design and long-term performance assessment 
problems is established, which is a significant novelty of this work. 

In the proposed framework, all uncertain components within the 
design and the long-term assessment of RES are expressed in probabi
listic terms, either as stochastic processes or randomly varying quanti
ties (i.e., model parameters). Particularly, the representation of internal 
uncertainties across the energy conversion phases is simply made by 
introducing parametric analytical formulas for the system’s efficiency 
and sample their parameters from suitable distribution models. This is a 
key methodological novelty, which also avoids the application of 
detailed physical models for capturing complex uncertainties at the 
microscale. The combined effects of internal and external uncertainties 
are finally mapped to the outputs of interest, namely the optimized 
design variables (i.e., power capacity values) and the key performance 
assessment metrics (i.e., investment costs, expected energy production 
and revenues, capacity factor). In the context of their post-analyses, we 
have also developed probabilistic tools, also based on copulas, for 
quantifying individual and joint uncertainties. 

The modular application of the uncertainty-aware framework to the 
design of a small hydroelectric plant as well as to the assessment of a 
planned wind power park, revealed significant benefits of the proposed 
approach over conventional deterministic practices. Specifically, the 
contrast between settings A and B confirmed that ignoring seasonality 
and dependence effects within the simulation of the input processes 
(here, streamflow and wind velocity) hides a substantial part of uncer
tainty. Furthermore, the incorporation of internal uncertainties (setting 
C) ensured a more holistic viewpoint, since it allowed for representing 
the deviations of theoretical conversion models from the actual perfor
mance in the field. Within the design problem, this approach favored, for 
example, a different hierarchy in the turbine mixing. 

As a conclusive remark, also derived from the discussion of section 6, 
is that the coupling of uncertainty in the assessment of RES, either 
existing or planned, also has a practical footprint. In fact, it is crucial for 
the evaluation of the system’s performance under alternative states 
(hydroclimatic and economic drivers, as well as operational conditions) 
and the quantification of associated risks. The explicit incorporation of 
the concept of risk within RES design and planning, which has been the 
overall outcome of this research, allows decision makers and stake
holders to assess, a priori, whether the investment is effective and 
sustainable. 

Ongoing research is focused on the highly unpredictable social fac
tor, which has multiple synergies and interactions with renewable en
ergy, thus handling the overall problem from the perspective of socio- 
technical system under uncertainty. 
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Appendix 

Copula theory [44] enables the construction of multivariate joint distributions with arbitrary marginals. Due to this flexibility, nowadays the use of 
copulas have been popularized in a variety of scientific domains [45], including renewable energy [46,47]. Such constructs can also be used for the 
establishment of conditional distributions which are very often of interest (i.e., estimate the distribution of the random variable Y given that we have 
observed a realization x of the random variable X). To elaborate, let us focus on the case of the Gaussian copula and its use for the construction of 
non-Gaussian conditional distributions, based on the method by Tsoukalas [34]. Let X and Y denote two random variables (RVs), while FX(x) and FY(y)
stand for their cumulative distribution functions (cdf). According to copulas, their joint cdf can be expressed by, 

F(x, y)=P{X ≤ x, Y ≤ y}=C(FX(x),FY(y))=C(uX , uY) (A.1)  

where C( ⋅, ⋅) denotes the copula cdf, as well as uX = FX(x) and uY = FY(y) are uniformly distributed in [0, 1]. For the case of the Gaussian copula, the 
latter reads as follows: 

C(uX , uY)=Φ2
(
Φ− 1(uX),Φ− 1(uY); θ

)
(A.2)  

where Φ2 and Φ stand for the bivariate and univariate Gaussian cdf respectively, while θ ∈ [− 1, 1] denotes the copula parameter, which is linked, yet 
not necessarily equal, to the correlation coefficient of X and Y, since it depends on their marginals – see discussion in Tsoukalas et al. [48]. The 
conditional cdf of the RV X|Y = y, that is FX|Y=y(x) = P{X≤ x|Y = y} can be obtained through the following relationship: 

FX|Y=y(x)=
∂C(uX , uY)

∂uY
: =CX|Y(uX |uY) (A.3)  

where CX|Y stands for the so-called conditional copula. For the case of the Gaussian copula, the latter relationship reads as follows: 

a : =FX|Y=y(x)=CX|Y(uX | uY)=Φ

⎛

⎜
⎝

Φ− 1(uX) − θΦ− 1(uY)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − θ2)

√

⎞

⎟
⎠ (A.4)  

which can be inverted to: 

ua|uY
X : =C− 1

X|Y(a| uY)=Φ
(

θΦ− 1(uY)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − θ2)

√

Φ− 1(a)
)

(A.5)  

in order to find the value of uX that corresponds to a desired probability of non-exceedance a := CX|Y given the (known) value of uY (compactly written 

as ua|uY
X ). Finally, one can also obtain the quantile that corresponds to that conditional probability level by employing the inverse cdf of X, i.e., F− 1

X ( ⋅). 
The latter reads: 

xa|FY (y) = xa|uY = F− 1
X

(
ua|uY

X

)
(A.6)  

while for the Gaussian copula case it only entails a substitution of Eq. A.5 to A.6. 

References 

[1] Alqurashi A, Etemadi AH, Khodaei A. Treatment of uncertainty for next generation 
power systems: state-of-the-art in stochastic optimization. Elec Power Syst Res 
2016;141:233–45. https://doi.org/10.1016/j.epsr.2016.08.009. 

[2] Oree V, Sayed Hassen SZ, Fleming PJ. Generation expansion planning optimisation 
with renewable energy integration: a review. Renew Sustain Energy Rev 2017;69: 
790–803. https://doi.org/10.1016/j.rser.2016.11.120. 

[3] Rauner S, Budzinski M. Holistic energy system modeling combining multi-objective 
optimization and life cycle assessment. Environ Res Lett 2017;12:124005. https:// 
doi.org/10.1088/1748-9326/aa914d. 

[4] Saxe S, Guven G, Pereira L, Arrigoni A, Opher T, Roy A, et al. Taxonomy of 
uncertainty in environmental life cycle assessment of infrastructure projects. 
Environ Res Lett 2020;15:083003. https://doi.org/10.1088/1748-9326/ab85f8. 

[5] Sargentis G-F, Siamparina P, Sakki G-K, Efstratiadis A, Chiotinis M, 
Koutsoyiannis D. Agricultural land or photovoltaic parks? The water–energy–food 

nexus and land development perspectives in the thessaly plain, Greece. 
Sustainability 2021;13:8935. https://doi.org/10.3390/su13168935. 

[6] Koutsoyiannis D, Makropoulos C, Langousis A, Baki S, Efstratiadis A, 
Christofides A, et al. HESS opinions: “Climate, hydrology, energy, water: 
recognizing uncertainty and seeking sustainability. Hydrol Earth Syst Sci 2009;13. 
https://doi.org/10.5194/hess-13-247-2009. 

[7] Nakata T, Kubo K, Lamont A. Design for renewable energy systems with application 
to rural areas in Japan. Energy Pol 2005;33:209–19. https://doi.org/10.1016/ 
S0301-4215(03)00218-0. 

[8] Zakaria A, Ismail FB, Lipu MSH, Hannan MA. Uncertainty models for stochastic 
optimization in renewable energy applications. Renew Energy 2020;145:1543–71. 
https://doi.org/10.1016/j.renene.2019.07.081. 

[9] Rezamand M, Carriveau R, Ting DS-K, Davison M, Davis JJ. Aggregate reliability 
analysis of wind turbine generators. IET Renew Power Gener 2019;13:1902. 
https://doi.org/10.1049/iet-rpg.2018.5909. –10. 

G.K. Sakki et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.epsr.2016.08.009
https://doi.org/10.1016/j.rser.2016.11.120
https://doi.org/10.1088/1748-9326/aa914d
https://doi.org/10.1088/1748-9326/aa914d
https://doi.org/10.1088/1748-9326/ab85f8
https://doi.org/10.3390/su13168935
https://doi.org/10.5194/hess-13-247-2009
https://doi.org/10.1016/S0301-4215(03)00218-0
https://doi.org/10.1016/S0301-4215(03)00218-0
https://doi.org/10.1016/j.renene.2019.07.081
https://doi.org/10.1049/iet-rpg.2018.5909


Renewable and Sustainable Energy Reviews 168 (2022) 112886

11

[10] Aien M, Hajebrahimi A, Fotuhi-Firuzabad M. A comprehensive review on 
uncertainty modeling techniques in power system studies. Renew Sustain Energy 
Rev 2016;57:1077–89. https://doi.org/10.1016/j.rser.2015.12.070. 

[11] Bakhtiari H, Zhong J, Alvarez M. Predicting the stochastic behavior of uncertainty 
sources in planning a stand-alone renewable energy-based microgrid using 
Metropolis–coupled Markov chain Monte Carlo simulation. Appl Energy 2021;290: 
116719. https://doi.org/10.1016/j.apenergy.2021.116719. 

[12] Efstratiadis A, Dialynas YG, Kozanis S, Koutsoyiannis D. A multivariate stochastic 
model for the generation of synthetic time series at multiple time scales 
reproducing long-term persistence. Environ Model Software 2014;62. https://doi. 
org/10.1016/j.envsoft.2014.08.017. 

[13] Palma-Behnke R, Vega-Herrera J, Valencia F, Nunez-Mata O. Synthetic time series 
generation model for analysis of power system operation and expansion with high 
renewable energy penetration. J Mod Power Syst Clean Energy 2021;9:849–58. 
https://doi.org/10.35833/MPCE.2020.000747. 

[14] Aguiar R, Collares-Pereira M. TAG: a time-dependent, autoregressive, Gaussian 
model for generating synthetic hourly radiation. Sol Energy 1992;49:167–74. 
https://doi.org/10.1016/0038-092X(92)90068-L. 

[15] Katikas L, Dimitriadis P, Koutsoyiannis D, Kontos T, Kyriakidis P. A stochastic 
simulation scheme for the long-term persistence, heavy-tailed and double periodic 
behavior of observational and reanalysis wind time-series. Appl Energy 2021;295: 
116873. https://doi.org/10.1016/j.apenergy.2021.116873. 

[16] Tsekouras G, Koutsoyiannis D. Stochastic analysis and simulation of 
hydrometeorological processes associated with wind and solar energy. Renew 
Energy 2014;63:624–33. https://doi.org/10.1016/j.renene.2013.10.018. 

[17] Ramírez AF, Valencia CF, Cabrales S, Ramírez CG. Simulation of photo-voltaic 
power generation using copula autoregressive models for solar irradiance and air 
temperature time series. Renew Energy 2021;175:44–67. https://doi.org/10.1016/ 
j.renene.2021.04.115. 

[18] Soroudi A, Amraee T. Decision making under uncertainty in energy systems: state 
of the art. Renew Sustain Energy Rev 2013;28:376–84. https://doi.org/10.1016/j. 
rser.2013.08.039. 

[19] Giannakoudis G, Papadopoulos AI, Seferlis P, Voutetakis S. Optimum design and 
operation under uncertainty of power systems using renewable energy sources and 
hydrogen storage. Int J Hydrogen Energy 2010;35:872–91. https://doi.org/ 
10.1016/j.ijhydene.2009.11.044. 

[20] Geng H, Yang G. Linear and nonlinear schemes applied to pitch control of wind 
turbines. Sci World J 2014;2014:1–9. https://doi.org/10.1155/2014/406382. 

[21] Mirakyan A, De Guio R. Modelling and uncertainties in integrated energy planning. 
Renew Sustain Energy Rev 2015;46:62–9. https://doi.org/10.1016/j. 
rser.2015.02.028. 

[22] Gensler A, Sick B, Vogt S. A review of uncertainty representations and 
metaverification of uncertainty assessment techniques for renewable energies. 
Renew Sustain Energy Rev 2018;96:352–79. https://doi.org/10.1016/j. 
rser.2018.07.042. 

[23] Jesse B-J, Heinrichs HU, Kuckshinrichs W. Adapting the theory of resilience to 
energy systems: a review and outlook. Energy Sustain Soc 2019;9:27. https://doi. 
org/10.1186/s13705-019-0210-7. 

[24] Efstratiadis A, Tsoukalas I, Koutsoyiannis D. Generalized storage-reliability-yield 
framework for hydroelectric reservoirs. Hydrol Sci J 2021:02626667. https://doi. 
org/10.1080/02626667.2021.1886299. 2021.1886299. 

[25] Gottschall J, Peinke J. How to improve the estimation of power curves for wind 
turbines. Environ Res Lett 2008;3:015005. https://doi.org/10.1088/1748-9326/3/ 
1/015005. 

[26] Yan J, Zhang H, Liu Y, Han S, Li L. Uncertainty estimation for wind energy 
conversion by probabilistic wind turbine power curve modelling. Appl Energy 
2019;239:1356–70. https://doi.org/10.1016/j.apenergy.2019.01.180. 

[27] Astolfi D. A study of the impact of pitch misalignment on wind turbine 
performance. Machines 2019;7:8. https://doi.org/10.3390/machines7010008. 

[28] Felix D, Albayrak I, Abgottspon A, Boes RM. Hydro-abrasive erosion of hydraulic 
turbines caused by sediment - a century of research and development. IOP Conf Ser 
Earth Environ Sci 2016;49:122001. https://doi.org/10.1088/1755-1315/49/12/ 
122001. 

[29] Elbreki AM, Alghoul MA, Al-Shamani AN, Ammar AA, Yegani B, Aboghrara AM, 
et al. The role of climatic-design-operational parameters on combined PV/T 
collector performance: a critical review. Renew Sustain Energy Rev 2016;57: 
602–47. https://doi.org/10.1016/j.rser.2015.11.077. 

[30] Yildiz V, Vrugt JA. A toolbox for the optimal design of run-of-river hydropower 
plants. Environ Model Software 2019;111:134–52. https://doi.org/10.1016/j. 
envsoft.2018.08.018. 

[31] Borovkova S, Schmeck MD. Electricity price modeling with stochastic time change. 
Energy Econ 2017;63:51–65. https://doi.org/10.1016/j.eneco.2017.01.002. 

[32] Mamassis N, Efstratiadis A, Dimitriadis P, Iliopoulou T, Ioannidis R, 
Koutsoyiannis D. Water and energy. Handb. Water resour. Manag. Discourses, 
concepts examples. Cham: Springer International Publishing; 2021. p. 619–57. 
https://doi.org/10.1007/978-3-030-60147-8_20. 

[33] Miller LM, Keith DW. Observation-based solar and wind power capacity factors and 
power densities. Environ Res Lett 2018;13:104008. https://doi.org/10.1088/1748- 
9326/aae102. 

[34] Tsoukalas I. Modelling and simulation of non-Gaussian stochastic processes for 
optimization of water-systems under uncertainty. National Technical University of 
Athens.; 2018. 

[35] Anagnostopoulos JS, Papantonis DE. Optimal sizing of a run-of-river small 
hydropower plant. Energy Convers Manag 2007;48:2663–70. https://doi.org/ 
10.1016/j.enconman.2007.04.016. 

[36] Hänggi P, Weingartner R. Variations in discharge volumes for hydropower 
generation in Switzerland. Water Resour Manag 2012;26:1231–52. https://doi. 
org/10.1007/s11269-011-9956-1. 

[37] Sakki G-K, Tsoukalas I, Efstratiadis A. A reverse engineering approach across small 
hydropower plants: a hidden treasure of hydrological data? Hydrol Sci J 2022;67: 
94–106. https://doi.org/10.1080/02626667.2021.2000992. 

[38] Drakaki K-K, Sakki G-K, Tsoukalas I, Kossieris P, Efstratiadis A. Day-ahead energy 
production in small hydropower plants: uncertainty-aware forecasts through 
effective coupling of knowledge and data. Adv Geosci 2022;56:155–62. https:// 
doi.org/10.5194/adgeo-56-155-2022. 

[39] Ogayar B, Vidal PG. Cost determination of the electro-mechanical equipment of a 
small hydro-power plant. Renew Energy 2009;34:6–13. https://doi.org/10.1016/j. 
renene.2008.04.039. 

[40] Aggidis GA, Luchinskaya E, Rothschild R, Howard DC. The costs of small-scale 
hydro power production: impact on the development of existing potential. Renew 
Energy 2010;35:2632–8. https://doi.org/10.1016/j.renene.2010.04.008. 

[41] Tsoukalas I, Kossieris P, Makropoulos C. Simulation of non-Gaussian correlated 
random variables, stochastic processes and random fields: introducing the anySim 
R-package for environmental applications and beyond. Water 2020;12:1645. 
https://doi.org/10.3390/w12061645. 

[42] Vasel-Be-Hagh A, Archer CL. Wind farm hub height optimization. Appl Energy 
2017;195:905–21. https://doi.org/10.1016/j.apenergy.2017.03.089. 

[43] Veena R, Mathew S, Petra MI. Artificially intelligent models for the site-specific 
performance of wind turbines. Int. J. Energy Environ Eng. 2020;11:289–97. 
https://doi.org/10.1007/s40095-020-00352-2. 

[44] Sklar A. Random variables, joint distribution functions, and copulas. Kybernetika 
1973;9:449–60. 

[45] Schweizer B. Thirty years of copulas. Adv. Probab. Distrib. With given marginals. 
Dordrecht: Springer Netherlands; 1991. p. 13–50. https://doi.org/10.1007/978- 
94-011-3466-8_2. 

[46] Bessa RJ, Miranda V, Botterud A, Zhou Z, Wang J. Time-adaptive quantile-copula 
for wind power probabilistic forecasting. Renew Energy 2012;40:29–39. https:// 
doi.org/10.1016/j.renene.2011.08.015. 

[47] Valizadeh Haghi H, Tavakoli Bina M, Golkar MA, Moghaddas-Tafreshi SM. Using 
Copulas for analysis of large datasets in renewable distributed generation: PV and 
wind power integration in Iran. Renew Energy 2010;35:1991–2000. https://doi. 
org/10.1016/j.renene.2010.01.031. 

[48] Tsoukalas I, Efstratiadis A, Makropoulos C. Stochastic periodic autoregressive to 
anything (SPARTA): modeling and simulation of cyclostationary processes with 
arbitrary marginal distributions. Water Resour Res 2018;54:161–85. https://doi. 
org/10.1002/2017WR021394. 

Nomenclature 

Symbol Description 
p : Power production 
x : Hydrometeorological input process 

p0

(

x
)

: Theoretical power 

I: Power capacity 

η
(

x
)

: Total efficiency 

xmin: Cut-in value of input process 
xmax: Characteristic value of input process to achieve the power capacity 
xs: Cut-out value of input process 
ρα: Air density (1.225 kg/m3) 
D: Diameter of wind turbine’s rotor 
v : Wind velocity process 
S: Net area of photovoltaic panels 
r : Solar radiation process 
ρ: Water density (1000 kg/m3) 
g: Gravity acceleration (9.81 m/s2) 
h : Gross head 
qT: Flow passing through the hydro-turbines 

Φ
(

q
)

: Regulation function applied to streamflow process 

NS: Number of system’s components 
n: Depreciation period (years) 
i: Interest rate 
A: Equivalent annual cost of the investment 
C: Total investment cost 
Ci: Individual cost 
λ: Shape parameter of generic cost function 
Ea: Mean annual energy 
Ta: Annual duration (8760 h) 
u : Unit price of energy sell 

F
(

I, p
)

: Objective function of the design optimization problem 

CF: Capacity factor 
CF*: Desirable threshold for CF value 

F΄
(

I, p
)

: Multi-objective function of the design optimization problem 
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w: Weighting coefficient 

η
(

x ,ψ
)

: Analytical formula for the efficiency curve 

ψ : Set of parameters describing the empirical efficiency curve 
m: Number of scenarios within Monte Carlo simulation 
hn: Net head 

θ: Ratio of minimum to maximum turbine flow 
q*: Rated flow (dimensionless) 

a, b: Shape parameters of analytical efficiency formula 
C0, α β: Parameters of electromechanical equipment cost function 
vo: Freestream wind velocity at the hub height level 
k: Decay coefficient 
a: Induction factor 
L: Distance between adjacent wind turbines 
Dmax: Diameter of the largest wind turbine’s rotor 
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