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Abstract: This study presents an approach for the assessment of cyber-physical threats to water
distribution networks under the prism of the uncertainty which stems from the variability and
stochastic nature of nodal water demands. The proposed framework investigates a single threat
scenario under a spectrum of synthetic, yet realistic, system states which are driven by an ensemble of
stochastically generated nodal demands. This Monte Carlo-type experiment enables the probabilistic
inference about model outputs, and hence the derivation of probabilistic estimates over consequences.
The approach is showcased for a cyber-physical attack scenario against the monitoring and control
system of a benchmark network.
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1. Introduction

Urban water systems, as many other critical infrastructures, are undergoing a digital
transformation which, evidently, yields both merits and perils [1,2]. Their long-established
modus operandi is reshaped by the dynamic interconnection of cyber and physical processes
and assets—progressively moving towards a new, cyber-physical systems’ (CPS) archi-
tecture [3,4]. As recent incidents demonstrate [5], this increases the attack surface of the
water systems and allows for emerging threats against the CPS, hindering the monitoring
and control processes and compromising the integrity of the water supply—including
potential weaponisation. As a result, traditional system thinking is challenged, while
security planning becomes more intricate with the addition of a new component in risk
assessment schemes, that of cyber-physical risks. The need for adjustment by the sector is
reflected by an ever-increasing development of novel solutions, cyber-physical modelling
platforms, techniques and frameworks to strengthen security and risk assessment at both
conceptual and practical levels [6].

Contemporary risk assessment frame works for the water sector investigate the po-
tential threats by adopting the typical scenario-based approach [7,8] to analyse, and subse-
quently evaluate the resulting failure through suitable metrics [9]. In the scenario-based
approach, a set of external events drives a pre-defined system model to analyse risks—
implying mutually that this model represents a usual state of the system. However, urban
water systems are complex and dynamic in nature and can exhibit a notable variability
in their behaviour, even under normal operating conditions. This poses questions on
the representativeness of internal parameters that drive the system model, and hence the
simulated outcomes, and the value of the resulting risk information, as uncertainty pertains
the risk-relevant data from the deterministic model set-ups.
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Uncertainty analysis has long been acknowledged as a pivotal concept for risk char-
acterization [10], yet rarely addressed formally as a core component of risk assessment
techniques or design practices. A paradigm shift is introduced formally by the Interna-
tional Organization for Standardization (ISO), which embeds the notion of uncertainty to
the definition of risk, in reference to potential events and their consequences [11]. Moreover,
in recent years, the appropriate characterization and handling of uncertainty is revisited,
leading to the reshaping of traditional analytical tools [12] with the help of uncertainty
propagation techniques. This includes stochastically-enhanced frameworks developed to
systematically cope with uncertainties, inter alia in water pipe rehabilitation plans [13],
flood defence infrastructure [14], long-term operation and resilience of urban water sys-
tems [15], etc. One such framework is also introduced for the assessment of cyber-physical
risks against urban water systems [16] under the prism of, both epistemic and aleatory,
uncertainties. An epistemic uncertainty, also known as systemic, is linked to the degree of
factual knowledge (or lack thereof). On the other hand, an aleatory uncertainty refers to
the inherent probabilistic variability of the underlying components.

This work focuses on the latter type, and specifically examines the assessment of
cyber-physical threats under the uncertain and high variable nature of water demand, that
is a key driver of urban water systems [17,18]. Specifically, we propose a framework that
couples the sector’s scenario-based approaches with state-of-the-art stochastic simulation
approaches [19-21] that allow to assess a single threat scenario under a spectrum of stochas-
tically generated demands, in a Monte Carlo-type experiment. This formulation allows the
inference about the model’s outputs, and related consequences, in probabilistic terms. The
overall result is an uncertainty-informed, probabilistic estimation of the risk’s severity.

The remaining of the paper showcasing the proposed stochastic assessment framework
is organized on the basis of a demo water distribution network (WDN). In more detail,
Section 2.1 provides information about the case study per se, Section 2.2 entails the method-
ology for the stochastic simulation/generation of water demand time series and Section 2.3
details the generation of cyber-physical threat scenarios for a WDN. Section 3 discusses the
approach employed for the probabilistic assessment of threat scenarios. Finally, Section 4
concludes this work through a summary of its main findings and conclusions.

2. Stochastic Risk Assessment for WDN
2.1. The C-Town Case Study

C-town is an EPANET demo WDN, based on a medium-sized real world network [22].
It is comprised of seven tanks, and five pumping stations with a total of 11 head pumps,
which are used to store and regulate the water distribution to 388 consumption nodes. The
WDN is supplied by a single source, the R1 seasonal reservoir, with an average hourly
production of approximately 613.17 m3/h. The system is divided into five district metered
areas (DMA), all of which include a pumping station and at least one tank in them, as
illustrated in Figure 1. The fundamental C-Town operation mode draws water from R1
through the linked pumping station, according to the level of tank T1. In high water levels,
only one pump draws water, and a second pump is activated for critically low levels. The
pumping station also has a third, redundant pump placed in parallel. The flow from DMA1
to DMA2 is regulated with the use of two flow control valves that operate according to the
T2 tank level, while two pressure regulating valves (PRV) are placed within DMA2. Water
from T2 is pumped to the higher tanks, namely T3 and T4. The pumping stations of DMA4
and DMAS5 pump water to tanks T5, T6 and T7 from DMAL1 and T1. The pumping stations
activation rules are based on the level sensors of their DMA tanks.
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Figure 1. Visualization of the C-town WDN with five DM As highlighted.
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2.2. Generation of Synthetic Water Demand Series

In the design, analysis and management of urban water systems, the water demand,
as a key driver of these systems, is analysed and modelled at different temporal and spatial
levels, depending on the requirements and type of analysis under study. As the spatial and
temporal resolution of the analysis is increasing, the level of uncertainty and randomness
of the water demand increases too, posing extra challenges and difficulties. Specifically,
at fine scales, water demand is characterised by intermittent behaviour (i.e., the presence
of zero values in the series), deviation from Gaussianity, a variety of temporal and spatial
dependence structures, and various types of seasonality [19]. The modelling of these
peculiarities is feasible by studying the water demand on the basis of probabilistic notions
and concepts, such as those of random variables and stochastic processes. This approach
allows to generate a large number of synthetic, yet statistically and stochastically consistent,
water demand timeseries that can be employed as non-deterministic inputs to provide
the system’s responses under different scenarios—essentially, the approach adopted in
this study.

Here, we treat as stochastic process the demand multiplier pattern used by the Epanet
modelling approach to represent the variability of the customer’s (nodal’s) demand over
time. The pattern is multiplied by a base demand assigned to each node in order to
reproduce the actual size of the variability, along with the peak and minimum demand
periods throughout the simulation horizon. The C-Town case study comes along with a set
of five demand multiplier patterns (one for each DMA), with an hourly temporal resolution,
that span over an entire week, to describe the overall system’s demand processes [22].

To generate synthetic water demand multiplier patterns, the anySim R package [20]
was employed. This package provides state-of-the-art stochastic simulation methods that
allow the exact preservation of any marginal distribution and any dependence structure
of the stochastic processes under study [23-25]. In a nutshell, the method implemented
herein is based on the coupling of Nataf’s joint distribution model (i.e., the Gaussian
copula) with the widely known class of linear stochastic models. According to Nataf’s joint
distribution model, the joint distribution of random variables with any target arbitrary
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marginal distributions can be obtained by mapping an auxiliary multivariate standard
Gaussian distribution via the inverse cumulative distribution functions (ICDFs). The
implemented methods utilize the link between correlation coefficients in the Gaussian and
the target domain, also reproducing the target correlations. Moving to the stochastic process
simulation, anySim employs a similar concept that is based on the mapping (through the
ICDF) of an auxiliary Gaussian process (Gp) through the ICDE, to establish processes with
the target marginal distribution and correlation structure. Specifically, herein we employed
the Gamma distribution to model the marginal behaviour of the demand multiplier patterns
of all five DMAs [26], while the classical autoregressive model (AR(p)) was employed as an
underlying linear model to reproduce the auto-correlation structure of each pattern and
the lag-0 cross-correlation between the patterns. To cope with seasonality, the given hourly
demand multiplier patterns were first standardised over the mean, and hence the stochastic
simulation was performed under the assumption of stationarity. The generated series were
de-transformed via the inverse procedure to formulate the synthetic seasonally varying
series that were used as inputs in EPANET.

Water demand series and their stochasticity have a significant influence over the
dynamics of water systems in both short- (including instantaneous) and long-term horizons.
Thus, despite the original pattern series having a 1-week duration, this work expands their
duration to 2 weeks. This enables the full development of stochasticity in the system
states under which the potential attack takes place (in the first week) and monitors the
system’s behaviour after the attack (during the second week) for any cascading effect of the
cyber-physical threat.

Thus, the overall result of this step is a set of 500 (100 for each DMA, also preserving
the lag-0 cross-correlation between them) synthetic hourly demand pattern timeseries for
C-Town, each having a duration of 2 weeks. Figure 2 illustrates the median and outer
bands of the 100 synthetic hourly demand patterns generated for DMA1. This stochastically
generated ensemble is then introduced to the WDN model of C-Town, to derive a spectrum
of stochastic, yet realistic system states, any of which can exist when an attack occurs.

DMA1 synthetic hourly demand patterns with gamma distribution for a period of 2 weeks
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Figure 2. Median and outer bands (minimum and maximum) of the synthetic hourly demand pattern
timeseries with gamma distribution generated for DMAL.
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2.3. Threat Scenario and Risk Analysis

In a scenario-based risk assessment, the scenario is typically composed of a basic
model of the system under common hydraulic conditions and a set of threats against assets
of the water system. As a guiding tool to explore and identify potential cyber-physical
threats against their systems, water utilities can utilize potential hazard databases either
corporate, embedded in risk assessment toolkits, or found online.

In this study, we formulate an attack scenario against the monitoring and control
system of C-Town, by targeting a tank’s water level sensor. The attacker hijacks the
connection between the T1 sensor and the PLC, overseen by the SCADA, and inserts bogus
information. The false signal leads the system to believe that T1 is at high level, and the
subsequent action is to turn off the pumping station at the reservoir R1. This shut down
may lead to (some or even all) tanks in the system to empty, resulting in water supply
deficiencies in the DMAs. The attack starts at 00:00 of the 8th day in the simulation and
lasts for 24 h.

The described threat is transcribed in an EPANET-based threat scenario utilizing the
capabilities of RISKNOUGHT [27,28]. It is a stress-testing platform, capable of simulating
complex cyber-physical water systems with an emphasis on the resilience assessment in
terms of both hydraulic and water quality dimensions. More specifically, RISKNOUGHT is
used to formulate and run (a) the deterministic attack scenario using the default C-Town
patterns and hydraulic states and (b) the ensemble of 100 attack scenarios (i.e., in a Monte
Carlo fashion) using the stochastically generated patterns per DMA, which also affect the
hydraulic state prior to the attack. The modelling is supported by the implementation of
Pressure Driven Analysis (PDA) to realistically simulate hydraulic failure conditions and
more specifically, under the Wagner approach [29].

3. Probabilistic Assessment of the Threat Scenario

The deterministic assessment of the above-described cyber-physical attack scenario,
results in a total of 10,295 m? for the unmet demand metric (UD). Following the proposed
stochastic risk assessment, the risk assessor produces an ensemble of 100 different real-
izations and hence, 100 different evaluations of the cyber-physical attack scenario. This
allows the uncertainty-aware inference of the potential consequences, expressed probabilis-
tically. The stochastic assessment of the potential consequences gives a median estimate of
10,805 m? of potential unmet demand. The related statistical properties are summarized in
Table 1. Comparing the median value to that of the deterministic quantification, the values
exhibit a difference of ~5%. However, the potential unmet demand can highly vary from
these values. Exploring the empirical distribution of the resulting metrics, the upper level,
estimated using the 95th percentile, is 12,620 m® and approximately 22.58% higher than
the deterministic estimation. Moreover, the lower level, estimated for the 5th percentile, is
9542 m3 and is approximately 7.88% lower than the deterministic value.

Table 1. Statistical characteristics of the unmet demand metric for the ensemble of 100 stochastically
driven scenarios against C-Town.

Median Mean Max Min Range St. dev.  95th Percentile  5th Percentile

Unmet Demand (m3)

10,805.33 10,999.58 13,617.59 8495.15 512243 962.85 12,620.23 9542.48

There is significant fluctuation in the UD metric, which is a consequence of the hy-
draulic variability of the WDN at the time of attack. The development of 1-week (i.e., prior
to the attack) stochastic demand patterns yields a range of potential system states, i.e., tank
levels, valve and pump statuses, nodal pressures, etc. As presented in Figure 3, there is
strong negative correlation between the T1 tank water level and the total unmet demand for
the 1-week period after the attack. This is expected, as the T1 influences the most important
controls of the system related to the reservoir outflow, and in addition it is the targeted
infrastructure in the scenarios.
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Total unmet demand vs. tank "T1" water level at the beginning of the attack
under synthetic demands with gamma distribution
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Figure 3. Relationship between the water level in tank “T1” when the cyber-physical attack starts
and the resulting total unmet demand, simulated using synthetic hourly demand patterns with a
gamma distribution.

4. Conclusions

The deterministic assessment of threat scenarios can provide a quick estimation for the
outcome of an event and its order of magnitude, assuming a typical state of the WDN. Yet,
it is argued that deterministic assessments of risks under “average conditions” misinterpret
or even ignore key drivers that affect the extent of an outcome, such as the demand
variability. To account for such inherent uncertainties, this work proposes risk assessors
to incorporate stochastically generated demands in the scenario-based risk assessment
scheme. To showcase the stochastic risk assessment approach, a single threat scenario was
simulated under a spectrum of synthetic, yet realistic, system states, driven by the ensemble
of stochastically generated nodal demands. This Monte Carlo-type experiment was used to
probabilistically assess the WDN model outputs, and hence derived a probabilistic estimate
over the severity of the threat scenario. As indicated by the results, the deterministic risk
assessment approach underestimated the potential severity of a threat. This can greatly
affect their prioritization against other, less severe events, leading overall to sub-optimal
resilience and security strategies for a water system.
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