

A stochastic approach to causality

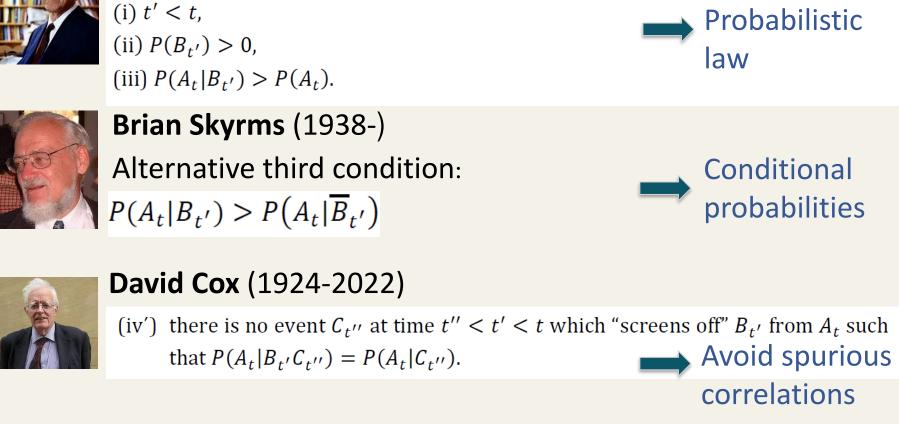
Background	Necessary conditions	Artificial examples (2)
Causality: a philosophical puzzle Image: State of the state of the state of the cause of the cause of the cause of the cause of the contrary. Image: State of the state of the contrary. Image: State of the state of the cause of the caus	The task is to <u>identify function</u> g such that $Y(t) = \int_{-\infty}^{+\infty} X(t - h) g(h) dh + V(t)$ The explained variance is $e = 1 - \frac{Var(V)}{Var(Y)}$ $(X, Y) \text{ is potentially causal if g(h)=0 \text{ for any } h<0 \text{ and } e \text{ is non negligible;} (X, Y) \text{ is potentially anti-causal if g(h)=0 \text{ for any } h>0 \text{ and } e \text{ is non-}$	$\frac{Causal system #3}{\{I_L = 0; I_H = 20; non-negativity; roughness constraint; J = 20\}}{Left: x \to y (e = 0.94)}$ $Right: y \to x (e = 0.94)$
All alterations occur in accordance with the <u>law</u>	(X, T) is potentially unit-causal if $g(n)=0$ for any $n>0$ and e is non- negligible $(\Rightarrow (Y, X)$ is potentially causal):	Causal system #4

It is really this <u>necessitation</u> that first makes possible the representation of a <u>succession</u>. Irreversibility

Causality: contemporary approaches

Patrick Suppes (1922-2014)

An event $B_{t'}$ [occurring at time t'] is a prima facie cause of the event A_t [occurring at time t] if and only if



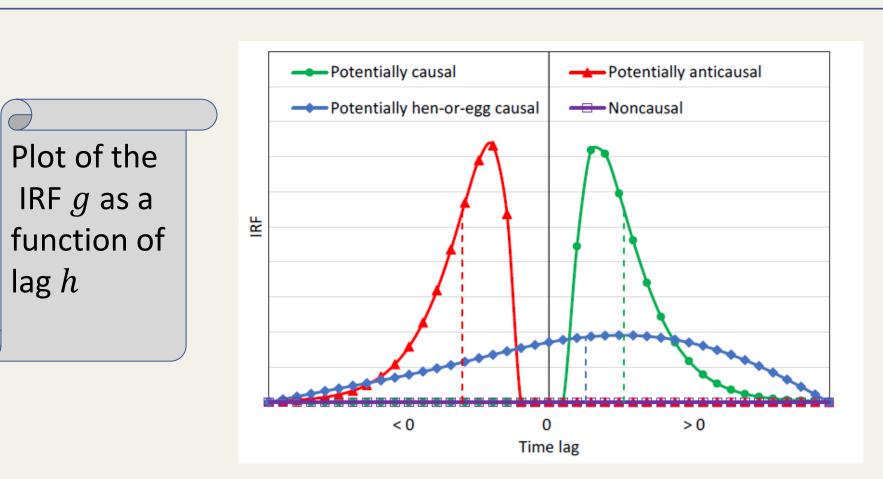
We seek *necessary* conditions of causality accounting for its being *law-governed* and *irreversible*, These conditions must define the *conditional* dependence of effect upon cause in probabilistic terms, while excluding spurious correlations as far as possible.

However:

Descriptions in terms of probabilities of events are fine for events defined sufficiently broadly (e.g. flood/no flood) and for

(X, Y) is **potentially hen-or-egg** (HOE) causal if $g(h) \neq 0$ for some *h*>0 and some *h*<0, and *e* is non-negligible;

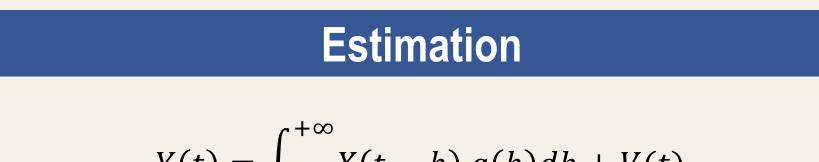
(X, Y) is **non-causal** if e is negligible

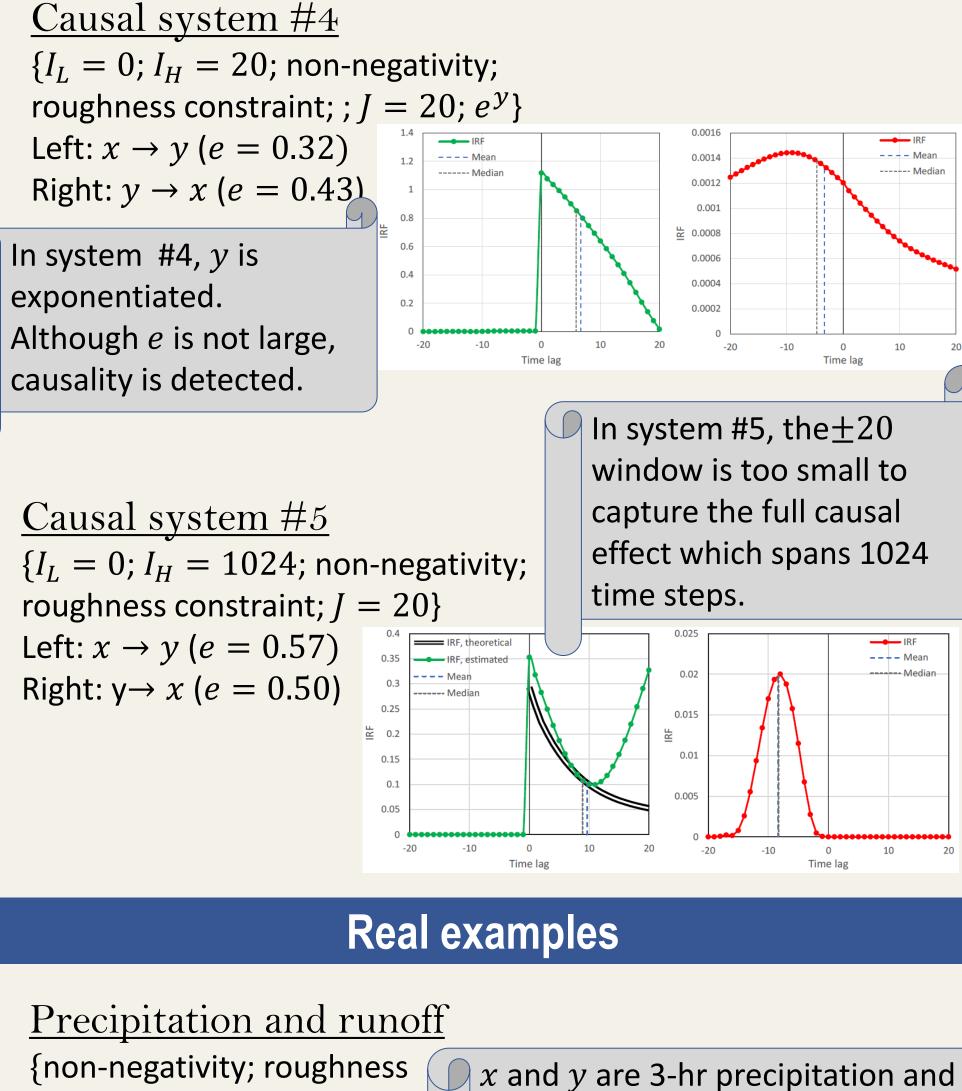


Additional requirements for potential causality $0 g(h) \ge 0$ for all $h \in \mathcal{H}$

 \Diamond The smoothness of the IRF, defined as $\mathbf{E} = \int_{-\infty}^{+\infty} (g''(h))^2 dh$ must be smaller than some pre-defined value E_0

Var(V) must be minimal





reproducible events that are controlled in the lab. For more precise quantifications in open systems, it is better to seek causal links between time-series.

Clive Granger (1944-2009)

Time-series $\{X_t\}$ has information useful to predict $\{Y_t\}$ or "Granger-causes" Y_t .

The null hypothesis of no-Granger causality is:

where:

 $Y_{t} = a_{0} + \sum_{i=1}^{m} a_{i} Y_{t-i} + \sum_{i=p}^{q} b_{i} X_{t-i} + W_{t}$

 $b_p = b_{p+1} = \dots = b_q = 0$

This is tested with an F-test.

But causality is not best defined as what, additionally to a signal's correlation structure, improves forecasting.

Alternative time-series proposal

Motivation

♦ As starting point, we take the key requirements that causality (i) is *law-governed* and (ii) defines an *irreversible* temporal order. For quantities X and Y for which time-series of observations are available, the first causes the second only if: $\delta y(t) = f_h(\delta x(t-h))\Delta h$

where $h \ge 0$ (*irreversibility*) and Δh represents the time during which the causal effect is brought about and f_h is some function that will define the *causal law* and for which, assuming a single

X(t-h) g(h) dh + V(t)Y(t) =

is discretised as:

$$f_t = \sum_{-\infty}^{+\infty} X_{t-j} g_j + 1$$

This is estimated through the following estimator:

$$\widehat{y}_t = \sum_{j=1}^{+j} x_{t-j} g_j + \mu$$

where μ_{v} ensures that the estimation is unbiased. ♦ The IRF is estimated by minimizing the sample variance of $\hat{y}_t - y_t$ while keeping the roughness index smaller than E_0 .

This also yields: $\hat{e} = 1 - \frac{var(\hat{y}_t - y_t)}{var(y_t)}$

Artificial examples (1)

Construction

We construct artificial systems by using the equation:

$$Y_t = \sum_{i=-I_L}^{+I_H} a_i X_{t-i} + U$$

Systems #1 - #3 show the role

requirements in identifying

played by the above additional

with $U_t \sim N(0, 0.5^2)$, where I_L and I_H vary according to the application and X_t is a Filtered Hurst Kolmogorov process.

Causal system #1

 $\{I_L = 0; I_H = 20; \text{ no constraints}\}$

transform raises e. Note also the Right: $x \rightarrow y$ transformed impact of window size $(\pm 20, \pm 40)$. (e = 0.68; 0.71)Clear potential causality. - Mean - Mear ---- Median ----- Median IRF, / = 20 IRF, / = 2 Atmospheric Temperature and ENSO $\int x$ and y are monthly ENSO and {non-negativity; roughness atmospheric temperature (left) constraint; J = 20} and vice-versa (right). Left: ENSO $\rightarrow T$ (e = 0.39) Again, there is clear evidence of Right: $T \rightarrow \text{ENSO} (e = 0.30)$ potential causality ENSO \rightarrow T

constraint; J = 20; 40}

(e = 0.17; 0.26)

Left: $x \rightarrow y$ untransformed



runoff. Because they are non-

linearly related, a nonlinear

Conclusions

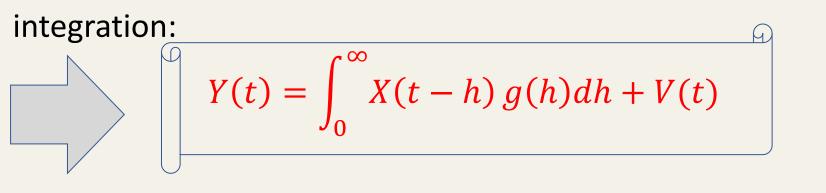
• We have proposed conditions that need to be fulfilled to

cause: $f_h(0) = 0$

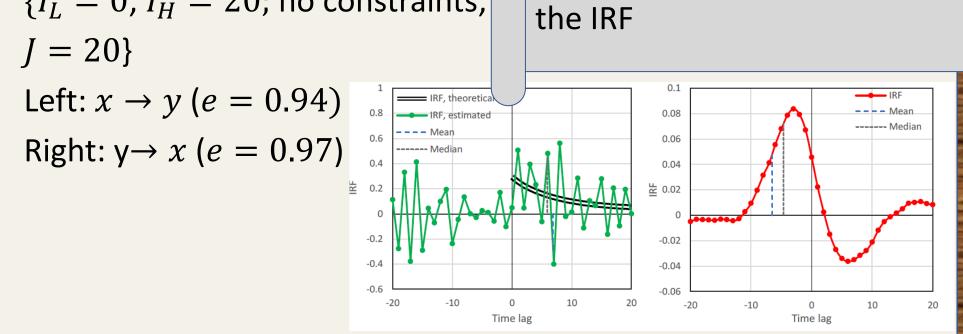
 \diamond By Taylor expansion: $\delta y(t) = \delta x(t-h) \frac{df_h}{dx}(0)\Delta h + o(\delta x(t-h))\Delta h$ and if we define $g(h) = \frac{df_h}{dx}(0)$, we obtain: $\delta y(t) = \delta x(t-h)g(h)\Delta h + o(\delta x(t-h))\Delta h$

 \Diamond Representing the negligible terms as random terms $W(h)_t$, we get: $Y(t) = X(t - h) g(h)\Delta h + W(h)_t \Delta h$

 \Diamond Assuming now that X over a range of past times causes Y, by

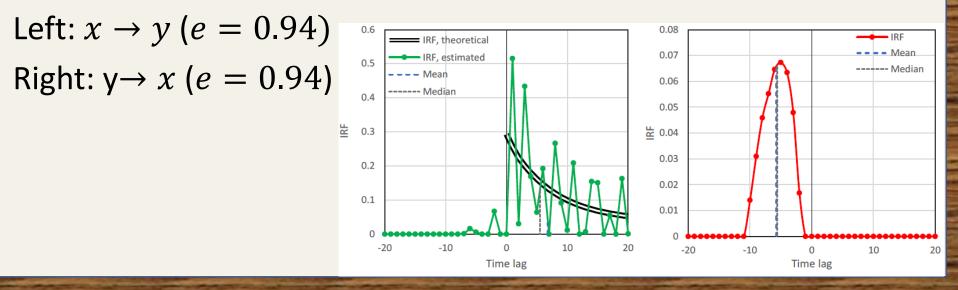


Function g is the Impulse Response Function (IRF).



Causal system #2

 $\{I_L = 0; I_H = 20; \text{non-negativity}; \}$ no roughness constraint; J = 20}



claim that there is causality in non-oscillatory open systems.

• These are necessary but not sufficient and there is a degree of subjectivity in the conclusions since no statistical test has been developed

• More information and examples are found in our papers

References

Koutsoyiannis, D., Onof, C., Christofides, A., & Kundzewicz, Z. W. (2022). Revisiting causality using stochastics: 1. Theory. *Proceedings* of the Royal Society A, 478(2261), 20210835 Koutsoyiannis, D., Onof, C., Christofides, A., & Kundzewicz, Z. W. (2022). Revisiting causality using stochastics: 2. Applications. Proceedings of the Royal Society A, 478(2261), 20210836.