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Importance of design rainfall at the regional scale

2

❑ Design rainfall estimation at a regional scale is the cornerstone of hydrological design against flooding,

particularly essential:

▪ for ungauged areas—but even for gauged ones;

▪ for hydrological analyses at large areas, i.e., studies of regional flooding and construction of large-scale 

flood protection works—but even for small spatial scales, e.g., urban stormwater networks.

❑ Spatial generalization of estimation is essential, as often rainfall data for at-site analysis are missing.

❑ Design rainfall estimates are conveniently provided in the form of a mathematical relationship linking 

temporally averaged rainfall intensity to timescale of averaging and return period, usually known by the 

misnomer ‘intensity-duration-frequency’ (idf) curves or better named ombrian curves.

We aim to revisit design rainfall estimation for Greece:

❖ benefitting from new advances in the field of regional estimation and ombrian curves 
(Koutsoyiannis, 2022);

❖ exploiting new data recorded during the past decade.

For first time we have produced  a geographically distributed model for the entire Greek territory.



Ombrian curves: a parsimonious regional approach
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Broadly, the construction of regional ombrian curves can follow two different approaches:

➢ We devise a parsimonious approach to regionalizing the rainfall estimates at the
Greek territory without resorting to uncontrolled interpolation.

Spatial generalization of ombrian curves is particularly complex due to the need to account for spatial 
dependence together with the increased variability of rainfall extremes in space.

(a) the at-site, independent fitting approach, followed by spatial interpolation methods to map the 
parameters over the whole region.

(b) the regional, simultaneous fitting approach, which consists of appropriately pooling the data 
together and obtaining a single model valid over the entire area, which is, in essence, the 
inverse approach to (a).



Overview of theoretical framework (I)
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❑ Koutsoyiannis (2022) developed a new  
framework for ombrian modelling
that can be applied at any timescale, 
however large or small.

❑ The example shown is for Bologna, 
Italy (a station with 206 years of data), 
for timescales from 1 h to 16 years.

❑ For large timescales the mathematics 
are somewhat involved.
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Overview of theoretical framework (II)

5

❑ Under some simplifying assumptions the rainfall intensity 𝑥 for small timescales 𝑘 (of the order of 
minutes to a few days) and return period 𝑇 is given by the following relationships, resulting from the full-
scale ombrian model with some simplifying assumptions:

o for return period estimated from a full series or of rainfall exceedances over threshold:

𝑥 =
𝑏(𝑇)

𝑎(𝑘)
= 𝜆

Τ𝑇 𝛽 𝜉 − 1

1 + Τ𝑘 𝛼 𝜂 , 𝜉 > 0

o from series of annual maxima (where 𝛥 = 1 year):

𝑥 = 𝜆
− Τ𝛽 𝛥 ln 1 − Τ𝛥 𝑇 −𝜉 − 1

1 + Τ𝑘 𝛼 𝜂 , 𝜉 > 0

❑ The simplified model parameters are:

▪ 𝜆 a characteristic rainfall intensity (scale parameter) in units of 𝑥 (e.g., mm/h);
▪ 𝛽 a time parameter, related to the mean distance of wet periods, in units 

of the return period (e.g., years);
▪ 𝛼 a timescale parameter in units of timescale (e.g., h) with 𝛼 > 0;
▪ 𝜂 a dimensionless parameter, expressing persistence, with 0 < 𝜂 < 1;
▪ 𝜉 > 0 the tail index of the process distribution.

Theoretically equivalent 
for all T and for the same 
parameter values; giving 
virtually same values for T 
> 10 years

5 parameters with 
physical meaning



Two-step fitting procedure
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The timescale parameters (of the expression 𝑎(𝑘)) obtained by Koutsoyiannis et al. (1998) optimization
procedure.

The distribution parameters (of the expression 𝑏(𝑇)) are obtained by the newly introduced method of K-
moments (Koutsoyiannis, 2020), which has the following important properties:

✓ Intuitive formulation, as the K-moment of order p equals the expected value of the maximum of p;  

independent stochastic variables identical to 𝑥, i.e., 𝐾𝑝
′ = E max 𝑥1, 𝑥2, … , 𝑥𝑝 ;

✓ Unbiased (knowable even for very large orders);

✓ Can be readily assigned an empirical return period;

✓ Account  for the effect of (spatial and temporal) dependence in the estimation of the return period. 

❑ First step:

❑ Second step:

An attractive feature of this simplification, related to the separable function 𝑥 = 𝑏 𝑇 /𝑎 𝑘 , is that it allows the 
parameters to be estimated by a convenient, two-step procedure.



Greece’s rainfall network
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❑ From the initial set of 940 stations, and after 
meticulous quality control processing, we 
compiled a final dataset of 783 stations, 
comprising:

▪ 503 daily rain gauges, 130 of which at 
locations where there is also a rain recorder;

▪ 280 rain gauges (rain recorders) with sub-
daily resolution.

❑ The stations are distributed over 651 geographical 
locations.

❑ The longest available record (in Athens) covers 
the period from 1860 to 2022.

Rain gauge
Rain recorder



Non-conventional rainfall data
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❑ From satellite-based information, we investigated the 
usefulness of the IMERG data set (half hourly time 
step at 0.1° spatial resolution, period 2000-today),

❑ From the reanalysis information we investigated the 
usefulness of the ERA5 data set (daily time step at 
0.25° spatial resolution; period 1950-today).
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❑ Both data sets (especially the IMERG) underestimate 
the highest rainfall depths (as seen in the example for 
the station of Karditsa) and proved not appropriate for 
the construction of ombrian curves. 
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Data processing remarks
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❑ On the use of the Hershfield factor:
▪ In our method, a fixed, rather than a moving, time window is used to extract the maximum for each scale. It is 

obvious that the maximum extracted from a fixed time window is less than or equal to that extracted from a moving 
time window, and it is known that the difference between the two is a function of the temporal resolution D of the 
raw data. 

▪ Application of a correction factor, known as Hershfield factor, distorts the properties of the  𝑥𝜏
𝑘 series, replacing it 

with the series 𝑤𝜏
𝑘 : = max

𝑗
𝑥𝜏+𝑗

𝑘 , 𝑗 = 0, …𝑘 − 1 . In a consistent stochastic framework, we should do not 

employ such a factor.

❑ On the exploitation of different sources of rainfall data:
▪ The fitting of the timescale parameters (of the expression 𝑎(𝑘)) is performed using sub-daily or even sub-hourly 

data, available from tipping-buckets and automated censors.
▪ The fitting of the distribution parameters (of the expression 𝑏(𝑇)) is performed using in priority the daily rainfall 

records due to:

(a) the greater spatial density of the rain gauge network compared to that of rain gauges; 
(b) the longer duration of rain gauge observations compared to those of rain gauges; and 
(c) the greater reliability of rainfall measurement during storm events.



Spatial variability characterization & Regionalization
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Independent at-site procedure

❑ First, we perform a spatially-independent fitting of the ombrian curves for each location.

❑ Then, we assess the resulting patterns of variability, and we identify the parameters exhibiting random spatial variation 
and the ones robust spatial patterns.

Regionalization procedure

1. We perform a combined (simultaneous) estimation of the parameters exhibiting random variation in space using the 
most reliable and relevant data for each case, e.g. we exploit the longest sub-hourly records for the estimation of the α
parameter and the longest daily records for the estimation of the tail-index parameter ξ.

2. With the common parameters now fixed for all stations, we re-estimate the other parameters and assess their 
geographical variation.

3. In case that systematic patterns are identified, we model their geographic variation using both spatial smoothing and 
interpolation models, and evaluate their performance based on the accuracy of the fit and cross-validation metrics.

4. The best spatial model per parameter is chosen and a map with 5 km resolution is produced with the spatially varying 
parameters over Greece.



Spatial smoothing and interpolation approaches
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Inverse Distance Weighted (IDW) 
The Inverse Distance Weighted (IDW) method is simple with low computational requirements. The IDW estimate for a 
given point Ƹ𝑧𝑢 is obtained as:

Bilinear surface smoothing (BSS)
Bilinear Surface Smoothing (BSS) is a flexible spatial interpolation method that adjusts a bilinear surface at known points 
(𝑥𝑖 , 𝑦𝑖) through linear regression with adjustable weight factors (Malamos and Koutsoyiannis, 2016a,b).

The method is based on compromising two opposing objectives, namely, to minimize the fitting error and the roughness 
of the fitted bilinear surface.

Additionally, it is possible to integrate, in an objective way, the effect of an explanatory variable available at a spatially 
denser data set (Bilinear Surface Smoothing with an Explanatory variable-BSSE). In this case, two bilinear surfaces are 
combined in the same regression model in order to improve the accuracy of the interpolation at the given points.

Ƹ𝑧𝑢 =

𝑖=1

𝑛

𝑤𝑖𝑧𝑖 𝑥𝑖 𝑦𝑖

𝑤𝑖 =
𝑑𝑢 𝑖
–𝑎

σ𝑖=1
𝑛 𝑑𝑢 𝑖

–𝑎 , 

𝑖=1

𝑛

𝑤𝑖 = 1

with weights 𝑤𝑖 obtained as:

The values of α and n are identified as the ones yielding the lowest cross-validation errors.



Regionalization of timescale parameters – α (Ι)
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❑We find that the estimation of the parameter α greatly depends on the temporal resolution of 
the measuring instrument. Specifically, in stations with fine temporal resolution (5 or 10 min) 
resulting values of the parameter α are small—and vice versa.

❑This is interpreted as an artificial statistical effect rather that as representing some physical 
reality.
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Regionalization of timescale parameters – α (ΙΙ)
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❑To compensate for the great sensitivity of the α parameter to time resolution of the data, we 
identify a single value of this parameter for all of Greece, by the following procedure:

▪ We select the 53 stations with the longest records having temporal resolution 30 min or finer, 
distributed over all water districts.

▪ We re-estimate the parameters of the equation 𝑎(𝑘), α and η, through optimization in which 
we set as a constraint that the value of the α parameter is the same among all stations.

❑ As a result of this methodology, the common value of 𝛼 = 0.18 h is obtained, which is used in all 
further analyses.



Regionalization of η (Ι)
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The map shows point estimates of the η
parameter conditional on a common α
parameter, 𝛼 = 0.18 h:

• Presence of clusters of low and high 
values of the η parameter in space.

• Emergence of an inverse relationship η
with the altitude (i.e. lower values of 
the parameter are more likely at high 
altitudes).



Regionalization of η (ΙΙ)
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We use the BSSE smoothing model with the altitude 
(derived from SRTM) as an additional explanatory variable.

Calibration
Leave-one-out-cross-
validation,(LOOCV)

Bias (MBE) 0.00 0.00

Mean Absolute Error(MAE) 0.05 0.06

Root Mean Square Error (RMSE) 0.06 0.07

Nash-Sutcliffe efficiency (EF) 0.57 0.40

Coefficient of Determination(R2) 0.57 0.40

y = 0.5393x + 0.3153
R² = 0.5676
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Regionalization of distribution parameters – ξ (Ι)
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• The parameter ξ (tail index of the distribution) was 
estimated individually per station and per 
instrument, and simultaneously with the 
optimization of the other parameters of the rainfall 
curves. 

• We observe the large spatial variability of the 
parameter estimates, which reflects both the 
measurement  uncertainty of maximum rainfall as 
well as the typical absence of systematic patterns in 
the realization of extreme rainfall.



Regionalization of distribution parameters – ξ (ΙI)
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• If we assume that the entire variability of ξ
estimates is a statistical effect, then:
• We can unify (merge) all records at a 

certain timescale after standardizing 
with the mean;

• We can estimate a unique value of ξ
from the unified record. 

• We have used 61 stations across the Greek 
territory which have at least 60 years of 
complete daily timeseries.

• These form a large sample of 299 481 
(standardized) nonzero daily rainfall 
values.

• The resulting ξ is estimated to 0.18 if the 
different stations are assumed 
independent (Θ = 0) or larger if 
dependence is assumed (ξ = 0.23 for
Θ = -0.04, where Θ denotes bias; see 
Koutsoyiannis, 2022 for details).

• The minimal value if ξ = 0.18 is finally 
chosen. 



Regionalization of distribution parameters – ξ (ΙII)
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Monte Carlo simulation results (70 simulations with Pareto distribution, each corresponding to 70 years of rainfall):

• Show the large variability of the estimated value of ξ (ξe), spanning from ~-0.1 to ~0.5, when the true value is  ξ = 
0.18.

• Verify the consistency of the assumption of a single ξ = 0.18 for the entire Greece.
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Investigation of alternative options for regionalization of parameters β and λ

19

In addition to the direct regionalization of parameters β and λ, we investigated the use of alternative quantities linked 
to characteristic rainfall intensities, since the statistical behaviour of the latter is more robust and better suitable for 
regionalization (no boundary issues and better spatial coherence).

Specifically, we express parameters β and λ as functions of either the rainfall intensities 𝑥1 and 𝑥2 corresponding to 
return periods 𝛵1= 2 years and 𝛵2= 100 years, respectively, or equivalently, of 𝑥1 and the ratio 𝑟𝑥 ≔ Τ𝑥2 𝑥1, as follows:

𝛽 =
𝑟𝑥−𝑟𝑇

𝑟𝑥−1

Τ1 𝜉
𝛵1, 𝑟𝑇 ≔ Τ𝑇2 𝑇1

𝜉 , 𝑟𝑥 ≔ Τ𝑥2 𝑥1

𝜆 = 𝑏
𝑟𝑥 − 𝑟𝑇
𝑟𝑇 − 1

𝑥1, 𝑏 ≔ 1 + Τ𝑘 𝛼 𝜂

After examining the correlations between the alternative parameters sets, we chose to use the pair of parameters 𝑥1
and 𝑟𝑥, since they are foun  uncorrelate  with each other an  thus the pair’s information content is not affecte  by 
redundancy.

The intensities  𝑥1 and 𝑥2 are modelled at the 24 h scale (k = 24 h).



Regionalization of 𝑥1

20

In the case of the 𝑥1 parameter, the best statistical 
characteristics of the fitting in terms of leave-one-out cross-
validation resulted from the application of the spatial model 
of the IDW method with the following characteristics:

• Neighboring points included: 5
• Minimum number of points: 1
• 1 sector
• Exponent of the distance expression, a = 1.4
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Regionalization of 𝑟𝑥
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In the case of the 𝑟𝑥 parameter, the best statistical 
characteristics of the fitting in terms of leave-one-out 
cross-validation resulted from the application of the 
spatial model of the IDW method with the following 
characteristics:

• Neighboring points included: 20
• Minimum number of points: 2
• 4 sectors with an angle between the 2 axes of 0°

• Exponent of the distance expression, a = 1

y = 0.378x + 1.7361
R² = 0.7177
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Regionalization of distribution parameters – β & λ

22



Assessment of regionalization accuracy
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A generally good agreement of the point and spatial estimates is 
evident, especially considering the fact that the η results are obtained 
from a spatial smoothing model (BSSE) rather than interpolation. The 
relative dispersion of the results in this parameter is justified as it is 
estimated from sub-daily rain gauge data characterized by greater 
uncertainty. This explains why a smoothing (rather than interpolation) 
method was chosen for this regionalization.

Results obtained from the 
IDW interpolation 
method are characterized 
by higher accuracy—as 
expected.
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Final parameterization
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The following generalized form of ombrian curves is derived for rainfall intensity x (mm/h), return period T (years) and 
temporal scale k (h):

𝑥 = 𝜆∗
Τ𝑇 𝛽∗

𝜉 − 1

1 + Τ𝑘 𝛼 𝜂∗

with the following five parameters
▪ characteristic timescale α = 0.18 h 
▪ tail index ξ = 0.18, 
▪ three spatially varying parameters 𝜂∗[−], 𝛽∗ (years) and 𝜆∗ (mm/h) :



At-site verification: mean % deviations and RMSE
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From the analysis of the daily rain gauges, 
it follows that the median of the average 
deviation for the 24 h scale is +9.05% while 
the average value is +8%. The 95% interval 
of the deviations is [-22.06%, +31.51%], 
consistent with the uncertainty of 
precipitation characterized by a high tail 
index ξ.

The results for the sub-daily rain gauges 
are also satisfactory, although showing 
relatively larger ranges of deviations at 
small scales as rain recorders are fewer 
and impacted by greater measurement 
uncertainty.



At-site verification: maximum 24 h depth deviation
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y = 0.6407x + 70.077
R² = 0.6802
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We assess the  eviations of each recor ’s ma imum    h rainfall  epth to the one obtaine  for the same return 
period (assigned through K-moments).

The agreement between the two is very satisfactory (R2=0.68) given the large spatial extent of the analysis and 
consi ering that the recor ’s ma imum value is a statistical quantity governe  by high uncertainty, especially for a 
large tail index (ξ = 0.18). 



Impact of regionalization on return period estimates
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For all scales, the deviations consistently tend to increase towards larger values as the return period increases. This is due 
to the use of the high single value of the parameter ξ in the regionalization, the influence of which is stronger in large 
return periods. In the very short return periods (of the order of 2 years), the spatially generalized rainfall model leads to
slightly smaller rainfall estimates (for T = 2 years, median -3.55% at 1 h and -5.22% at 24 h). This fact is partly attributed 
to the non-use of Hershfield factors for the daily rain gauge data which greatly affect the spatial generalization of the 
distribution parameters.

To inspect the impact of regionalization on design rainfall estimates for various return periods, we compare the 
deviations between the estimates using regional parameters and the ones obtained using the local (at-site) parameters.



Mapping characteristic design rainfall depths

28



Ombrian curves at the catchment scale

29

The ombrian curves for any region within the 
Greek territory are derived based on the two
constant-value parameters and the three
regionally varying parameters which are
obtained as a weighted average of the grid 
points falling within the area.

Catchment λ = 36.30Catchment



Inspection of long-term variability – Benchmark series (Bologna)
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More than a century long 
time series in Greece: Athens

• Compared to Bologna, Athens shows climate 
stability. 

• In the last 30 years there has been no  
remarkable climatic event. 

• The largest annual rainfall in history was 
recorded in the hydrological year 1885-86, and 
the smallest in 1989-90.

• The all-time high record of rainfall depth, 150.2 
mm/d, occurred at the end of the 19th century 
(1899-90).
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More than a century long time 
series in Greece: Thessaloniki

• Thessaloniki shows climatic stability, similar to
Athens. 

• In the last thirty years there has been no remarkable 
climatic event. 

• The largest annual rainfall in history was recorded in 
the hydrological year 1918-19, and the smallest in 
1984-85. 

• The all-time high record of rainfall depth, 115.9 
mm/d, occurred in the hydrological year 1985-86.
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Temporal distribution of records of average daily rainfall 
in 62 stations in the country

• The 1950s and early 1960s were 
strongly wet.

• About 1/3 of the high records of 
annual rainfall occurred in a 
single year, the hydrological year 
1962-63.

• The 20-year period centered in 
1990 is remarkably dry.

• In particular, about half of the 
low records of annual rainfall 
occurred in the 5-year period 
centered in 1990.

• The other periods, including the 
current one, are climatically 
neutral.

• The entire picture suggests the 
presence of Hurst-Kolmogorov 
dynamics in time and space. 
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Temporal distribution of records of maximum daily rainfall 
in 238 stations in the country

• The distribution is as 
statistically expected

• An exception is the 
lack of a record in 
the three-year 
period 1982-83 to 
1984-85.

• There are no 
noticeable climatic 
events.
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• The probability 
distribution of positive 
and negative trends is 
balanced.

• There is an impressive 
agreement of the 
empirical variations with 
the theoretically 
expected for a stationary 
process.
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Climate trends over the last two 30 years: linear trends and 
differences of two consecutive 30-year climatic periods 



Conclusions

36

❖ The approach followed incorporates an advanced framework for regional frequency analysis 

employing knowable (K-) moments that allow:

✓ reliable high-order moment estimation; significantly increasing the number of moments that 

can be justifiably employed in regional analyses of extremes; and 

✓ handling of temporal and spatial dependence, which is non-negligible.

❖ The detailed climatic analysis:

✓ did not locate any element that would justify any type of nonstationary analysis;

✓ yet it suggests the presence of changes that can be modelled within a stationary framework 

of Hurst-Kolmogorov dynamics.

❖ The final product is a powerful tool, easy to apply for engineering tasks, covering the entire 

territory of Greece.

❖ The methodology can be readily applied to other countries or parts thereof.
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Details on 
the 
methodology
in the book
(Edition 2)

Free in open 
access

Δ  Κουτσογιάννης, Τι να κάνουμε για το φλέγον ζήτημα της 
κλιματικής αλλαγής;
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