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Key Points: 9 

• For selected climatic regions, long-term persistence in gridded annual precipitation data 10 
increases with the spatial scale of averaging. 11 

• Long-term persistence at the regional scale of averaging is linked to large scale modes of 12 
fluctuation in the climate system. 13 

• Long-term persistence in basin average precipitation for the Blue Nile is shown to explain 14 
the Hurst Phenomenon for the Nile at Aswan.  15 
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Abstract 16 
Precipitation deficits are the main physical drivers of droughts across the globe, and their level of 17 
persistence can be characterised by the Hurst coefficient H (0.5<H<1), with high H indicating 18 
strong long-term persistence (LTP).  Previous analyses of point and gridded annual global 19 
precipitation datasets have concluded that LTP in precipitation is weak (H~0.6) which is 20 
inconsistent with higher values of H for large river basins e.g. the Nile. Based on an analysis of 21 
gridded annual precipitation data for eight selected regions distributed across the globe, an 22 
important new finding is that H increases with the spatial scale of averaging, with mean H values 23 
at the grid and regional scale of 0.66 and 0.83, respectively. The discovery of enhanced LTP at 24 
the regional scale of averaging of precipitation has important implications for characterising the 25 
severity of regional droughts, as well as LTP in the annual flows of large rivers and recharge to 26 
major aquifers. Teleconnections with known modes of low frequency variability in the global 27 
climate system are demonstrated using correlation analysis and stepwise regression. Despite 28 
having several constituent regions exhibiting LTP, the Northern Hemisphere surprisingly has no 29 
LTP; this is shown to result from different modes of low frequency climatic variability 30 
cancelling each other out.  LTP for the Southern Hemisphere is moderate, and weak for Global 31 
average precipitation. LTP in Blue Nile basin scale precipitation is shown to explain the Hurst 32 
Phenomenon in naturalised annual flows for the River Nile, more than seventy years after its 33 
discovery by Hurst.  34 
Plain Language Summary 35 
In the 1950s, Harold Edwin Hurst, a British physicist and hydrologist, observed that the annual 36 
river Nile flows exhibited long-term persistence (LTP) where alternating periods of above and 37 
below average flows could be unusually long. He characterised LTP using a parameter H which 38 
increases from 0.5 (no LTP) up to a limit of 1, and found H of 0.90 for Nile flows. Analyses of 39 
long precipitation gauge records have typically given values of H in the range 0.55-0.60, leading 40 
some to conclude that precipitation could not account for the stronger LTP in the flows of the 41 
Nile and other large rivers. We analyse a long gridded global annual precipitation data set and 42 
find that, for eight selected regions, the average value of H increased from 0.66 at the grid scale 43 
to 0.83 at the regional scale of averaging. As flows in large rivers result from precipitation 44 
gathered over large upstream areas, this explains why the Nile exhibits LTP. Strong LTP at the 45 
regional scale is shown to be linked to known long-term fluctuations in the climate system. Our 46 
findings have important implications for characterising the risks of droughts which can extend 47 
over large areas.  48 

1. Introduction 49 
Long-term persistence (LTP) in geophysical time series, or the tendency of above or below 50 
average runs of years to be unusually long, was first quantified by Hurst (Hurst, 1951, 1956) 51 
using a coefficient H which characterizes LTP in the range 0.5<H<1, with H=0.5 corresponding 52 
to the independent (white noise) case i.e. no persistence.  Hurst analysed a wide set of 53 
geophysical times series and found an average value of H=0.73, with a standard deviation of 54 
0.09. In particular, he reported a value of H =0.9 for annual river Nile flows at Aswan, reflecting 55 
strong LTP. The disparity between these results, and the then current theory that predicted H=0.5 56 
based on the increments of Brownian motion, has come to be known as the Hurst Phenomenon. 57 
Over the years, a number of stochastic approaches to modelling LTP have emerged (e.g., 58 
fractional Gaussian noise (Mandelbrot & Wallis, 1968, 1969), ARMA models (O'Connell, 59 



Manuscript submitted to Water Resources Research 

3 
 

1974a, 1974b), shifting mean models (Boes & Salas, 1978) and fractionally differenced models 60 
(Hosking, 1984)). Koutsoyiannis (2011a) has shown that those models exhibiting Hurst 61 
behaviour asymptotically can be encapsulated within a Hurst –Kolmogorov (HK) stochastic 62 
dynamics framework characterised by a simple scaling law, acknowledging the contribution of 63 
Kolmogorov who, unknown to Hurst and others, had developed the necessary theoretical basis in 64 
the 1940s. LTP is synonymous with Hurst-Kolmogorov behaviour and can be shown to arise 65 
from a complex dynamical system representation of a simple climate model (Mesa et al., 2012) 66 
or from maximum entropy considerations (Koutsoyiannis, 2011b, 2017).  67 
The work of Hurst has been used to characterize LTP across multiple disciplines, ranging from 68 
climate science to the analysis of internet traffic and the flow of blood in human arteries 69 
(O'Connell et al., 2016). Recent research on Hurst behaviour in the climate and hydrology fields 70 
is reported by Adarsh et al. (2020); Adarsh and Priya (2021); Benavides-Bravo et al. (2021); 71 
Dimitriadis, Iliopoulou, et al. (2021); Dimitriadis, Koutsoyiannis, et al. (2021); Legates and 72 
Outcalt (2022); Pal et al. (2020); Rahmani and Fattahi (2021, 2022a, 2022b, 2022c). The 73 
hypothesis of long-term persistence (LTP) in annual precipitation has been explored in a number 74 
of studies of point and grid scale data.  An analysis of annual precipitation records distributed 75 
over Europe with length above 200 years, as well as Climatic Research Unit (CRU) gridded data, 76 
yielded a mean value for H close to 0.6, suggesting weak LTP (Markonis & Koutsoyiannis, 77 
2016). An analysis of a global annual precipitation data set from 1265 stations in which H was 78 
estimated using the aggregated variance method gave a mean H of 0.59, again suggesting weak 79 
LTP (Iliopoulou et al., 2018).  A further analysis of a data set of 1535 records located mainly in 80 
the US, Europe and Australia in which H was estimated by maximum likelihood resulted in a 81 
median value of 0.56 (Tyralis et al., 2018).  Bunde et al (2013) questioned whether LTP/memory 82 
exists in precipitation. LTP in near-surface air temperature records and long-term climate model 83 
simulations has been attributed to the existence of long-term memory in the climate system 84 
associated with ocean dynamics and ocean-atmosphere interactions (Fraedrich & Blender, 2003; 85 
Fraedrich et al., 2009; O'Connell et al., 2016).   86 
Previous global mapping of H based on gridded precipitation data has shown that clusters of 87 
similar H values exist, albeit still reflecting weak LTP but with some high H patches (Rocheta et 88 
al., 2014). These clusters, the modelling of which has recently been demonstrated by Dimitriadis, 89 
Iliopoulou, et al. (2021), most likely reflect the influence of different modes of variability in the 90 
climate system such as the North Atlantic Oscillation (NAO), the Atlantic Multidecadal 91 
Oscillation (AMO), the Pacific Decadal Oscillation (PDO) etc. For example, a relationship has 92 
been established between the long-term variability of Nile river flows and sea surface 93 
temperature in the southern Indian Ocean and the eastern Pacific  (Siam & Eltahir, 2015).  94 
While the temporal scale dependence of LTP in precipitation records has been investigated by 95 
Markonis and Koutsoyiannis (2016), no such investigation has been conducted of dependence on 96 
the spatial scale of averaging. We report new findings on spatial scale dependence here, and its 97 
importance is twofold; (i) the LTP in the annual flows of large rivers has heretofore been 98 
unexplained, and (ii) major precipitation deficits and droughts occur at regional scales, and must 99 
therefore be governed by the level of LTP in regional scale precipitation.    We demonstrate that 100 
LTP increases with the spatial scale of averaging of gridded global precipitation data, which 101 
provides important new understanding of how LTP in precipitation emerges at regional scales 102 
and of links with large scale climate fluctuations. This leads to a long-awaited explanation for the 103 
Hurst Phenomenon in the annual flows of the river Nile, and also sheds light on how regional 104 
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scale LTP exerts a major control over the intensity of regional precipitation deficits and 105 
droughts.  Moreover, recharge to major aquifers occurs over large areas, and is also therefore 106 
affected by regional scale LTP. Our results can also be used for diagnostic checking of 107 
precipitation deficits in GCM baseline simulations.  108 
In section 2.1, the data sets and regions analysed are described. Section 2.2 introduces the data 109 
sets and sources for river Nile flows. Section 2.3 describes the estimation of the Hurst coefficient 110 
using the climacogram, or aggregated scale analysis of the variance of the block mean. The 111 
spatial scale analysis of LTP and H is described in section 2.4, which is supported by Cumulative 112 
Departure from the Mean (CDM) plots in section 2.5. The use of correlation and stepwise 113 
regression analysis to analyse teleconnections is summarised in section 2.6. The Results are 114 
presented in section 3, followed by a Discussion in section 4 and some Conclusions in section 5. 115 

2. Materials and Methods 116 

2.1 Global precipitation data set and regions analysed 117 
Our starting point is the Global Precipitation Climatology Centre (GPCC) global precipitation 118 
gridded data set (0.5x0.5 degree over land surfaces excluding Antarctica: version 7) for the 119 
period 1901-2013 (Schneider et al., 2015). We explore the spatial scale dependence of the Hurst 120 
coefficient H for a set of  climatic regions distributed across the globe (Figure 1; after Harris et 121 
al. (2014)). These regions were originally chosen by Giorgi and Francisco (2000), and have been 122 
used by the IPCC in AR3 and AR4. They cover all of the global land areas approximately with a 123 
manageable number of previously defined climatic regions of rectangular shape to facilitate 124 
spatial aggregation.  125 

2.2 River Nile annual flow data 126 
Naturalised annual flow data for the Blue Nile and the White Nile for the period 1905-1994 have 127 
been digitised from plots in Sutcliffe and Parks (1999), while naturalised annual flows for the 128 
main Nile at Aswan for the period 1901-2013 have been digitised from a plot presented in 129 
Wheeler et al. (2020).  130 
 131 
 132 
Figure 1. Regional grid scale annual average precipitation (1901-2013) (precipitation data from 133 
Schneider et al. (2015);  regions defined in Harris et al. (2014)) . (Abbreviations:  N., North; S., 134 
South; SE, Southeast, AM, America; AUS, Australia; EUR, Europe.)  135 

2.3 Estimation of the Hurst coefficient 136 
The Hurst coefficient H is widely accepted across multiple disciplines as the de facto 137 
parsimonious measure of LTP in time series.   Here, H has been estimated using aggregated 138 
variance plot analysis (Beran, 1994) which is based on a property of the sample mean of a Hurst-139 
Kolmogorov (HK) process (Koutsoyiannis, 2011a). For a HK time series split into 140 
nonoverlapping blocks of size n, the relationship between block size n and the variance of the 141 
block sample mean is given in equation (1) as: 142 
                                                                  var(𝑋ത௡) = 𝑐𝑛ଶுିଶ                   (1) 143 
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where 𝑋ത௡  is the block sample mean, H is the Hurst coefficient, and c is a constant. Using a range 144 
of block sizes, a double log plot of the variance of the block sample mean against the block size 145 
is constructed, with the data points expected to fall along a line with negative slope 2H – 2 (e.g. 146 
see Figure S1). A slope of -1 indicates independence (white noise), with a long-range dependent 147 
HK process with H>0.5 having shallower slopes. 148 
It should be noted that the term ‘aggregated variance’ is a misnomer as it is not the variance that 149 
is aggregated but the time scale; for this reason the term ‘climacogram’ has been coined to 150 
describe the double log plot (Koutsoyiannis, 2010). 151 
The H values were calculated using the aggvarFit function in the R package fArma (Wuertz et 152 
al., 2017). The block sizes (denoted as  m in fARMA) used in the calculation of the slope were 153 
the set of integer values in the range 4 ≤ m ≤ 14.  For the GPCC dataset, the maximum value of 154 
14 provides eight values for calculation of the variance at the largest block size. The slope was 155 
obtained from the least square fit of the logarithm of the block sample mean variances versus the 156 
logarithm of the block sizes.  157 
The standard variance estimator used in the R package  fARMA has been shown to be biased 158 
(Tyralis & Koutsoyiannis, 2011), with the bias being a function of H. For H<0.7, the downward 159 
bias is negligible, but it becomes more noticeable above H=0.8. A comparison of results from the 160 
two estimators is presented in section 3.1.  161 

2.4 Spatial scale analysis of LTP  162 
We demonstrate the spatial scale analysis of LTP here for a region of the Sahel (Figure 2a) 163 
which is  known for low frequency precipitation variability in the 20th century driven mainly by 164 
multi-decadal fluctuations in sea surface temperatures (SSTs) (Mohino et al., 2011).  Figure 2 165 
shows (a) a gridded (0.5x0.5degree) annual average precipitation map for a selected western 166 
region of the Sahel  (area 3.19 kmଶx10଺), and (b) corresponding gridded Hurst coefficients H. 167 
The grid average value of H is 0.73, reflecting moderate low frequency variability/long- term 168 
persistence at the grid scale.  The gridded precipitation is then averaged across the region, and 169 
the resulting H value is found to be 0.9 (see Supplementary Fig. S1), indicating much stronger 170 
long-term persistence at the regional scale of averaging. The increase in H with spatial scale is 171 
shown in Figure 2c. Analyses for further selected regions in Figure 1 are presented in section 3. 172 
Figure 2. (a) Gridded 0.5o annual average precipitation (Schneider et al., 2015) for selected 173 
western region of the Sahel; (b) gridded H values for the same region; (c) spatial scale 174 
dependence of H; axis is in degrees. 175 

 2.5 Analysis of CDM plots 176 
Cumulative Departure from the Mean (CDM) plots have been used to analyse different temporal 177 
patterns in LTP at the regional scale and to understand how regions combine to determine LTP at 178 
hemispheric and global scales of averaging. The CDM is defined in equation (2) as: 179 
                                        𝐶𝐷𝑀௞ =  ∑ 𝑋௧௞ଵ − 𝑘𝑋ത                (2) 180 
where 𝐶𝐷𝑀௞ is the CDM at time point k, 1≤ 𝑘 ≤ 𝑛 where n is the length of the time series, and 181 𝑋ത is the mean. 182 
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2.6 Correlation and regression analysis of teleconnections  183 
A Pearson correlation matrix has been prepared showing linear dependencies between regional, 184 
hemispheric and global annual average precipitation. Stepwise linear regression has then been 185 
used to explore how much of the variance in global annual average precipitation can be 186 
explained by those regions exhibiting strong LTP at the regional scale of averaging, and their 187 
order according to significance. The stepwise linear regression was carried out using the R 188 
package Leaps (Lumley, 2017). 189 
Pearson correlation analysis has also been used to explore linear dependencies between average 190 
annual regional precipitation and known large scale modes of variability in the global climate 191 
system (teleconnections: Chase et al. (2005)). Five indices of these modes of variability have 192 
been used as follows. In each case, an annual time series has been derived from the available 193 
monthly index data for the period 1901-2013. 194 
The North Atlantic Oscillation (NAO) is one of the major modes of variability of the Northern 195 
Hemisphere atmosphere (Hurrell, 1995).  It is particularly important in winter, when it exerts a 196 
strong control on the climate of the Northern Hemisphere (Osborn, 2011). This is also the season 197 
that exhibits strong interdecadal variability (Osborn, 2004). For winter, the difference between 198 
the normalised sea level pressure over Gibraltar and the normalised sea level pressure over 199 
Southwest Iceland is a useful index of the strength of the NAO. Jones et al. (1997) have used 200 
early instrumental data to extend this index back to 1823. The NAO data were obtained from the 201 
UK Climatic Research Unit (CRU). 202 
The Atlantic Multidecadal Oscillation (AMO) reflects irregular multidecadal fluctuations in 203 
North Atlantic sea surface temperatures (SSTs), with alternating warm and cool periods. An 204 
irregular cycle has been identified for the AMO, with a period in the range 65-80 years (Kerr, 205 
2000), but there is substantial residual variability. During AMO warmings, most of the United 206 
States sees less than normal precipitation, including Midwest droughts in the 1930s and 1950s 207 
(Enfield et al., 2001). An annual time series was derived from the monthly time series compiled 208 
by the National Oceanic and Atmospheric Administration (NOAA) which is based on North 209 
Atlantic SST averages, unsmoothed and not detrended (1856 to present, 1901-2013 analysed) 210 
and the climatology used (from the NOAA ERSST V2 SST, interpolated to a 5x5 grid)(Huang et 211 
al., 2017). 212 
The Southern Oscillation Index (SOI) is a time series used to characterize the large scale sea 213 
level pressure (SLP) patterns in the tropical Pacific. Monthly mean SLP data at Tahiti [T] and 214 
Darwin [D] are used (Trenberth & NCAR Staff, 2022). The SOI is linked to large scale tropical 215 
SST variability and as such is a measure of the "SO" part of the El Niño–Southern 216 
Oscillation (ENSO)  phenomenon. Extended periods of negative SOI correspond with El Nino 217 
events, characterized by warm SSTs in the eastern and central tropical Pacific.  It has an irregular 218 
period of 2-8 years (Trenberth & NCAR Staff, 2022).  219 
Monthly Darwin SLP data compiled by NOAA have been used to derive an annual time series 220 
for the period 1901-2013. 221 
The Pacific Decadal Oscillation (PDO) is often described as a long-lived El Niño-like pattern 222 
of Pacific climate variability (Mantua & Hare, 2002; Zhang et al., 1997). As seen with the better-223 
known El Niño/Southern Oscillation (ENSO), extremes in the PDO pattern are marked by 224 
widespread variations in the Pacific Basin and the North American climate. In parallel with the 225 
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ENSO phenomenon, the extreme phases of the PDO have been classified as being either warm or 226 
cool, as defined by ocean temperature anomalies in the northeast and tropical Pacific Ocean 227 
(Mantua & Hare, 2002). The NCEI PDO index is based on NOAA's extended reconstruction of 228 
SSTs (ERSST Version 5). An annual time series has been derived from the monthly ERSST 229 
PDO index. 230 
The Interdacadal Pacific Oscillation (IPO) is an interdecadal quasi-oscillation seen mostly in 231 
the Pacific basin, but its impacts on surface temperature and precipitation have been found over 232 
Australia, the Southwest US and other regions. The PDO and IPO essentially capture the same 233 
interdecadal variability, with the PDO traditionally defined within the North Pacific while the 234 
IPO covers the whole Pacific basin (Dong & Dai, 2015).  IPO Tripole Index (TPI) unfiltered data 235 
created at NOAA/ESRL PSD were used (Henley et al., 2015).  236 

3. Results 237 

3.1 Spatial scale dependence of LTP in regional precipitation 238 
Following the analysis demonstrated for a region of the Sahel in section 2.4 above, the spatial 239 
scale dependence of H for a set of regions in Figure 1 is analysed. Eight  regions were selected 240 
from the overall set, with average H values of 0.6 or greater for grid scale (0.5x0.5degree) 241 
precipitation, and exhibiting an increase in H with the scale of averaging; these regions are in 242 
general agreement with the clusters of higher grid scale H values observed by Rocheta et al. 243 
(2014) (a Global map of H is provided in Figure S2).  The median area of these regions is 7.2 244 kmଶx10଺. Five of the eight regions have weak LTP at the grid scale (H~0.6) (Table 1), while 245 
North Asia, Southern South America and Western Africa exhibit stronger grid scale LTP 246 
(H~0.70). In all cases, the H values for regional average precipitation are substantially higher 247 
than the medians of the grid scale values.  248 
A comparison of the H estimates calculated using the aggvarFit function in fArma, and the 249 
unbiased estimator used by Tyralis and Koutsoyiannis (2011) yielded an average difference 250 
between the two sets of estimates of 0.02 which does not affect our main finding about the 251 
spatial scale dependence of H. 252 
  253 
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Table 1. (a) Median H values for  regional grid scale precipitation and (b) average regional  254 
precipitation (Aggregated variance (climacogram; Koutsoyiannis, 2011a)  plots are shown in 255 
Figure S3).  256 
 257 

 Region (a)  Median H for 
grid scale 
precipitation  

 (b) H for average 
regional precipitation 

1 Eastern North America 0.60 0.83 

2 Amazon  0.63 0.72 

3 Southern South America 0.69 0.78 

4 Northern Europe  0.64 0.81 

5 Western Africa  0.69 0.91 

6 North Asia  0.78 0.99 

7 Southern Asia  0.63 0.85 

8 Southeast Asia  0.63 0.78 

 Mean 0.66 0.83 

 258 
Figure 3 presents box plots of the Hurst coefficient as a function of spatial scale for the regions 259 
listed in Table 1, starting at the (0.5x0.5 degree) grid scale. At each scale, the region was 260 
partitioned into non-overlapping tiles, with the Hurst coefficient estimated for the average 261 
precipitation for each tile (in calculating the regional average values, the grid scale values were 262 
weighted by their projected earth surface areas (Kelly & Šavrič, 2021)). That H increases with 263 
spatial scale is evident from all these plots, although in some cases, the increase with spatial 264 
scale only emerges when going from the 10x10 degree to the full regional scale. The results for 265 
North Asia are unusual in that they show relatively strong LTP at the grid scale (H = 0.78) and a 266 
H value close to 1 at the regional scale. This may be an artefact of the lower density of stations in 267 
this region used to derive the gridded precipitation values.  268 
.  269 
 270 
Figure 3. Box plots of H values for increasing scales of averaging of precipitation for the regions 271 
listed in Table 1 (The whiskers represent the 5th and 95th percentiles). Only tiles with more than 272 
50% land were included .The x-axis is in degrees. 273 
Some of the box plots suggest frequency distributions with negative skewnesses and a left tail of 274 
H values less than 0.5; however, they are small in number, and do not affect the overall averages 275 
significantly. They may reflect areas where relatively few measurements were available to derive 276 
the grid square precipitations.  277 
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3.2 LTP patterns at regional scale 278 
For the 19 regions shown in Figure 1, time series plots of average regional precipitation are 279 
presented in Figure 4, overlain with cumulative departure from the mean (CDM) plots, and with 280 
Hurst coefficients added in the plot titles. The CDM plot is a useful diagnostic tool for revealing 281 
underlying runs of above and below average precipitation, the strength of which is reflected in 282 
the Hurst coefficient values. Of the set of 8 cases listed in Table 1, 4 exhibit similar CDM 283 
behaviour (Eastern North America, Southern South America, Northern Europe, North Asia) 284 
reflecting below average followed by above average fluctuations in regional precipitation.  285 
Western Africa shows the opposite behaviour, while Southern Asia and, to a lesser extent, 286 
Southeast Asia show some similarity to this. Amazon is largely dissimilar to the other members 287 
of the set. 288 
 289 
Figure 4. Average annual regional precipitation (black) and cumulative departures from the 290 
mean (CDM) (red) time series plots for the period 1901-2013. Hurst coefficients are shown in 291 
parentheses in the plot titles. 292 
Also shown in Figure 4 are plots for Northern Hemisphere (NH) (H= 0.5), Southern Hemisphere 293 
(SH) (H=0.7) and Global average precipitation (H=0.61). It is interesting that, while some 294 
regions of the NH (Eastern North America, Northern Europe, North Asia) show strong LTP (H > 295 
0.8), the average precipitation of the entire NH does not exhibit persistence. The SH average 296 
precipitation exhibits moderate LTP (H=0.7) and there is weak global LTP (H=0.61) which 297 
emerges from the different LTP patterns for the two hemispheres.  These latter results, and the 298 
CDM plots and Hurst coefficients, reflect the complex interacting influences of the climates of 299 
their constituent regions. We now explain why NH average precipitation does not exhibit 300 
persistence 301 

3.3 LTP at hemispheric and global scales 302 
Given that high H values have been obtained for several of the NH regions, it is surprising that H 303 
is 0.5 for the Northern Hemisphere when taken as a whole (Figure 4 and Table 2(a)). To explore 304 
how this emerges, the average precipitations for the regions in the NH have been combined 305 
progressively using area weighting, and the resulting CDM plots analysed. The calculation of the 306 
projected surface area of each 0.5 degree grid box of the GPCC data set has been performed 307 
using equation 1 from Kelly and Šavrič (2021). While typically, the range of grid box areas is 308 
small within a region, the range across the NH is large – e.g. those in North Asia are 309 
approximately one quarter the size of those at the Equator. This influences LTP at NH scale. 310 
An investigation of LTP at hemispheric and global scales is important for two reasons. Firstly, an 311 
understanding of how LTP behaves at these scales represents a contribution to the field of global 312 
hydrology. Secondly, GCMs are known to be deficient in reproducing LTP and drought 313 
characteristics (e.g. Moon et al, 2018) so these results should be used to check baseline 314 
simulations of historical climates, from local to global scales. This issue is discussed in section 4. 315 
 316 
The 5 regions of North America (Figure 1) are combined first using area weighting (equation 3): 317 𝑋௧തതത = ∑ 𝐴௜ ௡ଵ 𝑋௧௜/∑ 𝐴௜ ௡ଵ                 (3) 318 
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where 𝑋௧തതത is the combined regional average precipitation for the n regions (n=5 for North 319 
America) for year t, and 𝐴௜ and 𝑋௧௜ are the constituent regional land areas and averages for year t. 320 
In Table 2a, the areas of the regional boxes and the land areas within each region are provided, 321 
together with the regional H estimates. The North America regions account for ~17% of the land 322 
area in the Northern Hemisphere. The Hurst coefficient for the aggregated area is 0.79 with a 323 
range 0.63-0.83 for the constituent regions (Table 2). This is referred to as Case 1. Figure 5a 324 
shows the CDM plots for the 5 North America regions and their weighted average (black). It is 325 
noted that 3 regions have similar CDM plots (Central North America, Eastern North America 326 
and Western North America) which accounts for the high H value for the aggregated area. 327 
 328 
Table 2. (a) Areas of regional boxes (106km2), land area within each regional box, and regional H 329 
estimates (* boxes have been clipped at the Equator for this analysis); (b) H estimates for aggregated 330 
areas – Cases 1-5. 331 

(a) 332 

Regional box S N W E Regional 
box area Land area Fraction 

land (-) H 

Alaska 60 72 -170 -103 4.0 3.5 0.87 0.66

Central North 
America 

30 50 -103 -85 
3.4 3.4

0.99 0.63

Eastern North 
America 

25 50 -85 -50 
8.5 2.9

0.34 0.83

Western North 
America 

30 60 -135 -103 
8.3 5.8

0.70 0.68

Central America 10 30 -116 -83 7.6 3.0 0.40 0.63

Northern Europe 48 75 -10 40 7.9 5.2 0.65 0.81

Western Africa* 0 22 -20 18 10.1 7.4 0.73 0.91

Mediterranean 30 48 -10 40 8.6 6.2 0.72 0.65

Eastern Africa* 0 18 22 52 6.6 5.7 0.87 0.61

North Asia 50 70 40 180 17.2 14.7 0.86 0.99

Central Asia 30 50 40 75 6.6 6.3 0.96 0.58

Southern Asia 5 50 64 100 17.3 12.3 0.71 0.85

East Asia 20 50 100 145 13.5 8.6 0.63 0.52

Southeast Asia* 0 20 95 115 4.8 2.4 0.49 0.78

N Hemisphere 0 90 -180 180 255.0 111.5 0.44 0.50

(b) 333 
 Case 1 Case 2 Case 3 Case 4 Case 5 

H 0.79 0.50 0.75 0.78 0.58 
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 334 

Figure 5. (a) Cumulative departures from the mean (CDM:mm) plots for the North America 335 
regions and the average for the regions (black); (b) CDM plots for North America (Case 1) and 336 
combinations with other NH regions (Cases 2-5). 337 

The previous analysis is repeated, but with the Northern Europe and Western Africa regions 338 
included (Case 2), and the estimated Hurst coefficient is 0.50 (the West Africa area lying in the 339 
SH has been excluded). This surprising result can be explained by inspecting the CDM plots for 340 
Western Africa and North Europe (Figure 4).  The Western Africa CDM has an opposite 341 
fluctuation to the North American and Europe CDMs, so although all have high H values (Table 342 
2), Western Africa apparently cancels out the North America and Northern Europe opposite 343 
fluctuations (Figure 5b).  344 
To complete the analysis, CDM plots have been prepared and H values have been estimated for the 345 
following three cases: 346 

Case 3: Case 2 + Mediterranean/Eastern Africa 347 
Case 4: Case 3 + North Asia/Central Asia 348 
Case 5: Case 4 + Southern Asia + East Asia + Southeast Asia 349 

The corresponding CDM plots for Cases 3-5 are shown in Figure 5b, and the estimated H values 350 
are 0.75, 0.78 and 0.58 respectively (Table 2b). Here, it can be seen that the Mediterranean and 351 
East Africa regions have similar CDM plots which reinforce each other and introduce LTP into 352 
the North Amerrica/North Europe/West Africa time series (Case 2) to give a H value of 0.75 for 353 
Case 3. This is slightly reinforced by North Asia/Central Asia (Case 4) to give H = 0.78, but the 354 
addition of Southern Asia and Southeast Asia (Case 5) which have CDM plots showing opposite 355 
fluctuations results in a final H value of 0.58. Some of the NH land area has been excluded in 356 
combining these regions so this result is consistent with the NH value of 0.50 (Figure 4). 357 
In essence, the northern and southern regions of the NH have opposite fluctuations which cancel 358 
each other out, resulting in no LTP for the NH. Precipitatation cannot be expected to increase in 359 
one major part of the NH without being balanced by a reduction in another part, if the NH 360 
overall shows no persistence . Of course all the underlying fluctuations are a function of the 361 
sampled epoch, and other epochs would yield very different results, so a reminder of the huge 362 
sampling variability associated with LTP. Moreover, as the epoch length is extended, longer term 363 
fluctutations will become evident, as revealed by paleo records, but which can still be modelled 364 
by a stationary HK stochastic process (Markonis and Koutsoyiannis, 2013) 365 
A similar analysis for the SH would be expected to show that the Amazon region (H=0.72) 366 
dominates the SH (H=0.70) (compare their CDM plots in Figure 4), resulting in H=0.61 for the 367 
globe when the NH and SH are combined. The NH and SH regions are of course interconnected 368 
and there are teleconnections between both hemispheres that are reflected in their respective H 369 
values and the global H value. We now explore the role of teleconnections with known large 370 
scale modes of variability in the climate system in explaining regional LTP, and their influences 371 
on average hemispheric and global annual precipitation. 372 
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3.4 Influence of teleconnections on regional and global LTP 373 
From the analysis presented in section 3.3, it is evident that the LTP regimes of the constituent 374 
regions of the NH interact in a complex way to determine LTP at the NH scale. Here, we explore  375 
the relationships between time series of average regional, hemispheric and global  precipitation 376 
to gain insight into how they interact over time.  A correlation matrix has been prepared which 377 
reveals the following (see supplementary Figure S4 which is based on the 8 regions exhibiting 378 
strong LTP (Table 1), NH, LH and Global). Average Global precipitation is more highly 379 
correlated with average Southern Hemisphere (SH) (Pearson r=0.82) than Northern Hemisphere 380 
(NH) precipitation (r =0.69). NH precipitation shows significant positive correlations with all 381 
regions (apart from Southern South America which is negatively correlated (r=-0.36), with 382 
Southeast Asia (r=0.52) and Southern Asia (0.42) having the highest correlations. Amazon (r=0. 383 
74) and Southeast Asia (r=0.43) are the most highly correlated regional variables with SH 384 
precipitation. SH has a higher correlation with Global (r=0.82) than NH (r=0. 69). These latter 385 
correlations may partially reflect the respective roles of LTP in SH (0.70) and NH precipitation 386 
(H=0.50) in determining LTP in Global precipitation (H=0.61). However, the interactions 387 
demonstrated graphically for the NH through the CDM plots in Figure 5 are apparently too 388 
complex to decipher using the correlation analysis performed here. 389 
Stepwise multiple linear regressions of the average Global precipitation time series on the 390 
average precipitation time series for the 8 regions have been performed in which the best 391 
combinations of the explanatory variables have been progressively identified (Table 3a). 392 
Amazon is the best single explanatory variable (adjusted 𝑅ଶ=0.39); then Southeast Asia enters 393 
(𝑅ଶ= 0.61), followed by North Asia, Southern Asia, Western Africa, Northern Europe, Eastern 394 
North America and Southern South America, with a final adjusted 𝑅ଶ= 0.72. Thus, 72% of the 395 
variance of Global precipitation over the period 1901-2013 is explained by the 8 LTP regions 396 
which underlines their important role in determining the temporal evolution of Global 397 
precipitation.  398 
  399 
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 400 
Table 3. (a) Stepwise linear regression of average annual Global precipitation on annual regional 401 
precipitation (X denotes entry of an explanatory variable); (b) significant correlations between 402 
annual average regional precipitation and annual climatic indices for the period 1901-2013. 403 
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AMO - - - 0.19 - 0.24 - 0.26 0.23 

NAO - - - - - - - - - 

PDO - -0.32 0.22 - -0.21 -0.23 - -0.21 -0.46 

IPO - -0.57 0.52 - -0.21  - -0.24 -0.54 - 

SOI -  0.51 -0.51 -  0.27 - 0.25  0.52 0.72 

Correlation analysis is now used to explore what links might exist between known modes of 406 
long-term variability in the climate system and average annual precipitation for the 8 LTP 407 
regions. It has been shown through long-term coupled atmosphere-ocean model simulations that 408 
long-term persistence in the climate system can be attributed to ocean dynamics which have 409 
memory (Fraedrich & Blender, 2003; Fraedrich et al., 2009; O'Connell et al., 2016), and which 410 
are reflected in quasi-periodic oscillations in SSTs; these in turn are linked to long-term 411 
fluctuations in temperature, precipitation and runoff records across the globe (teleconnections; 412 
Chase et al., 2005)). Here we explore the correlations between regional precipitation and five 413 
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indices of these modes of variability: the Atlantic Multidecadal Oscillation (AMO), the North 414 
Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), the Interdecadal Pacific 415 
Oscillation (IPO) and the Southern Oscillation Index (SOI) (section 2.6). Table 3b and Figure S4 416 
present significant correlations with regional precipitation;  NAO shows no significant 417 
correlation (its influence is on seasonal and spatial distribution: Kyte et al, 2006), while the IPO 418 
and SOI are inversely correlated as expected (Chiew & Leahy, 2003; McNeil & Cox, 2007).  The 419 
Hurst coefficient for the AMO is 0.92; for the PDO, 0.85 and the SOI, 0.57, so the AMO and the 420 
PDO are the main drivers of LTP in regional precipitation (Figure S5). Time series of annual 421 
AMO, PDO and SOI values are shown in Figure S6 for the period 1900-2013 with CDM plots of 422 
each superposed, and also of annual Global precipitation. The correlations of Global 423 
precipitation with AMO, PDO and SOI are 0.23, -0.46 and 0.72 respectively, which suggests that 424 
the SOI (H=0.57) has a strong influence on the weak level of LTP in Global precipitation 425 
(H=0.61) (Figure S7 shows correlations at the grid scale). Stepwise linear regression of annual 426 
Global precipitation on AMO, PDO and SOI yields an adjusted 𝑅ଶ= 0.56. Therefore, by 427 
comparison with the results in Table 3(a), the 8 regions explain another 16% of the variance, but 428 
with 8 significant independent variables. As a direct comparison, the best three regions explain 429 
63% of the variance (Amazon 39%;+Southeast Asia, 61%;+North Asia,63%) compared with 430 
56% for the AMO. PDO and SOI. However, this is not a like-for-like comparison, as the H 431 
values for the two sets of explanatory variables are different, suggesting that other unknown 432 
explanatory factors may be affecting regional precipitation.  433 

3.5 The Hurst Phenomenon explained for the river Nile 434 
While LTP and the Hurst Phenomenon can be modelled stochastically using a H-K scaling law, 435 
an explanation of how the Hurst Phenomenon arises has proved more elusive.  Based on our 436 
findings, it is suggested that the reason for the discrepancy between the weak LTP in point/grid-437 
scale precipitation, and the higher H values observed in the naturalised annual flows of large 438 
river basins like the Nile, is the scale dependence of LTP in precipitation which is 439 
integrated/averaged by the basin with increasing spatial scale.  We now provide the evidence that 440 
this is the case for the Nile.   441 
The Blue Nile accounts for some 60-70% of annual Nile flows at Aswan. Figure 6a shows a 442 
boundary box surrounding the upper Blue Nile catchment while Figure 6b shows that H 443 
increases with the scale of averaging from 0.58 at the grid scale to 0.73 at the boundary box 444 
scale; the size of the boundary box does not allow a greater number of points to be displayed. 445 
Naturalised  flows at Aswan, which incorporate the White Nile flows, yield H=0.66. For 446 
comparison, the original estimate used by Hurst, defined as      447 
                                                           K = 𝐿𝑜𝑔(ோௌ)/𝐿𝑜𝑔(௡ଶ)            (4)        448 

where R is the range of cumulative departures, S is the standard deviation and n is the sample 449 
size, has been calculated for comparison (Table 4), with K=0.71.  The value of K=0.90 reported 450 
by Hurst (1951,1956) was for the shorter period 1870-1949, and reflected a sharp decline in the 451 
flows around 1900 which can be attributed to a widespread failure in tropical Monsoon 452 
precipitation around that time (Kraus, 1956).The White Nile flows reflect a different 453 
precipitation and LTP regime to the Blue Nile, and are modulated by  Great Lake storage and 454 
evaporation in the Sudd region. The flows downstream from the Sudd at Malakal (Figure 6a) are 455 
therefore heavily damped with low variance and exhibit strong LTP (H =0.74; K=0.84) (Figure 456 
S8), and they account for around 30% of Nile flows at Aswan as year-round baseflow. Due to 457 
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opposing modes of climatic fluctuation in White Nile and Blue Nile flows (Figure S8), the H and 458 
K values for Aswan flows are reduced relative to those for Blue Nile precipitation (Table 4). 459 
Therefore, the CDM plots in Figure 7 and the coherence of the H and K values for precipitation 460 
and flows provide compelling evidence that the source of LTP in the Nile flows at Aswan is the 461 
LTP in Blue Nile basin precipitation. This finding is reinforced by the work of Siam and Eltahir 462 
(2015) who found that 44% of the variability of main Nile flows in the period July-October (the 463 
period of the Nile flood coming from the Blue Nile) could be explained through teleconnections 464 
with SSTs in the Southern Indian Ocean (SIO) and Eastern Pacific (ENSO). Moreover, during 465 
those years with anomalous SST conditions in both oceans, SIO and ENSO SST indices could 466 
collectively explain up to 84% of the interannual variability in main Nile flows in the flood 467 
season. It can therefore be deduced that Southern Indian Ocean and Eastern Pacific SSTs are the 468 
source of some of the LTP in Blue Nile precipitation.  Figure 7 also shows that the time series 469 
and CDM plots for Blue Nile precipitation are remarkably similar to those for West Africa 470 
(Figure 4), suggesting that the teleconnection with SSTs in the southern Indian Ocean and 471 
eastern Pacific extends to West Africa and the Sahel, which were affected by the 1970s/1980s 472 
drought.   473 
As long-term records for sub-catchments of the Blue Nile are not available, it is not possible to 474 
see how the LTP signal emerges in the flows with increasing scale, but the role of Blue Nile 475 
precipitation in explaining the  LTP observed in downstream Nile flows at Aswan is clear.  476 
 477 
 Figure 6. (a) Boundary box for the Blue Nile catchment (black).  Red polygons and labels depict: K - 478 
Blue Nile catchment at Khartoum, M – White Nile at Malakal and A – Nile at Aswan  and (b) the scale 479 
dependence of H for precipitation averaged at increasing spatial scales for the period 1901-2013.  480 
 481 
Table 4. Estimates of Hurst coefficient for Blue Nile boundary box annual precipitation and 482 
naturalised annual flows at Aswan, 1901-2013. 483 
 1901-2013  H K 

Blue Nile Box Precipitation 0.73 0.76  

Nile Flows at Aswan 0.66 0.71 

 484 
      485 
Figure 7. Time series and CDM plots for (a) Blue Nile boundary box annual precipitation; (b)  486 
annual Nile flows at Aswan, 1901-2013.  487 

4. Discussion 488 
In discussing the above results, we first want to qualify our use of the term ’trend’. Unless clear 489 
causal mechanisms for monotonically increasing or decreasing trends in a period of record can 490 
be identified, it is likely that such trends will be seen as parts of irregular low frequency 491 
movements at multidecadal/centennial and longer time scales that are evident in paleo records, in 492 
which case they are pseudo trends that are a function of the instrumental record length, and 493 
which are likely to undergo reversal in the following epoch. That anthropogenic climate change 494 
may be reflected in some of these apparent trends in recent decades is certainly possible, but, 495 
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based on the available evidence, the IPCC has concluded that natural climatic variability is still 496 
the dominant mode of variability governing precipitation deficits and droughts, and, by 497 
implication, LTP (Seneviratne et al., 2021). It should be noted that such variability is perfectly 498 
consistent with stationary Hurst-Kolmogorov (HK) dynamics and characterization using the 499 
Hurst coefficient H; indeed, it has been shown that HK dynamics can be used to characterize 500 
long term variability over times scales spanning nine orders of magnitude (Markonis & 501 
Koutsoyiannis, 2013).   502 
The Hurst coefficients for regionally averaged precipitation for the 19 regions analysed show 503 
wide variation across the globe, with 8 regions showing evidence of strong LTP at the regional 504 
scale of averaging (Table 1: we have used H>0.7 to delineate the latter), and the remainder 505 
showing weak LTP. Eastern North America, Amazon and Southern South America all exhibit 506 
LTP, demonstrating some regional N-S structure.  Northern Europe and North Asia both exhibit 507 
LTP and have coherent CDM plots, reflecting below average followed by above average 508 
fluctuations, appearing to suggest an upward trend. Western Africa shows strong LTP, but with 509 
the CDM plot indicating an opposite sequence of fluctuations/trend.  510 
Identification of the spatial-scale dependence of LTP represents an important discovery that 511 
enhances understanding of the structure of long-term variability in regional precipitation. This is 512 
particularly important when characterizing the risk of regional scale droughts e.g. for the Sahel. 513 
Up to now, LTP in annual precipitation has been deemed to be weak based on the analysis of 514 
global point and pixel scale data sets, but is shown here to be enhanced considerably at the 515 
regional scale of averaging (for the eight selected regions, the mean H values at the grid and 516 
regional scales are 0.66 and 0.83, respectively). We venture that the reason for this is that 517 
point/local scale records are dominated by local climatic variability/noise which is a function of 518 
location.  This is borne out by the findings of (Tyralis et al., 2018) who related H values for 1535 519 
records to location and Köppen-Geiger climate class descriptors using a random forests 520 
algorithm; location emerged as the only significant explanatory variable. However, as 521 
precipitation is averaged over increasing spatial scales, it appears that the local scale 522 
variability/noise is largely averaged out, and that the underlying signal associated with large-523 
scale long-term modes of variability in the climate system emerges progressively. This is not 524 
inconsistent with the modelling of LTP by weighting and aggregating short-range dependence 525 
processes (Granger & Joyeux, 1980; Koutsoyiannis, 2002; Mandelbrot, 1971), but the (possibly 526 
causal) link between LTP in regional precipitation and long-term variations in SSTs should be 527 
further investigated. 528 
Although the Northern Hemisphere has several regions exhibiting strong LTP, it was a surprise 529 
to find that it is absent at the NH scale. However, examination of the CDM plots has shown that 530 
the different modes of long-term climatic variation affecting different regions effectively cancel 531 
each other out at the NH and Global scales. In analysing the 8 regions exhibiting strong LTP, no 532 
turnover in H at the scale of these regions has been observed, so the spheres of influence of the 533 
underlying climatic modes of variability is larger than the scales of the regions analysed. In the 534 
case of the teleconnection affecting the Blue Nile catchment, the sphere of influence stretches 535 
across the width of Africa to the Sahel. Mapping these spheres of influence would provide 536 
further insight into the possible links with SSTs in different oceanic regions. 537 
The regression of average global precipitation on the eight average regional precipitations 538 
exhibiting LTP has explained 72% of the variance of Global precipitation, with Amazon and SE 539 
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Asia being the two most significant explanatory variables. Amazon, Southern South America and 540 
Southeast Asia all have highly significant correlations (|r|>0.5) with both the IPO and the SOI 541 
(and SOI and IPO are inversely correlated), showing spatial and temporal coherence between 542 
these modes of climatic variability and regional precipitation. The NH regions have weaker but 543 
significant correlations with AMO. The LTP for the SH (H=0.7) is associated with the PDO and 544 
the SOI, but even though LTP is strong for AMO (H=0.92) the correlation with NH regional 545 
precipitation is weak and LTP is absent from NH precipitation as a whole, even though it is 546 
strong for large regions thereof. The weak LTP in Global precipitation (H=0.61) reflects both the 547 
latter, and the stronger LTP in SH precipitation, but also the influence of the SOI which has 548 
weak LTP or even anti-persistence.  549 
LTP for some long-term annual river flow records, such as the Nile (whose catchment covers 550 
about 10% of Africa, thus reflecting the climate of a big region), tends to be stronger than 551 
point/gridded annual precipitation data would suggest. Mudelsee (2007) has shown for a set of 552 
six river basins, including the Nile, that H increases with scale through the basin network. He 553 
reproduced this effect using gridded monthly precipitation to simulate the aggregation of 554 
monthly runoff through the river basin network, and attributed the increase in H to the network 555 
aggregation process, refuting the statement by Potter (1979) that “if long-term persistence in 556 
streamflow series has a physical basis, it must lie in the precipitation process.” In reviewing the 557 
possible explanatory mechanisms for the Hurst Phenomenon, O'Connell et al. (2016) suggested 558 
that extended droughts synonymous with LTP in river flows must have their physical origin in 559 
the precipitation process, even if the LTP signal at the point/grid scale is weak. Based on our 560 
findings, it is hypothesised that the increase in LTP through the river basin network emerges 561 
primarily from the spatial scale dependence of precipitation which is integrated/averaged by the 562 
basin with increasing spatial scale, and which would appear to be implicitly embedded in 563 
Mudelsee’s modelling, but not recognised as the reason for the modelled increase in river flow 564 
LTP with basin scale. Strong  evidence in support of this hypothesis has been presented here for 565 
the case of the river Nile, explaining the Hurst Phenomenon more than 70 years after Hurst first 566 
identified it. 567 
As with any analyses of LTP in finite samples, estimates of the Hurst coefficient are subject to 568 
considerable sampling variability, as the information content of a time series decrease with 569 
increasing H, as exemplified by equation 1. Nonetheless, our main finding that H is enhanced 570 
substantially at the regional scale relative to the grid scale is supported by averaging across eight 571 
regions which reduces substantially the sampling variability. Moreover, we have shown that the 572 
enhancement is linked to known long term modes of fluctuation in the climate system which 573 
further reinforces our finding. The explanation of the Hurst Phenomenon is based on clear 574 
coherence between the long-term pattern of variability in Blue Nile catchment precipitation and 575 
the Nile flows at Aswan, the consistency of the H estimates, and the link with SSTs 576 
demonstrated by Siam and Eltahir (2015).   577 
To summarise, the identification of the spatial-scale dependence of LTP represents an important 578 
finding that enhances understanding of the structure of long-term variability in regional 579 
precipitation while also providing a long-awaited explanation of the Hurst Phenomenon for the 580 
river Nile. This is particularly important when characterizing the risk of regional scale droughts 581 
in precipitation and runoff. In a follow up paper (O’Connell et al., 2022), we have extended our 582 
analysis to the remaining 11 regions with grid scale H<0.6, and found that, while H increases 583 
with the spatial scale of averaging for 5 of these regions, the remainder showed no increase or a 584 
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slight decrease. We have presented an important theoretical finding which shows that if several 585 
HK stochastic processes  with different H values are averaged, the averaged process will assume 586 
the largest H value asymptotically. This is not the case for finite sample time series where 587 
opposing modes of climatic fluctuation over the sample epoch can cancel each other out, as 588 
evidenced by the analysis in section 3.3.  Furthermore, we have analysed the statistics of 589 
precipitation deficits as a function of LTP, and found H to be a good parsimonious descriptor of 590 
their durations and volumes (O’Connell et al., 2022). An analysis of standardised durations and 591 
volumes averaged across all 19 regions in Figure 1 for the period 1901-2020 did not show any 592 
evidence of intensification in recent decades that might be attributed to anthropogenic climate 593 
change (ACC).  This means that the dominant threat of precipitation deficits and droughts 594 
historically has been from LTP and not ACC, and adaptation planning for the coming decades 595 
should recognise this and be based on the full envelope of uncertainty synonymous with LTP and 596 
HK stochastic dynamics, and not rely exclusively on GCM projections for the following reasons. 597 
The reproduction of natural LTP by GCMs has been identified as deficient  (Anagnostopoulos et 598 
al., 2010; Johnson et al., 2011; Koutsoyiannis et al., 2008; Moon et al., 2018; Rocheta et al., 599 
2014) which represents an area of concern in assessing the severity of droughts under a future 600 
climate (Ault et al., 2014).  Additionally, a recent comprehensive study of the global 601 
hydrological cycle (Koutsoyiannis, 2020) has suggested the presence of fluctuations, rather than 602 
trends, and refuted IPCC’s claims about a systematic intensification of the hydrological cycle. 603 
This is reinforced by the findings of O’Connell et al (2022) on the statistics of precipitation 604 
deficits discussed above. However, the findings in this paper can support diagnostic analyses of 605 
LTP and drought severity in GCM baseline simulations, potentially leading to improved 606 
projections of drought severity under possible future climates. In particular, GCMs should be 607 
able to reproduce the scale dependent behaviour of LTP from local to global scales in baseline 608 
simulations of historical climates.  609 
For future work, modelling the evolution of LTP in the flows of large rivers as a function of 610 
scale dependent LTP in average basin precipitation would provide valuable insight into how 611 
LTP-driven droughts evolve in these river basins, and would support attribution analyses where 612 
the effects of LTP are separated clearly from those of ACC.  613 

5. Conclusions 614 
The main conclusions which can be drawn from our findings are: 615 

1. Gridded annual precipitation for nineteen rectangular regions distributed across the globe 616 
(GPCC version 7: 1901-2013) have been analysed for long-term persistence (LTP) using 617 
the Hurst coefficient, and eight regions have been shown to exhibit moderate LTP at the 618 
(0.5x0.5 degree) grid scale, with a mean H of 0.66. 619 

2. A major finding is that the Hurst coefficient increases progressively with the spatial scale 620 
of averaging of annual precipitation, to reveal much stronger LTP at the regional scale, 621 
with mean H found to be 0.83.  622 

3. A second major finding is that the Hurst Phenomenon for the annual Nile flows at Aswan 623 
can be explained by the enhanced LTP in average precipitation for the Blue Nile 624 
catchment, and not network aggregation as has previously been asserted. 625 

4. Teleconnections between annual precipitation in the eight regions and known large scale 626 
modes of variability in the climate system are analysed, and significant correlations are 627 
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found with the AMO, the PDO, the IPO and the SOI (the latter two being inversely 628 
correlated), reflecting long-term fluctuations in sea surface temperatures (SSTs). 629 

5. Stepwise linear regressions of average global precipitation on average precipitation for 630 
the eight regions yields an explained variance of 72%, demonstrating their significant 631 
influence on average global precipitation. Regressing global precipitation on the AMO, 632 
PDO and SOI explains 56% of the variance. 633 

6. LTP in average annual Northern Hemisphere (NH) precipitation is missing (H=0.5), 634 
despite having a number of regions with strong LTP. LTP is stronger for the SH (0.70), 635 
and is weak at the Global scale (H=0.61). 636 

7. By analysing cumulative departure from the mean (CDM) plots and combining NH 637 
regions using area weighting, it is shown the long-term fluctuations in northern and 638 
southern NH regional precipitations effectively cancel each other out, resulting in no LTP 639 
at the NH scale. Global LTP reflects the relative influences of SH and NH precipitation. 640 

8. Several studies have shown that the reproduction of LTP by GCMs is deficient, and the 641 
results presented here could support diagnostic analyses of GCM simulations of regional 642 
historical precipitation, and therefore serve to improve predictions of drought severity in 643 
future climates. 644 

Acknowledgements 645 
Greg O’Donnell was supported by the Water Security and Sustainable Development Hub, funded 646 
by the UK Research and Innovation Global Challenges Research Fund (ES/S008179/1). Useful 647 
comments were provided by two anonymous referees.  648 
Open Research 649 
The GPCC global precipitation gridded data set (0.5x0.5 degree over land surfaces excluding 650 
Antarctica: version 7) was used in the creation of this manuscript (Schneider et al., 2015). The 651 
NAO data were obtained from the UK Climatic Research Unit (CRU, 2018), the AMO data from 652 
the Physical Sciences Laboratory (PSL, 2018), the SOI data from the National Center for 653 
Atmospheric Research (NCAR, 2018), the PDO data from the National Centers for 654 
Environmental Information (NCEI, 2018) and the IPO Tripole Index (TPI) unfiltered data from 655 
PSL (Henley et al., 2015).   656 
Blue Nile annual flows at Khartoum and White Nile annual Flows at Malakal for the period 1905-1994 657 
have been digitised from plots in Sutcliffe and Parks (1999; Figures 8.3 and 9.8), while 658 
naturalised annual flows for the main Nile at Aswan for the period 1901-2013 have been 659 
digitised from a plot presented in Wheeler et al. (2020; Figure 2).  660 
Estimates of the Hurst coefficient H were made using the fARMA R package (Wuertz et al., 661 
2017), available under the General Public License 2 (GPL-2). The stepwise linear regressions, 662 
Table 3, were carried out using the R package Leaps (Lumley, 2017), available under GPL-2. R 663 
version 3.5.1 (GPL-2) was used with fARMA and Leaps (R Core Team, 2021). Figures were 664 
made using Matplotlib (Hunter, 2007) with Python version 2.7 (Python Software Foundation, 665 
2020), available under the Python Software Foundation License (PSFL), with the exception of 666 
Figures S1, S3 and S5 which were made in R using the fARMA package (Wuertz et al., 2017).   667 
References 668 



Manuscript submitted to Water Resources Research 

20 
 

Adarsh, S., Nourani, V., Archana, D. S., & Dharan, D. S. (2020). Multifractal description of 669 
daily rainfall fields over India. Journal of Hydrology, 586, 124913. 670 
https://www.sciencedirect.com/science/article/pii/S0022169420303735 671 
Adarsh, S., & Priya, K. L. (2021). Multifractal Description of Droughts in Western India Using 672 
Detrended Fluctuation Analysis. In A. Pandey, S. K. Mishra, M. L. Kansal, R. D. Singh, & V. P. 673 
Singh (Eds.), Hydrological Extremes: River Hydraulics and Irrigation Water Management (pp. 674 
133-142). Cham: Springer International Publishing. 675 
Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A., & Mamassis, N. 676 
(2010). A comparison of local and aggregated climate model outputs with observed data. 677 
Hydrological Sciences Journal, 55(7), 1094-1110. 678 
https://doi.org/10.1080/02626667.2010.513518 679 
Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., & Meko, D. M. (2014). Assessing the 680 
Risk of Persistent Drought Using Climate Model Simulations and Paleoclimate Data. Journal of 681 
Climate, 27(20), 7529-7549. https://journals.ametsoc.org/view/journals/clim/27/20/jcli-d-12-682 
00282.1.xml 683 
Benavides-Bravo, F. G., Martinez-Peon, D., Benavides-Ríos, Á. G., Walle-García, O., Soto-684 
Villalobos, R., & Aguirre-López, M. A. (2021). A Climate-Mathematical Clustering of Rainfall 685 
Stations in the Río Bravo-San Juan Basin (Mexico) by Using the Higuchi Fractal Dimension and 686 
the Hurst Exponent. Mathematics, 9(21). Retrieved from  doi:10.3390/math9212656 687 
Beran, J. (1994). Statistics for Long-Memory Processes: Routledge. 688 
Boes, D. C., & Salas, J. D. (1978). Nonstationarity of the mean and the hurst Phenomenon. 689 
Water Resources Research, 14(1), 135-143. 690 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR014i001p00135 691 
Bunde, A., Büntgen, U., Ludescher, J., Luterbacher, J., & von Storch, H. (2013). Is there 692 
memory in precipitation? Nature Climate Change, 3(3), 174-175. 693 
https://doi.org/10.1038/nclimate1830 694 
Chase, T. N., Pielke Sr, R. A., & Avissar, R. (2005). Teleconnections in the Earth System. In 695 
Encyclopedia of Hydrological Sciences. 696 
Chiew, F. H. S., & Leahy, M. J. (2003). Inter-decadal Pacific oscillation modulation of the 697 
impact of El Niño/Southern Oscillation on Australian rainfall and streamflow. Paper presented at 698 
the MODSIM 2003: International Congress on Modelling and Simulation, Townsville, Australia.  699 
CRU. (2018). North Atlantic Oscillation (NAO). [Dataset]. Climatic Research Unit. Accessed 700 
June, 2018. https://crudata.uea.ac.uk/cru/data/nao/nao.dat.  701 
Dimitriadis, P., Iliopoulou, T., Sargentis, G.-F., & Koutsoyiannis, D. (2021). Spatial Hurst–702 
Kolmogorov Clustering. Encyclopedia, 1(4), 1010-1025. https://www.mdpi.com/2673-703 
8392/1/4/77 704 
Dimitriadis, P., Koutsoyiannis, D., Iliopoulou, T., & Papanicolaou, P. (2021). A Global-Scale 705 
Investigation of Stochastic Similarities in Marginal Distribution and Dependence Structure of 706 
Key Hydrological-Cycle Processes. Hydrology, 8(2). Retrieved from  707 
doi:10.3390/hydrology8020059 708 



Manuscript submitted to Water Resources Research 

21 
 

Dong, B., & Dai, A. (2015). The influence of the Interdecadal Pacific Oscillation on 709 
Temperature and Precipitation over the Globe. Climate Dynamics, 45(9), 2667-2681. 710 
https://doi.org/10.1007/s00382-015-2500-x 711 
Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal 712 
Oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical 713 
Research Letters, 28(10), 2077-2080. 714 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000GL012745 715 
Fraedrich, K., & Blender, R. (2003). Scaling of Atmosphere and Ocean Temperature 716 
Correlations in Observations and Climate Models. Physical Review Letters, 90(10), 108501. 717 
https://link.aps.org/doi/10.1103/PhysRevLett.90.108501 718 
Fraedrich, K., Blender, R., & Zhu, X. (2009). Continuum climate variability: Long-term 719 
memory, scaling, and 1/f-noise. International Journal of Modern Physics B, 23(28n29), 5403-720 
5416. https://doi.org/10.1142/S0217979209063729 721 
Giorgi, F., & Francisco, R. (2000). Evaluating uncertainties in the prediction of regional climate 722 
change. Geophysical Research Letters, 27(9), 1295-1298. 723 
https://doi.org/10.1029/1999GL011016. https://doi.org/10.1029/1999GL011016 724 
Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and 725 
fractional differencing. Journal of Time Series Analysis, 1(1), 15-29. 726 
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.1980.tb00297.x 727 
Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of 728 
monthly climatic observations – the CRU TS3.10. International Journal of Climatology, 34(3), 729 
623-642. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3711 730 
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., & Folland, C. K. (2015). A 731 
Tripole Index for the Interdecadal Pacific Oscillation. Climate Dynamics, 45(11-12), 3077-3090. 732 
http://dx.doi.org/10.1007/s00382-015-2525-1. [Dataset]. Accessed June 2018. 733 
https://psl.noaa.gov/data/timeseries/IPOTPI/  734 
Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional 735 
differencing. Water Resources Research, 20(12), 1898-1908. 736 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR020i012p01898 737 
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., et al. 738 
(2017). NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5.  739 
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & 740 
Engineering, 9(3), 90-95.  741 
Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures 742 
and Precipitation. Science, 269(5224), 676-679. 743 
https://www.science.org/doi/abs/10.1126/science.269.5224.676 744 
Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American 745 
Society of Civil Engineers, 116(1), 770-799. 746 
https://ascelibrary.org/doi/abs/10.1061/TACEAT.0006518 747 



Manuscript submitted to Water Resources Research 

22 
 

Hurst, H. E. (1956). Methods of using long-term storage in reservoirs. Proceedings of the 748 
Institution of Civil Engineers, 5(5), 519-543. 749 
https://www.icevirtuallibrary.com/doi/abs/10.1680/iicep.1956.11503 750 
Iliopoulou, T., Papalexiou, S. M., Markonis, Y., & Koutsoyiannis, D. (2018). Revisiting long-751 
range dependence in annual precipitation. Journal of Hydrology, 556, 891-900. 752 
https://www.sciencedirect.com/science/article/pii/S0022169416301962 753 
Johnson, F., Westra, S., Sharma, A., & Pitman, A. J. (2011). An Assessment of GCM Skill in 754 
Simulating Persistence across Multiple Time Scales. Journal of Climate, 24(14), 3609-3623. 755 
https://journals.ametsoc.org/view/journals/clim/24/14/2011jcli3732.1.xml 756 
Jones, P. D., Jonsson, T., & Wheeler, D. (1997). Extension to the North Atlantic oscillation using 757 
early instrumental pressure observations from Gibraltar and south-west Iceland. International 758 
Journal of Climatology, 17(13), 1433-1450. 759 
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-760 
0088%2819971115%2917%3A13%3C1433%3A%3AAID-JOC203%3E3.0.CO%3B2-P 761 
Kelly, K., & Šavrič, B. (2021). Area and volume computation of longitude–latitude grids and 762 
three-dimensional meshes. Transactions in GIS, 25(1), 6-24. 763 
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12636 764 
Kerr, R. A. (2000). A North Atlantic Climate Pacemaker for the Centuries. Science, 288(5473), 765 
1984-1985. https://www.science.org/doi/abs/10.1126/science.288.5473.1984 766 
Koutsoyiannis, D. (2002). The Hurst phenomenon and fractional Gaussian noise made easy. 767 
Hydrological Sciences Journal, 47(4), 573-595. https://doi.org/10.1080/02626660209492961 768 
Koutsoyiannis, D. (2010). HESS Opinions "A random walk on water". Hydrol. Earth Syst. Sci., 769 
14(3), 585-601. https://hess.copernicus.org/articles/14/585/2010/ 770 
Koutsoyiannis, D. (2011a). Hurst-Kolmogorov Dynamics and Uncertainty. JAWRA Journal of 771 
the American Water Resources Association, 47(3), 481-495. 772 
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2011.00543.x 773 
Koutsoyiannis, D. (2011b). Hurst–Kolmogorov dynamics as a result of extremal entropy 774 
production. Physica A: Statistical Mechanics and its Applications, 390(8), 1424-1432. 775 
https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:8:p:1424-1432 776 
Koutsoyiannis, D. (2017). Entropy Production in Stochastics. Entropy, 19(11), 581. 777 
https://www.mdpi.com/1099-4300/19/11/581 778 
Koutsoyiannis, D. (2020). Revisiting the global hydrological cycle: is it intensifying? Hydrol. 779 
Earth Syst. Sci., 24(8), 3899-3932. https://hess.copernicus.org/articles/24/3899/2020/ 780 
Koutsoyiannis, D., Efstratiadis, A., Mamassis, N., & Christofides, A. (2008). On the credibility 781 
of climate predictions. Hydrological Sciences Journal, 53(4), 671-684. 782 
https://doi.org/10.1623/hysj.53.4.671 783 
Legates, D. R., & Outcalt, S. I. (2022). Detection of climate transitions and discontinuities by 784 
Hurst rescaling. International Journal of Climatology, 42(9), 4753-4772. 785 
https://doi.org/10.1002/joc.7502. https://doi.org/10.1002/joc.7502 786 



Manuscript submitted to Water Resources Research 

23 
 

Lumley, T. (2017). leaps: Regression Subset Selection. R package version 3.0 (based on Fortran 787 
code by Alan Miller). [Software]. https://CRAN.R-project.org/package=leaps.  788 
Mandelbrot, B. B. (1971). A Fast Fractional Gaussian Noise Generator. Water Resources 789 
Research, 7(3), 543-553. 790 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR007i003p00543 791 
Mandelbrot, B. B., & Wallis, J. R. (1968). Noah, Joseph, and Operational Hydrology. Water 792 
Resources Research, 4(5), 909-918. 793 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR004i005p00909 794 
Mandelbrot, B. B., & Wallis, J. R. (1969). Computer Experiments With Fractional Gaussian 795 
Noises: Part 1, Averages and Variances. Water Resources Research, 5(1), 228-241. 796 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR005i001p00228 797 
Mantua, N. J., & Hare, S. R. (2002). The Pacific Decadal Oscillation. Journal of Oceanography, 798 
58(1), 35-44. https://doi.org/10.1023/A:1015820616384 799 
Markonis, Y., & Koutsoyiannis, D. (2013). Climatic Variability Over Time Scales Spanning 800 
Nine Orders of Magnitude: Connecting Milankovitch Cycles with Hurst–Kolmogorov Dynamics. 801 
Surveys in Geophysics, 34(2), 181-207. https://doi.org/10.1007/s10712-012-9208-9 802 
Markonis, Y., & Koutsoyiannis, D. (2016). Scale-dependence of persistence in precipitation 803 
records. Nature Climate Change, 6, 399-401. https://doi.org/10.1038/nclimate2894 804 
McNeil, V. H., & Cox, M. E. (2007). Defining the climatic signal in stream salinity trends using 805 
the Interdecadal Pacific Oscillation and its rate of change. Hydrol. Earth Syst. Sci., 11(4), 1295-806 
1307. https://hess.copernicus.org/articles/11/1295/2007/ 807 
Mesa, O. J., Gupta, V. K., & O'Connell, P. E. (2012). Dynamical System Exploration of the 808 
Hurst Phenomenon in Simple Climate Models. In A. S. Sharma, A. Bunde, V. P. Dimri, & D. N. 809 
Baker (Eds.), Extreme Events and Natural Hazards: The Complexity Perspective (pp. 209-230). 810 
Washington DC: American Geophysical Union. 811 
Mohino, E., Janicot, S., & Bader, J. (2011). Sahel rainfall and decadal to multi-decadal sea 812 
surface temperature variability. Climate Dynamics, 37(3), 419-440. 813 
https://doi.org/10.1007/s00382-010-0867-2 814 
Moon, H., Gudmundsson, L., & Seneviratne, S. I. (2018). Drought Persistence Errors in Global 815 
Climate Models. Journal of Geophysical Research: Atmospheres, 123(7), 3483-3496. 816 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027577 817 
Mudelsee, M. (2007). Long memory of rivers from spatial aggregation. Water Resources 818 
Research, 43(1). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005721 819 
NCAR. (2018). Southern Oscillation Indices: Signal, Noise and Tahiti/Darwin SLP (SOI). 820 
[Dataset]. National Center for Atmospheric Rersearch. Accessed June, 2018. 821 
https://climatedataguide.ucar.edu/climate-data/southern-oscillation-indices-signal-noise-and-822 
tahitidarwin-slp-soi.  823 
NCEI. (2018). Pacific Decadal Oscillation (PDO). [Dataset]. National Centers for Environmental 824 
Information. Accessed June, 2018. https://www.ncei.noaa.gov/access/monitoring/pdo/.  825 



Manuscript submitted to Water Resources Research 

24 
 

O'Connell, P. E. (1974a). A simple stochastic modelling of Hurst’s law. Paper presented at the 826 
Proceedings of International Symposium on Mathematical Models in Hydrology, Warsaw. 827 
O'Connell, P. E. (1974b). Stochastic modelling of long-term persistence in streamflow 828 
sequences. Imperial College, London,  829 
O'Connell, P. E., Koutsoyiannis, D., Lins, H. F., Markonis, Y., Montanari, A., & Cohn, T. 830 
(2016). The scientific legacy of Harold Edwin Hurst (1880–1978). Hydrological Sciences 831 
Journal, 61(9), 1571-1590. https://doi.org/10.1080/02626667.2015.1125998 832 
O’Connell, E., O’Donnell, G., & Koutsoyiannis, D. (2022). The Spatial Scale Dependence of 833 
The Hurst Coefficient in Global Annual Precipitation Data, and Its Role in Characterising 834 
Regional Precipitation Deficits within a Naturally Changing Climate. Hydrology, 9(11). 835 
Retrieved from  doi:10.3390/hydrology9110199 836 
Osborn, T. J. (2004). Simulating the winter North Atlantic Oscillation: the roles of internal 837 
variability and greenhouse gas forcing. Climate Dynamics, 22(6), 605-623. 838 
https://doi.org/10.1007/s00382-004-0405-1 839 
Osborn, T. J. (2011). Winter 2009/2010 temperatures and a record-breaking North Atlantic 840 
Oscillation index. Weather, 66(1), 19-21.  841 
Pal, S., Dutta, S., Nasrin, T., & Chattopadhyay, S. (2020). Hurst exponent approach through 842 
rescaled range analysis to study the time series of summer monsoon rainfall over northeast India. 843 
Theoretical and Applied Climatology, 142(1), 581-587. https://doi.org/10.1007/s00704-020-844 
03338-6 845 
Potter, K. W. (1979). Annual precipitation in the northeast United States: Long memory, short 846 
memory, or no memory? Water Resources Research, 15(2), 340-346. 847 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR015i002p00340 848 
PSL. (2018). AMO (Atlantic Multidecadal Oscillation) Index. [Dataset]. Physical Sciences 849 
Laboratory. Accessed June, 2018. https://psl.noaa.gov/data/timeseries/AMO/.  850 
Python Software Foundation. (2020). Python Language Reference, version 2.7. [Software]. 851 
https://www.python.org/downloads/.  852 
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation 853 
for Statistical Computing. Vienna, Austria. [Software]. https://cran.r-project.org.  854 
Rahmani, F., & Fattahi, M. H. (2021). A multifractal cross-correlation investigation into 855 
sensitivity and dependence of meteorological and hydrological droughts on precipitation and 856 
temperature. Natural Hazards, 109(3), 2197-2219. https://doi.org/10.1007/s11069-021-04916-1 857 
Rahmani, F., & Fattahi, M. H. (2022a). Association between forecasting models’ precision and 858 
nonlinear patterns of daily river flow time series. Modeling Earth Systems and Environment, 859 
8(3), 4267-4276. https://doi.org/10.1007/s40808-022-01351-4 860 
Rahmani, F., & Fattahi, M. H. (2022b). Exploring the association between anomalies and 861 
multifractality variations in river flow time series. Hydrological Sciences Journal, 67(7), 1084-862 
1095. https://doi.org/10.1080/02626667.2022.2069503 863 



Manuscript submitted to Water Resources Research 

25 
 

Rahmani, F., & Fattahi, M. H. (2022c). The influence of rainfall time series fractality on 864 
forecasting models’ efficiency. Acta Geophysica, 70(3), 1349-1361. 865 
https://doi.org/10.1007/s11600-022-00776-w 866 
Rocheta, E., Sugiyanto, M., Johnson, F., Evans, J., & Sharma, A. (2014). How well do general 867 
circulation models represent low-frequency rainfall variability? Water Resources Research, 868 
50(3), 2108-2123. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2012WR013085 869 
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2015). 870 
GPCC Full Data Monthly Product Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from 871 
Rain-Gauges built on GTS-based and Historic Data. [Dataset]. Open Data Server of the German 872 
Meteorological Service (DWD). https://10.5676/DWD_GPCC/FD_M_V7_050.  873 
Seneviratne, S. I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, et al. (2021). 874 
Weather and Climate  Extreme Events in a Changing Climate. In Climate Change 2021: The 875 
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the 876 
Intergovernmental Panel on Climate Change, Section 11.6.1.1. Retrieved from 877 
https://10.1017/9781009157896.013 878 
Siam, M. S., & Eltahir, E. A. B. (2015). Explaining and forecasting interannual variability in the 879 
flow of the Nile River. Hydrol. Earth Syst. Sci., 19(3), 1181-1192. 880 
https://hess.copernicus.org/articles/19/1181/2015/ 881 
Sutcliffe, J. V., & Parks, Y. P. (1999). The hydrology of the Nile. IAHS Special Publication 5. 882 
Retrieved from Wallingford, UK:  883 
Trenberth, K., & NCAR Staff. (2022). The Climate Data Guide: Southern Oscillation Indices: 884 
Signal, Noise and Tahiti/Darwin SLP (SOI). https://climatedataguide.ucar.edu/climate-885 
data/southern-oscillation-indices-signal-noise-and-tahitidarwin-slp-soi. Last modified 17 Apr 886 
2022.   887 
Tyralis, H., Dimitriadis, P., Koutsoyiannis, D., O'Connell, P. E., Tzouka, K., & Iliopoulou, T. 888 
(2018). On the long-range dependence properties of annual precipitation using a global network 889 
of instrumental measurements. Advances in Water Resources, 111, 301-318. 890 
https://www.sciencedirect.com/science/article/pii/S0309170817309181 891 
Tyralis, H., & Koutsoyiannis, D. (2011). Simultaneous estimation of the parameters of the 892 
Hurst–Kolmogorov stochastic process. Stochastic Environmental Research and Risk Assessment, 893 
25(1), 21-33. https://doi.org/10.1007/s00477-010-0408-x 894 
Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E., & Whittington, D. (2020). Understanding 895 
and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nature 896 
Communications, 11(1), 5222. https://doi.org/10.1038/s41467-020-19089-x 897 
Wuertz, D., Setz, T., & Chalabi, Y. (2017). fArma: Rmetrics - Modelling ARMA Time Series 898 
Processes. R package  version 3042.81. [Software]. https://github.com/cran/fArma.  899 
Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like Interdecadal Variability: 1900–900 
93. Journal of Climate, 10(5), 1004-1020. 901 
https://journals.ametsoc.org/view/journals/clim/10/5/1520-902 
0442_1997_010_1004_eliv_2.0.co_2.xml 903 
 904 



Figure 1.



Alaska

Central
N.AM Eastern

N.AM

Western
N.AM

Central
America

Amazon

Southern
S.AM

Northern
EUR

Mediterranean
Basin

Western
Africa Eastern

Africa

Southern
Africa

North
Asia

Central
Asia

Southern
Asia

East
Asia

SE
Asia

Northern
AUS

Southern
AUS

500 1000 1500 2000 2500 3000 3500
Precipitation (mm/year)



Figure 2.



10°N

20°N

10°N

20°N

20°W 10°W 0° 10°E

(a)

200 300 400 500 600 700
Precipitation (mm/year)

10°N

20°N

10°N

20°N

20°W 10°W 0° 10°E

(b)

0.4 0.5 0.6 0.7 0.8 0.9
H

0.5 2.5 5.0 7.5 10.0Region
0.0

0.2

0.4

0.6

0.8

1.0

H

(c)

10°N

20°N

10°N

20°N

20°W 10°W 0° 10°E

(a)

200 300 400 500 600 700
Precipitation (mm/year)

10°N

20°N

10°N

20°N

20°W 10°W 0° 10°E

(b)

0.4 0.5 0.6 0.7 0.8 0.9
H

0.5 2.5 5.0 7.5 10.0Region
0.0

0.2

0.4

0.6

0.8

1.0

H

(c)



Figure 3.



0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

H
Eastern North America

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

Amazon

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

H

Southern South America

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

Northern Europe

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

H

Western Africa

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

North Asia

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

H

Southern Asia

0.5 2.5 5.0 7.5 10.0 Region
0.0
0.2
0.4
0.6
0.8
1.0

Southeast Asia



Figure 4.



1950 2000
300
350
400

m
m

/y
ea

r

250

0

Alaska (0.66)

1950 2000
700
800
900

1000

1000

0
Central North America (0.63)

1950 2000
900

1000
1100
1200

1000

0

m
m

Eastern North America (0.83)

1950 2000
500
550
600
650

m
m

/y
ea

r

250
0

Western North America (0.68)

1950 2000
900

1000
1100
1200
1300

500

0

500
Central America (0.63)

1950 2000
1600
1700
1800
1900
2000

1000

0

m
m

Amazon (0.72)

1950 2000
700
800
900

1000

m
m

/y
ea

r

1000

0
Southern South America (0.78)

1950 2000
600
700
800

1000

0
Northern Europe (0.81)

1950 2000
450
500
550
600

0

500

m
m

Mediterranean Basin (0.65)

1950 2000
700
800
900

1000
1100

m
m

/y
ea

r

0

2000
Western Africa (0.91)

1950 2000

800
900

1000

0

500
Eastern Africa (0.61)

1950 2000
600
700
800
900

0

500

m
m

Southern Africa (0.63)

1950 2000
350
400
450
500

m
m

/y
ea

r

1000

0
North Asia (0.99)

1950 2000

250
300
350

250

0
Central Asia (0.58)

1950 2000
700
750
800
850
900

0

1000

m
m

Southern Asia (0.85)

1950 2000
800
900

1000

m
m

/y
ea

r

250
0
250

East Asia (0.52)

1950 2000
2200
2400
2600
2800

1000
0
1000

Southeast Asia (0.78)

1950 2000
400
600
800

1000

0

m
m

Northern Australia (0.57)

1950 2000

400
500
600
700

m
m

/y
ea

r

500

0

Southern Australia (0.37)

1950 2000
680
700
720
740

100

0
Northern Hemisphere (0.50)

1950 2000
1100
1200
1300

500

0

m
m

Southern Hemisphere (0.70)

1920 1940 1960 1980 2000

820

840

860

880

m
m

/y
ea

r

200

150

100

50

0
m

m
Global (0.61)



Figure 5.



1920 1940 1960 1980 2000
1500

1000

500

0

500

1000

CD
M

 (m
m

)

(a)
Alaska
Central North America

Eastern North America
Western North America

Central America
North America

1920 1940 1960 1980 2000
600

400

200

0

200

400

600

CD
M

 (m
m

)

(b)
Case 1 Case 2 Case 3 Case 4 Case 5



Figure 6.
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Figure 7.
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