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Methods

❑ Stochastic:

➢Computing the necessary past terms 𝑛 to 

estimate a representative average of future 

mean for a predetermined period of length 𝜅.

Simple and Theoretically substantiated on 

stochastic processes.

❑ Informer:

➢ Transformer based model for long range 

predictions:

Reduce computational cost with ProbSparse

attention and generates the output sequence  

in one forward pass.



Results on case study: River Test - flow and climatic data

❑ Informer model has shown pretty encouraging results for time series forecasting tasks both 

in short and long forecast horizon.

❑ Informer outperforms both stochastic approaches used.



End of Presentation

Thank you for your ‘Probabilistic’ attention!



Affiliation: Department of Water Resources and Environmental Engineering 

School of Civil Engineering

National Technical University of Athens, Greece

Comparison of Stochastic versus Deep Learning methods

for prediction of hydroclimatic time series

Authors: Nikolaos Tepetidis, Theano Iliopoulou, Panayiotis Dimitriadis, 

and Demetris Koutsoyiannis

HS7.4: Steps towards future hydroclimatic

scenarios for water resources management

in a changing world



Introduction and Motivation

❑ Time series prediction is a fundamental task that involves predicting future values based on its 

past values.

❑ In civil engineering field hydroclimatic time series prediction can be crucial because it can 

inform the design and management of critical infrastructure systems.

❑ Accurate predictions of hydroclimatic variables such as precipitation, temperature and 

streamflow can bring up to date decisions on the design, construction and operation of these 

systems, as well as help to mitigate the impacts of natural disasters such as floods and 

droughts.

❑ Deep Learning techniques, such as transformer models, are receiving great scientific attention 

and increasingly gaining popularity with promising results in time series prediction.

❑ Motivation: Developing accurate time series prediction models can lead to better decision 

making and ultimately, improved outcomes in many domains.

❑ This work aims to assess the prediction capacity of transformer models compared to 

benchmark predictions provided by stochastics models.
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Methods

❑ Methods used in this work for prediction:

➢ Transformer based model Informer

1) Transformers (Vaswani et al., 2017) came to overcome some limitations of existing models, such 

as difficulty in modeling long-term dependencies and inefficiency in handling high-dimensional data.

2) The attention mechanism in Transformers allows them to selectively focus on relevant inputs, 

making them efficient in handling long-term dependencies.

3) Informer aims to reduce the computational cost through ProbSparse attention and generates the 

entire predicted output sequence in one forward pass.

➢ Stochastic based model Stochastic Benchmark 1 (SB1), Stochastic Benchmark 2 (SB2)

Computing the necessary past terms 𝑛 to estimate a representative average of future mean for a 

predetermined predicted period of length 𝜅.
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Informer model (1/2)

❑ The Informer model introduced by Haoyi Zhou et al. (2021) is a deep learning model 

specifically designed for time series prediction tasks.

❑ The model is based on the transformer architecture, but it includes several unique 

components that enable it to efficiently incorporate multi-scale information and external 

factors.

❑ Informer features a Multi-Encoder Multi-Decoder (MEMD)

structure that allows for the efficient extraction of features 

at multiple time scales.

❑ The use of Autoregressive Decoding, make the model 

able to generate the output sequence in one forward pass.

Informer 

Architecture
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Informer model (2/2)

❑ Informer uses probabilistic sparsity attention mechanism (ProbSparse attention) instead of 

the traditional dot-product attention mechanism used in the original Transformer model.

❑ This mechanism enables the model to attend to a subset of the input features rather than the 

entire input, reducing the computational cost of the attention mechanism.

❑ In ProbSparse attention, the attention weights are 

computed based on the similarity between the 

query and a subset of the keys (two components 

that are used to compute the attention weights), 

rather than all the keys.

Illustration of 

ProbSparse

Attention
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Stochastic model (1/2)

❑ For the estimation of the local future mean at future prediction period of length 𝜅 (conditional 

on the present and past values of the discrete process 𝑥𝑖), i.e.,

𝜇𝜅 ≔ Ε
1

𝜅
𝑥1 +⋯+ 𝑥𝜅 |𝑥0, 𝑥−1, …

❑ As described in Koutsoyiannis (2021) approach, we select only the past 0 ≤ 𝜈 ≤ 𝑛 values, i.e.,

ො𝜇𝜈 ≔
1

𝜈
𝑥0 + 𝑥−1 +⋯+ 𝑥−𝜈+1

that minimizes the square error, i.e.: 𝐴 𝜅, 𝜈 ≔ Ε ( ො𝜇𝜈 − ො𝜇𝜅)
2 .

❑ It can be shown that the standardized mean squared error is:

𝐴 𝜅, 𝜈 =
1

𝜅
+
1

𝜈
𝜅 𝛾 𝜅 + 𝜈 𝛾 𝜈 − 𝜈 + 𝜅 𝛾 𝜈 + 𝜅
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Stochastic model (2/2)

❑ For the simplest Hurst-Kolmogorov process, for which γ 𝜅 = 𝜆2( Τ𝜅 𝛼)2𝛨−2 we get the value of 

𝜈 that gives min 𝐴, compared to 𝜅, Koutsoyiannis (2021):

𝜈 =
𝜅

(max 0, 2.5𝐻 − 1.5 )2.5
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Case study: River Test

❑ The dataset used in this study contains the daily gauged flow rate (m3/s) of the River Test and 

climatic data (precipitation and temperature) in Hampshire, England.

❑ The data covers the period during 1980-2021 (41 years).

❑ Prediction task was performed in Broadland station of River Test, where its flow time series 

depicted in the image below (train/test split = 0.8/0.2).
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Informer optimization (1/2)

❑ Results on different scenarios for each forecast horizon.
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Informer optimization (1/2)

❑ Results on different scenarios for each forecast horizon. 
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Informer best results

❑ Results of Informer model for which we achieved the best MSE score in every forecast horizon.

Generally results are fairly satisfactorily, with the MSE being quite higher on 100 steps ahead.
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Stochastic approaches

❑ SB1 assumptions: only the long-dependence was taken 

into account and not the fully climacogram, with a 

Hurst parameter 𝐻 = 0.7.

❑ SB2 assumptions: parameters were taken same as in a

similarly work of streamflow climacogram (Dimitriadis et 

al., 2022), with a Hurst parameter 𝐻 = 0.8.

❑ SB1: the relation of future time steps 𝜅, with 

the number of past time steps ν we use to 

calculate the average for our prediction.

❑ SB2: the relation of future time steps 𝜅, with 

the number of past time steps we use 

calculate average for our prediction.

κ (days) 2 10 20 40 60 80 100 168

ν (days) 64 320 640 1280 1920 2560 3200 5376

κ (days) 2 10 20 40 60 80 100 168

ν (days) 20 59 108 206 304 402 500 803

✓ So, the larger the 𝐻 parameter gets, the less past value is required for the prediction.

|    12



Predictability window

❑ Comparing the predictability time windows of the 3 models.

❑ Informer has similar behavior with SB2, while SB1 take into account more past values for its 

prediction.
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Comparison of results (1/2)

❑ Informer seems to outperform the two 

Stochastic models, while SB1 (taking 

into account more past values) having 

better behavior than SB2.
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Comparison of results (2/2)

❑ Informer seems to outperform the two 

Stochastic models, while SB1 (taking 

into account more past values) having 

better behavior than SB2.
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MSE on each step ahead

❑ As depicted in figures the prediction MSE is increasing as we move forward in time, for all the 

models.
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MSE compared to prediction length 

❑ Informer model having approximately the same error in forecast horizons 2-80 days.

❑ SB1 and SB2 MSE show more fluctuation with respect to prediction horizon.
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Multivariate forecasting 

❑ Informer also supports multivariate time series forecasting, allowing making better predictions,

when the forecasting task provides one or more auxiliary (explanatory) variables.

Results for univariate 

streamflow predictions

Results for 

multivariate 

streamflow predictions

Predictions of 

temperature 

(auxiliary variable)
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Summary and Conclusions

1) Informer model is able for efficient multi-scale forecasting, both on short and long sequence 

forecasting.

2) Informer can generate the output sequence in a single forward pass and is suitable for both 

univariate and multivariate time series predictions.

3) From this work Informer seem to have great performance and significantly better than 

stochastic benchmark ones.

4) Stochastic approach is simple and theoretically substantiated on stochastic processes, 

appropriate for using them as benchmark.

5) Transformer technology shows great potential in improving the accuracy of time series 

prediction models.

6) Some cons of transformer procedure is the computational complexity, limited interpretability 

and scalability. In this regard, each time series should be approached and evaluated 

independently.
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End of Presentation

Thank you for your ‘Probabilistic’ attention!
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