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Abstract

The development of accurate precipitation products with wide spatio-temporal coverage is 
crucial for a wide range of applications. In this context, precipitation data merging (PDM) that 
entails the blending of satellite-based estimates with ground-based measurements holds a 
prominent position, while currently there is an increasing trend in the deployment of machine 
learning (ML) algorithms in such endeavors. In the light of recent advances in the field, this 
work discusses key aspects of the PDM problem associated with: a) the conceptual formulation 
of the problem, that is closely related to the training of ML models and their predictive capacity, 
b) the selection of products fused, that is associated with the latency of final product and 
operational applicability of the method, c) the efficiency of single-step and two-step merging 
approaches, with the former one treating the problem via only regression algorithms and the 
latter one via the combined use of classification and regression algorithms. By formulating 
PDM as a spatio-temporal prediction problem, we define and assess two different training 
strategies for the ML models, termed as full and per time step strategy, which entail the building 
of a single or several ML models, respectively. Furthermore, the performance of the full 

• Formulation of precipitation data merging as a spatio-temporal prediction problem.
• Comparison of alternative training strategies for Machine Learning models with different 

generalization capabilities.
• Comparison of alternative ensemble tree-based ML algorithms.
• Comparison of alternative merging approaches (regression vs classification-regression).
• Most prominent option: Coupling of generalised training strategy with classification-

regression merging approach.
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training strategy, which allows the development of predictions in both spatial and temporal 
dimensions, is assessed in the context of single-step and two-step merging. In each of the three 
scenarios, three popular ensemble tree-based ML algorithms, i.e., the random forest, gradient 
boosting and extreme gradient boosting algorithm, are employed resulting in nine merged 
products. To provide empirical evidence, we employ a datacube composed by ground-based 
daily precipitation observations, satellite-based and reanalysis estimates, as well as auxiliary 
covariates, from 1009 uniformly distributed cells (representative of a sampling area of 25 x 
25km), over four countries around the world (Australia, USA, India and Italy). The large-scale 
experiment indicates that: (i) full training strategy is a competitive alternative to the per time 
step strategy, since it enables the development of methods with improved accuracy, with 
respect to performance metrics and reproduction of statistics, but also with higher predictive 
capability and operational applicability, (ii) two-step merging enables a much better 
reproduction of precipitation occurrence characteristics, as reflected in the improvement of 
relevant categorical metrics, the reproduction of probability and autocorrelation coefficient, 
(iii) no significant difference was noticed in the performance of different ML algorithms. 

1 Introduction

Precipitation is a key component of the hydrological water cycle and has been established as 
one of the Essential Climate Variables for the characterization of Earth’s climate according to 
the Global Climate Observing System (GCOS, 2022). The development of precipitation 
products with high accuracy, as well as spatial and temporal coverage, is crucial for a wide 
range of applications, from water resources management and hydrological studies to natural 
disaster studies (e.g., floods, droughts, landslides), climate studies and earth system modelling. 
Accurate point-scale precipitation estimates are traditionally obtained via ground-based 
instruments. However, the availability of rain gauges is considered limited at global scale (Kidd 
et al., 2017), while in most regions of the world are still sparse and of irregular spatial 
distribution (Beck et al., 2020), hampering substantially the capturing of spatio-temporal 
variability of precipitation on the basis of ground-based observations. In addition, ground-
based observations are not always openly accessible or of the desire latency, quality, and 
temporal extent.

Remote sensing observations have promised a remedy on the above challenges, by delivering 
earth observation data with high spatial and temporal coverage (almost at global scale), 
adequate spatio-temporal resolution, public accessibility, low latency (near real-time data), as 
well as spatio-temporal continuity and consistency of estimations. These characteristics, which 
are continuously being upgraded in the light of new satellite missions and remote sensing 
advancements (Brocca et al., 2024), make space-born precipitation estimates an attractive 
alternative over the ground-based data (Massari et al., 2020).

However, space-born precipitation products, as an outcome of indirect measurement and/or 
reanalysis, are subject to multiple sources of errors, which have been investigated by a plethora 
of studies (e.g., see Beck et al., 2017; Maggioni and Massari, 2018; Massari et al., 2017), while 
special focus has been given in the quantification of errors in extreme events (e.g., see Gupta 
et al., 2020; Rajulapati et al., 2020), which are of high interest in the finer spatio-temporal 
scales.

Over the last decades, a lot of effort has been given in the fusion of ground-based and remote 
sensed data to develop precipitation products that attain simultaneously high accuracy and high 
spatio-temporal coverage. This procedure is described synoptically as precipitation data 
merging (PDM), while other terms such precipitation data blending, fusion, integration and 
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assimilation, as well as precipitation bias correction, reanalysis or adjustment of remote-
sensing precipitation products, have been also used (e.g., see Le et al., 2020). 

From a timeline perspective, early PDM endeavors have been mainly based on traditional 
geostatistical methods, including, among others (e.g., see the review provided by Baez-
Villanueva et al., 2020): interpolation techniques, linear merging approaches, bias correction 
via probability mapping, kernel-smoothing methods, Kriging-based methods and Bayesian 
approaches (e.g., see Ma et al., 2018; Rahman et al., 2020; Ur Rahman et al., 2019; Yumnam 
et al., 2022). As highlighted by several researchers (e.g., see Baez-Villanueva et al., 2020; 
Hengl et al., 2018; Nguyen et al., 2021; Wu et al., 2020; Zhang et al., 2021), these methods are 
characterised by a series of limitations that hamper their applicability at fine spatio-temporal 
scales (e.g., sub-monthly scales). For instance, Kriging-based methods assume Gaussian 
distribution for the variables under study, while precipitation typically appears as a highly-
skewed and intermittent process at fine scales. In addition, traditional geostatistical methods 
struggle to blend simultaneously a large number of different types of data (incl. precipitation, 
other hydroclimatic factors and static information) and to identify complex relationships 
between them.

On the other hand, machine learning (ML) offers an attractive alternative to the traditional 
methods, since they promise flexibility to: i) capture complex and non-linear relationships 
between inputs and outputs, ii) fuse a large number of different type of variables and consume 
large amounts of data, iii) address both classification and regression problems, iv) without 
incorporating strict mathematical assumptions (e.g., see Baez-Villanueva et al., 2020; Hengl et 
al., 2018; Nguyen et al., 2021; Wu et al., 2020; Zhang et al., 2021). Over recent years, various 
popular ML algorithms have been deployed in PDM, including: (i) artificial neural networks 
and their deep learning variants (e.g., see Fan et al., 2021; Tang et al., 2021; Wu et al., 2020; 
Yang et al., 2022), (ii) support vector machines (e.g., Kolluru et al., 2020; Kumar et al., 2019; 
Zhang et al., 2021), and iii) ensemble methods. Τhe latter category has gained momentum in 
PDM and a variety of popular algorithms have been deployed, including: random forest (Baez-
Villanueva et al., 2020; Bhuiyan et al., 2020; Fan et al., 2021; Hengl et al., 2018; Lei et al., 
2022; Nguyen et al., 2021; Zhang et al., 2021) and quantile regression forest (Bhuiyan et al., 
2018a, 2019), gradient boosting decision tree, as well as extreme gradient boosting machines 
(Kolluru et al., 2020; Lei et al., 2022; Papacharalampous et al., 2023).

A common element of ML-based PDM approaches is the blending of a variety of covariates, 
further to precipitation estimates, such as the meteorological variables as well as location and 
terrain variables. Furthermore, recent PDM methods (e.g., see Lei et al., 2022; Zhang et al., 
2021) provide estimates in two steps, by combining precipitation occurrence with precipitation 
amount predictions, derived from a classification and a regression model, respectively.

This work is motivated by key conceptual and technical aspects of PDM, and are of direct 
relevance to problem formulation and its implementation in the context of ML algorithms. The 
first aspect is associated with the conceptual decision to formulate and treat PDM in the full 
spatio-temporal domain, by building a single ML model able to provide predictions over both 
space and time (herein after this is referred as the full training strategy) or in one of the 
dimensions (e.g., the spatial one). This decision is of paramount importance since it has direct 
implications in the extendability of model predictions and determines the overall forecast 
capacity of the approach. 

The second aspect, also a conceptual one, is associated with the selection of products to be 
used as covariates in model building. This selection, on the one hand, determines directly the 
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operational character of the PDM approach and the latency of the merged product, and on the 
other hand, it is associated with data leakage issues.

The third aspect is associated with the evaluation of PDM methods and products. Typically, 
this evaluation is based on categorical and continuous performance metrics, while the products 
are rarely studied with respect to the reproduction of statistical characteristics of the reference 
(typically gauged-based) datasets.

The final aspect studied in this work is associated with the multi-model character of merging 
approaches. The vast majority of PDM studies follow a single-step merging approach, while 
recent works (e.g., Lei et al., 2022; Zhang et al., 2021) show that two-step merging approaches 
enable a more accurate representation of both precipitation state and amount. However, the 
latter approaches are still in their infancy and further analysis is required to explore the benefits 
from different approaches.

In the light of the above, the present work formalizes and discusses key aspects of PDM 
problem and attempts to provide empirical evidence for them, as expressed via the following 
key questions:

To give answers to the above questions, we employ a stress-testing datacube composed by 
daily precipitation estimates from ground-based observations, satellites, reanalysis, as well as 
auxiliary covariates, from 1009 uniformly distributed points/cells, representative of a sampling 
area of 25 × 25km2, over 4 countries (Australia, USA, India and Italy). The spatial extent of 
this datacube, and hence the merged products produced, is also an innovative element of the 
present work since the vast majority of PDM studies have a more regional character, with the 
Tibetan Plateau holding a prominent position as case study region (e.g., see Zhang et al., 2021 
and the references therein).

The paper is structured as follows: after the introduction, key conceptual and technical aspects 
of the PDM problem are critically discussed in Section 2. Section 3 presents the stress-testing 
datacube employed for the analysis, as well as the methodology and the algorithms employed 
to produce merged precipitation datasets. Section 4 presents the comparison of different PDM 
approaches and precipitation products. Finally, Section 5 summarises the key findings and 
conclusions of the present work.

2 Data merging problem formulation

The ultimate target in precipitation data merging (PDM) is the development of gridded 
precipitation products with high spatio-temporal coverage and high accuracy. In practice, PDM 
can be treated as a supervised learning problem, which entails the building of a function (or 
equivalently, a model) that uses, as independent variables (predictors), satellite-based 
precipitation estimates to provide a merged precipitation product of higher accuracy. To build 
the function, a precipitation product of higher accuracy than predictors (usually obtained on 
gauge-based measurements) is used as reference dataset, essentially playing the role of 
dependent/target variable.

[a] What are the benefits from different training strategies (full vs per time-step training)?
[b] What are the benefits of following a single-step or two-step modelling approach?
[c] What is the performance of different ensemble ML algorithms, in different training and 

modelling strategies, with respect to performance metrics and statistics?
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The problem is typically defined as a spatial prediction problem that entails the prediction of 
precipitation at target locations (where precipitation is considered unknown), given 
precipitation estimates at other locations and/or other precipitation products and variables. 
Such a treatment focuses on the spatial dimension of the problem, without explicitly 
incorporating aspects of the temporal variability of precipitation, which is also of high interest 
and importance. In this work, we provide a definition of the PDM problem that accounts for 
the variability of precipitation both in space and time, and hence it allows to incorporate both 
dimensions in the modelling procedure.

Building upon the definitions provided by Hengl et al. (2018) on the spatial prediction problem, 
we begin by (re-)defining PDM as a spatio-temporal prediction problem, which this time, 
entails the prediction of precipitation across different points and over different time steps. In 
particular, let denote a precipitation prediction as 𝑷(𝒔𝑖,𝑡), where 𝒔𝑖 ∈ 𝐷 are the spatial 
coordinates (e.g., longitude and latitude), with 𝑖 = 1,…,𝑛 index for 𝑛 target locations, and 
𝑡 = 1, 2,… the time index. Furthermore, predictions 𝑷(𝒔𝑖,𝑡) can be obtained as a function 𝑓( ∙ ) 
of satellite-based precipitation estimates, 𝑿𝑃, auxiliary covariates, 𝑿𝐴, geographical covariates, 
𝑿𝐺, and temporal covariates, 𝑿𝑇. All the above can be compactly expressed as follows:

𝑷(𝒔𝑖,𝑡)
= 𝑓(𝑿𝑃,𝑿𝐴,𝑿𝐺,𝑿𝑇) (1)

In Eq. (1), auxiliary covariates 𝑿𝐴 encompasses predictors, further to precipitation estimates, 
which can be either dynamic or static over time, such as hydro-meteorological variables (e.g., 
soil-moisture, temperature), topographical variables (e.g., elevation, slope), climatological 
variables (e.g., mean annual precipitation at a point 𝒔𝑖) etc. Furthermore, 𝑿𝐺 represents 
covariates that account for geographic location (e.g., coordinates) or spatial proximity and 
correlation (e.g., Euclidean distances to target points). Finally, 𝑿𝑇 represents covariates that 
account for the temporal variability of precipitation process, and a variety of variables can be 
used depending on the temporal scale of analysis and the levels of seasonality. Indicatively, a 
time index, indicating the month of the year, or a temperature product can be used to express 
month-to-month variability.

At first sight, PDM can be viewed as a regression-type problem, where 𝑷(𝒔𝑖,𝑡) in Eq. (1) 
represents precipitation amounts (𝑷 ≥ 0), at a point 𝒔𝑖 and time 𝑡. Alternatively, 𝑷(𝒔𝑖,𝑡) can be 
filtered via an indicator function, which maps precipitation amounts into wet and dry states 
(i.e., 1 and 0 states, respectively), to represent precipitation occurrence predictions, 𝑰(𝒔𝑖,𝑡). In 
this case, Eq. (1) also holds, but now reflects a classification-type problem.

In Eq. (1), 𝑓( ∙ ) represents a mapping function that transforms the input covariates into a 
merged precipitation product 𝑷. This function can be built via a ML model, such as those 
presented in Section 3.2, using as labels a reference precipitation dataset 𝑷(𝒔𝑖,𝑡), which is 
assumed accurate and reliable. The parameters of the model 𝜽 is obtained via a model training 
procedure, that minimises the error (according to a distance function) between reference dataset 
𝑷 and predictions 𝑷 (or equivalently, between 𝑰 and 𝑰, in the case of classification problem).

Based on the above generic definition, the next sections discuss key conceptual and technical 
aspects of the PDM problem, with focus on model building, modelling approach and input 
covariates.
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2.1 Machine learning models training

The establishment of the mapping function 𝑓( ∙ ) lies at the core of ML-based PDM approaches. 
In particular, the selection of the training strategy for the ML algorithm is associated directly 
with the conceptual formulation of the prediction problem, as a spatial, temporal or spatio-
temporal one, determining the predictive capability of the merging procedure.

To further elaborate on this aspect, we continue with the more generic consideration that treats 
PDM as a spatio-temporal prediction problem. In this case, one may opt for a training strategy 
that builds a single mapping function (or equivalently, train a single ML model), able to provide 
predictions across any point 𝒔𝑖 and over any time step 𝑡, i.e., 𝑷(𝒔𝑖,𝑡;𝜽) = 𝑓(𝑿𝑃,𝑿𝐴,𝑿𝐺,𝑿𝑇;𝜽), 
where 𝜽 are the parameters of the trained model. Some delicate points of this approach, 
hereinafter termed as the full training strategy, are that, firstly, a single set of model parameters 
is used for the entire spatio-temporal domain, while, secondly, both the location (𝒔𝑖) and time 
step (𝑡) are independent variables, which are inserted explicitly in data merging via the 
covariates 𝑿𝐺 and 𝑿𝑇, respectively.

The above points are of high importance since they enable the development of a single ML 
model, with high generalization capabilities, able to extend precipitation predictions out of the 
spatial and temporal extent of the training dataset. For instance, one may employ the trained 
model, in the context of spatial prediction problem, to predict precipitation at locations where 
values are unknown for a specific time step of interest, given the known estimates from other 
locations (extendability in space). But also, the same model can be used, in the context of 
temporal prediction problem, to estimate precipitation over other time steps, at a location where 
precipitation estimates are known (extendability in time). Finally, in a full spatio-temporal 
context, one can use the same model to merge precipitation products, and provide estimates, 
for locations and time steps, that are not contained in the training dataset. Sub-cases of the full 
training strategy are the per time step or per pixel training strategy, which can be obtained 
neglecting the temporal or spatial dimension of the PDM problem, respectively.

In particular, the per time step training (e.g., see Baez-Villanueva et al., 2020; Zhang et al., 
2021) entails the establishment of an individual mapping function 𝑓𝑡( ∙ ), for each individual 
time step 𝑡. In layman’s terms, for 𝑘 time steps appear in the given dataset, 𝑘 different ML 
models are built to provide predictions 𝑷(𝒔𝑖) at different points 𝒔𝑖, i.e., 𝑷(𝒔𝑖;𝜽𝑡,𝑡) = 𝑓𝑡(𝑿𝑃,𝑿𝐴,
𝑿𝐺;𝜽𝑡), hence addressing the spatial prediction problem. In this case, each model is trained on 
the basis of reference estimates 𝑷(𝒔𝑖;𝑡) of the relevant time step. It is highlighted that in the 
above expressions, 𝑡 does not play the role of independent variable, which accounts explicitly 
for the temporal variability of precipitation, but it is an index denoting the respective time step 
in the given dataset.

The per time step training strategy, by incorporating geographical covariates as independent 
variables (𝑿𝐺 in Eq. (1)), allows to extend predictions at locations out of those provided in the 
given dataset. On the contrary, it has limited extendability capacity in time, since the 
predictions are restricted to the time span of the given dataset. In essence, to obtain precipitation 
estimates for a new time step, a new model should be first developed, under the assumption 
that reference dataset is available to enable model training. This is not a drawback if the target 
at hand is the development of a static merged precipitation product for a particular region and 
time period (e.g., see Bhuiyan et al., 2020; Hong et al., 2021; Wu et al., 2018). However, in the 
context of operational applications, where the generation of predictions with low-latency is a 
key requirement, this is a major limitation. The limitation stems from the fact that per time step 
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training presupposes the existence of a reference dataset (target variable) to enable model 
training. However, typically the reference datasets are products of high latency (i.e., reanalysis 
datasets), and hence not available on a timely fashion to enable model training. 

Another strategy that can be found in the PDM literature is the per pixel training strategy, 
where a different model 𝑓𝑠( ∙ ) is built for each individual pixel 𝑠 (e.g., see Fan et al., 2021; 
Massari et al., 2020). This strategy builds a number of individual models, equal to the number 
of pixels in the study area, while each model enables the prediction of precipitation as a 
function of time 𝑡, i.e., 𝑷(𝑡;𝜽𝑠,𝒔𝑖) = 𝑓𝑠(𝑿𝑃,𝑿𝐴,𝑿𝑇;𝜽𝑠), hence addressing the problem temporal 
prediction problem. This approach has similar extendability disadvantages as the per time step 
one, though in spatial dimension, since each trained model can provide predictions over time, 
but at a specific point in space. It is interesting to note that all three above discussed strategies 
result in gridded precipitation products. 

In the light of the above, we argue that the full training strategy has significant advantages over 
the other two strategies, with respect to generalization and predictive capabilities, allowing to 
development of PDM methods, not restricted to the spatial and temporal extent of the available 
dataset, and hence suitable for the development of low-latency product (see also the discussion 
in Section 2.3). Further to that, there are additional reasons that dictate the full training strategy 
as an a priori preferable choice in the development of PDM methods.

The first one is associated with the domain where the assessment of merged products takes 
place. The per time step training allows for evaluation only on spatial dimension, by splitting 
the available reference points into training and validation one. However, since each model is 
referred to a particular time step, it is not possible to assess the performance of PDM method 
over other time periods, without making arbitrary assumptions for model transferability (i.e., 
employ a trained model to predict precipitation at another time step). Accordingly, per pixel 
training allows merged products to be assessed on the temporal dimension, by splitting the 
time series of each point into training and validation one. On the contrary, the full training 
strategy enables a more comprehensive evaluation of the predictive performance of the PDM 
method both in space and time, by keeping out of the training dataset both different points and 
time periods. 

The per time step and per pixel training strategies lead in the development of a large number 
of models (e.g., for a dataset of 2 years length, 730 individual models are trained). This 
fragmentation inevitably inherits higher complexity in PDM, introducing various practical 
complications related with models’ building, training and maintenance, as well as with the 
investigation and analysis of model outcomes. On the contrary, the full training strategy entails 
the building of a single ML model, and hence, by its nature, the strategy leads to more 
parsimonious PDM approaches. An additional benefit from this strategy is the facilitation of 
hyperparameter tuning ML models involved, since such highly time-consuming procedures are 
practically impossible in the case of hundreds or thousands of individual models. Furthermore, 
the existence of a single model facilitates its integration with other models and tools as well as 
its further processing, for instance, in the context of explainable artificial techniques (e.g., see 
Gevaert, 2022; Gohel et al., 2021).

On the other hand, one may argue that the per time step and per pixel training strategies can 
provide more accurate precipitation estimates, since the models are trained to specific segments 
of spatio-temporal domain, and in smaller computational time, since the models consumes 
smaller segments of the input dataset. To the best of our knowledge, a direct comparison of the 
different strategies to train ML models in PDM has not been conducted in the past, and here, 
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we attempt to fill this gap by investigating the performance of three ensemble ML algorithms, 
trained on the basis of per time step and full training strategy.

2.2 Single-step and two-step merging approaches

Typically, PDM is treated as a regression-type problem, where a single (regression) model 𝑓
( ∙ ) is built (or many models in the case of per time step and per pixel training), to provide 
precipitation predictions, i.e., 𝑷(𝒔𝑖,𝑡) ∈ (0,∞). In this approach, herein after termed as single-
step merging approach, both zero (representing a dry state) and non-zero values (representing 
wet states) are included in the training dataset, while zero values in the final merged product 
are obtained by rounding down small precipitation estimates according to a threshold (e.g., 0.5 
mm/d).

Alternatively, merged precipitation products can be obtained via a two-step merging approach 
(e.g., see Lei et al., 2022; Xiao et al., 2022; Zhang et al., 2021). In this approach, first, a 
classification model is built to predict precipitation occurrence 𝑰(𝒔𝑖,𝑡) = {0, 1}, where 0 
indicates a dry state and 1 a wet state, which are classified according to a threshold (e.g., 0.5 
mm/d), i.e., the values higher than the threshold are set equal to 1 and the amounts lower than 
the threshold equal to 0. Next, a regression model is employed to predict precipitation amounts 
at the states predicted as wet by the classification model. In contrast to the single-step merging 
approach, in this case the regression model focuses only on the amounts of the wet states, and 
hence only the non-zero values of precipitation dataset can be used in the training procedure.

Recent studies show that two-step merging has significant advantages over the use of a single 
algorithm for the entire process, allowing the development of precipitation products with higher 
accuracy with respect to correct identification of precipitation events (e.g., Lei et al., 2022; 
Zhang et al., 2021). However, the implementation of such combined merging approaches is 
still in its infancy and further exploration is needed. In this work, we compare the performance 
of the single-step and two-step merging approaches, using three ML algorithms, and 
particularly on the basis of the full training strategy discussed in Section 2.1.

2.3 Selection of covariates

As literature reveals, recent ML-based PDM approaches exploit information from a variety of 
covariates to provide precipitation estimates, including both precipitation products and other 
type of variables, usually mentioned as auxiliary covariates (e.g., see Baez-Villanueva et al., 
2020; Bhuiyan et al., 2018b; Chen et al., 2021; Fan et al., 2021; Hong et al., 2021; Lei et al., 
2022; Nguyen et al., 2021; Xiao et al., 2022; Zhang et al., 2021). 

With respect to precipitation products, many popular satellite-based and reanalysis products 
have been used, such as the Integrated Multi-satellitE Retrievals (IMERG) for Global 
Precipitation Measurement (GPM; Huffman et al., 2018), the Climate Hazards Group Infrared 
Precipitation with Station data (CHIRPS) product (Funk et al., 2015), the Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) 
product (Ashouri et al., 2015), the Climate Prediction Center Morphing Technique (CMORPH) 
products (Haile et al., 2013), the Global Satellite Mapping of Precipitation (GSMaP) products 
(Kubota et al., 2007), the Soil Moisture to Rain-Advanced SCATterometer (SM2RAIN-
ASCAT) product (Brocca et al., 2019, 2013) and the fifth generation European Centre for 
Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) product (Hersbach et al., 
2020a). The performance of the above products, and the different types of errors inherited, have 
been investigated by a plethora of studies, via statistical (e.g., see Beck et al., 2017; Maggioni 
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and Massari, 2018; Massari et al., 2017) as well as ML-based approaches (e.g., see Sui et al., 
2022).

A common element in recent ML-based merging methods is the fusion of information from 
multiple precipitation products simultaneously (e.g., see Baez-Villanueva et al., 2020; Bhuiyan 
et al., 2018a; Lei et al., 2022). The characteristics of precipitation products that will be selected 
as predictors influence substantially the characteristics of PDM approach, its applicability and 
forecasting capacity. Specifically, the use of high-latency precipitation products, such as the 
IMERG Final run product (with a latency of 4 months) and the ERA5-Land (with a latency of 
3 months), has as consequence the derivation of merged precipitation estimates also with high-
latency. Essentially, the latency of the PDM approach will be the maximum latency of the 
products involved as predictors in the model. This is not a drawback if the target is the 
development of a precipitation product with static character, for a particular region and time 
span, but it limits the applicability of the method in an operational context where the provision 
of predictions in a timely manner is a key requirement. Another delicate point is associated 
with the employment, as predictors, of products that have subjected to bias correction 
processing using gauge-based measurements (such as the two products mentioned above). In 
this case, the use of measurements from same gauges as target variables would raise data 
leakage issues, since information from the predictands have already incorporated in the 
predictors.

Furthermore, Lei et al. (2022) employed as auxiliary covariate, Kriging-based precipitation 
predictions at the target points, on the basis of gauge-based measurements, while Zhang et al. 
(2021) employed gauge-based precipitation estimates, both on precipitation on amount and 
state, obtained from the precipitation measurements of neighbor rain gauges. However, there 
are some delicate points associated with the use of such type of covariates that are worth 
discussing. Firstly, they are essentially additional precipitation products, obtained as outcome 
of another model (e.g., Kriging or inverse distance weighting), and as such they have dynamic 
character, i.e., variation over time. Secondly, they incorporate information from the refence 
dataset, since they are estimated on the basis of ground-based measurements, and hence they 
should be used with caution so as to prevent data leakage, i.e., predictors contain information 
about predictands. Furthermore, the use of such covariates directly determines the operational 
character and predictive capacity of the PDM method. Specifically, their incorporation in a 
dynamic PDM approach is hampered due to the involvement of gauge-based observations, 
which are typically characterised by high latency.

With respect to auxiliary covariates, elevation is commonly used to capture the topographical 
variability of precipitation. Furthermore, geographical covariates, such as coordinates (e.g., 
longitude and latitude) and IDs of subregions, are used as predictors to account for the spatial 
variability of precipitation. In the same context, recent studies use as predictors auxiliary 
variables, which account for spatial proximity between observation locations (e.g., rain gauges) 
and target points in the grid. For instance, Baez-Villanueva et al. (2020) and Nguyen et al. 
(2021) employed as covariate the Euclidean distances between observation locations (i.e., rain 
gauge) and centroid of cells in the grid. It is worth noting that this covariate is a static one since 
the estimation of the distances is based only on the coordinates of the points.

In the light of the above, in this work, we merge low-latency precipitation products along with 
static auxiliary variables to provide precipitation estimates, while high-latency products are 
used only for performance evaluation purposes.
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3 Material and methods

To provide empirical evidence on the aspects discussed in Section 2, and encompasses in the 
research questions of the introductory section, we perform a series of PDM experiments, 
differentiated with respect to the training strategy and modelling approach followed. To 
provide more concrete insights, we employ three popular ensemble tree-based ML algorithms, 
and particularly the random forest (Breiman, 2001), gradient boosting decision trees (Breiman, 
1996; Friedman, 2002, 2001) and extreme gradient boosting (Chen and Guestrin, 2016) 
algorithm, briefly presented in Section 3.2.

First, we train each of the three ML models following the full and per time-step training 
strategy, in a single-step merging context. Next, we compare the single-step and two-step 
merging approach, training the models following the full training strategy, both for 
classification (prediction of dry/wet state) and regression (prediction of precipitation amounts 
of days predicted as wet from the previous step) problem. The experiments lead in the 
development of, in total, nine (gridded) merged precipitation products, which are evaluated and 
compared following the evaluation protocol, presented in Section 3.3.

3.1 Datasets and covariates

The PDM experiments have been performed based on a datacube that covers 1009 spatial 
points, distributed equally over a 25×25 km2 sampling area, representative of regions in 
Australia, Italy, the United States, and India (see Figure 1Error! Reference source not 
found.). The datacube comprises six precipitation datasets, as well as static variables such as 
soil type, land use, and elevation, and is described in detail in Brocca et al. (2019) and 
Filippucci et al. (2021). 

Figure 1: Visual representation of the 1009 points/cells of the datacube used in this work, 
uniformly distributed (0.25-degree resolution) over areas in Australia, India, Italy and USA 
(Filippucci et al., 2021).

The datacube includes gridded precipitation products, including the ground-based dataset from 
Global Precipitation Climatology Centre (GPCC; Schamm et al., 2016), satellite-based 
estimations, including the SM2RAIN-ASCAT product (Brocca et al., 2019), the Climate 
Prediction Center Morphing Technique (CMORPH) dataset (Joyce et al., 2004), the GPM-
IMERG Early and Final Run products (Huffman et al., 2018), the reanalysis precipitation data 
from ERA5 dataset (Hersbach et al., 2020b), as well as a ground-based precipitation dataset 
from regional networks. The datasets have daily temporal resolution and span from 1 January 



11

2013 to 31 December 2017. The static variables consist of elevation information sourced from 
the Earth Topography Five-Minute Grid dataset (NOAA, 2006).

In all experiments, we use as precipitation covariates only the low-latency products, and 
particularly the CMORPH, GPM Early Run and SM2RAIN-ASCAT product, due to the 
reasons discussed in Section 2.3. The high-latency satellite and reanalysis products, i.e., GPM 
Final Run, GPCC and ERA5, are used only as benchmark datasets to evaluate the performance 
of the merged products. Finally, the ground-based precipitation dataset from regional networks 
is used in this study as reference dataset. 

Further to the three low-latency precipitation products, we also use, as auxiliary covariates, the 
longitude, latitude and elevation. As additional auxiliary covariates, to account for the spatial 
variability of precipitation properties, we use key statistical characteristics (on the daily scale) 
of the reference dataset, i.e., mean, standard deviation and skewness of the entire series as well 
as of non-zero amounts, and probability dry. It is worth noting that these covariates are static 
properties for each location, describing the statistical behaviour of the process, and hence they 
do not affect the latency of the merged product, since they can be estimated a priori, from the 
available sample.

To incorporate information on the behaviour of precipitation in the neighboring region of each 
location, we add as auxiliary predictors the mean precipitation and probability dry of the 5 
neighboring points around the target locations. These two covariates have a dynamic character 
(a gridded product per time step) and follow the rational of similar covariates used by previous 
studies to account for spatial correlation (e.g., see Zhang et al., 2021). These covariates are 
estimated for the low-latency satellite-based precipitation products (CMORPH, GPM Early 
Run and SM2RAIN-ASCAT).

Finally, in the case of full training strategy, an index, from 1 to 12, was used to indicate the 
month of the sample, serving explicitly as temporal covariate. 

3.2 Machine learning models

In this work, we employ and compare three popular ensemble ML algorithms, which use 
decision trees as base learners in the context of bootstrap aggregation (known as bagging) as 
well as boosting learning (Breiman, 1996). 

From the former category, we use the Random Forest (RF) algorithm (Breiman, 2001) which 
builds an ensemble of individually trained (de-correlated) decision trees, variated with respect 
to their structure or their training, to provide aggregated predictions. The RF algorithm has 
gained popularity in precipitation data merging (e.g., Baez-Villanueva et al., 2020; Hengl et 
al., 2018). In this work, we employed the fast RF implementation provided by ranger package 
(Wright and Ziegler, 2017) in R environment, using the hyperparameters given in Table A1.   

From the realm of boosting learning, we employ the gradient boosting decision trees (GBDT) 
algorithm (Breiman, 1996; Friedman, 2002, 2001), and its more advanced implementation, 
extreme gradient boosting (XGB) (Chen and Guestrin, 2016). At each boosting step, a new tree 
is trained on the errors of the previous one, while the algorithm tries to reduce the largest errors 
by optimizing the loss function in a gradient descent optimisation context. The final outcome 
is the step-wise aggregation of sequential predictions, after weighting them according to a 
learning rate. All computational procedures have implemented in R environment, using the 
gbm package (Greenwell et al., 2023) for the GBDT algorithm, and the xgboost package (Chen 
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et al., 2023) for XGB algorithm, adopting the hyperparameters presented in Table A2 and Table 
A3, respectively. 

More details on the mechanisms and parameters of the three above mentioned algorithms are 
given in Appendix A. 

3.3 Evaluation protocol

The performance of different products is evaluated on the basis of typical, continuous and 
categorical, performance metrics, as well as with respect to reproducing certain statistical 
characteristics of the reference dataset.

As continuous performance metrics, to evaluate the precipitation products against the reference 
dataset we employ the mean error (ME), the root mean square error (RMSE), the Kling–Gupta 

efficiency metric (KGE; Gupta et al., 2009), and its components, the Pearson’s correlation 
coefficient (r), the bias ratio (β) and variability ratio (γ). The optimal value for ME and RMSE is 

0, while for KGE, CC, β and γ is 1. More detailed information on the continuous performance 
metrics used in this study are given in 

Table B1 in Appendix B.

Furthermore, we employed six categorical metrics, detailed in Table B2 in Appendix B, to 
provide evaluation with respect to the reproduction of precipitation events, including: accuracy, 
probability of detection (POD), false alarm ratio (FAR), precision, critical success index (CSI) 
and bias score (BS). The optimal values for Accuracy, POD, Precision, CSI and BS is 1, while 
for FAR is 0. 

Further to the above metrics, we also evaluate the products with respect to certain statistical 
characteristics. Further to the mean value and variance, which are encompassed in KGE metric, 
we also study the skewness, probability dry and lag-1 autocorrelation coefficient. Particularly, 
probability dry quantifies the intermittent behaviour of precipitation process and can be 
estimated as the ratio of the number of zero values over the total number of observations, and 
hence takes values in the range [0, 1].

4 Results

This section provides the comparison of nine different merged precipitation products, 
developed by implementing the three ML algorithms (i.e., RF, GBM, XGB), in two different 
training strategies and merging approaches. In the following figures and tables, each merged 
product is notated by a prefix along with the algorithm used. Particularly, prefix TS- is used to 
indicate a product developed via the per time step training, prefix F- to indicate a product 
developed via the full training strategy, while D- prefixes the products obtained from two-step 
merging and full training strategy. For the products of the latter case, the same algorithm has 
been used in both classification and regression step. To provide an explanatory example, the 
product F-RF has been obtained by implementing random forest algorithm following single-
step merging and the full training strategy.

Moreover, in all experiments we use 2-year length precipitation estimates (spanning from 
12/3/2014 up to 30/4/2016) from the datacube presented in Section 3.1. From the 1009 points, 
a 70% (i.e., 706 points) has been randomly selected to train the ML models, while data from 
the remaining 30% (i.e., 303) cells were used for evaluation purposes. The tables and figures 
presented below presents the performance of precipitation products on the evaluation dataset.
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To facilitate further the reader, we highlight that the precipitation products of high latency, i.e., 
GPM Final Run (noted as GPM.F in the following figures), GPCC and ERA5, that are used 
only as benchmark datasets, appear at the top of the figures presented below, and hereinafter 
are abbreviated as BPPs. In addition, the low-latency products, i.e., CMORPH, GPM Early 
Run (indicated as GPM.E in the following figures) and SM2RAIN-ASCAT (indicated as 
SM2R in the following figures), which are merged, are hereinafter abbreviated as OPPs, appear 
in the figures after the BPPs.

4.1 Assessment of precipitation occurrence detection

The assessment of performance of merged and given precipitation products was performed on 
a pixel-by-pixel basis, i.e., by estimating the evaluation metrics, presented in Section 3.3, at 
each point individually. Figure 2 summarises the performances of nine merged products, OPPs 
and BPPs, for the 303 evaluation points in the form of boxplots. It is evident that the merged 
products exhibit accuracy, higher than those of OPPs, and in closer agreement with the 
accuracy of the BPPs. Focusing on the merging products derived from per time step (i.e., TS-
RF, TS-GBDT, TS-XGB) and full training strategy (F-RF, F-GBDT and F-XGB), following 
an single-step merging approach, we can see that POD is substantially improved, with the 
average value for all algorithms being close to 0.90, much higher than the mean POD values 
of OPPs (ranging from 0.45 to 0.51) and BPPs (ranging from 0.64 to 0.77). Similar 
improvements are also noticed with respect to the CSI, with the mean values being in closer 
agreement with those of BPPs. On the other hand, single-step merging developed products with 
FAR values (on average equal to 0.35) higher than those of BPPs and two of the OPPs (i.e., 
GPM.E and CMPORPH). This evidence, along with the values of BS, which are found greater 
than 1, indicates that these products tend to overestimate the number of wet days by generating 
precipitation events at days where zero precipitation has been observed at the reference dataset. 
Furthermore, the three ML algorithms exhibit a very similar performance in per time step and 
full training strategy. Interestingly, the results of the two strategies are in high compliance, 
while a slightly better performance is noticed in the per time step case, with respect to the 
Accuracy and FAR. 
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Figure 2: Boxplots of six categorical performance metrics for fifteen precipitation products, including 
three benchmark datasets (GPCC, ERA5, GPM.F), three low-latency datasets (SM2R, GPM.E, 
CMORPH), 3 merged products following the per time step training (TS-RF, TS-GBDT, TS-XGB), 3 
products following the full training (F-RF, F-GBDT, F-XGB) and 3 three the two-step merging (D-RF, 
D-GBDT, D-XGB). Blue dots represent the mean values of each performance metric.

Figure 2 also reveals that the two-step merging approach leads to better overall capacity in 
correctly identifying wet and dry days, as indicated by the average accuracy achieved by D-RF 
(85.3%), D-GBDT (85.14%) and D-XGB (85.25%), which is higher than the accuracy of 
single-step merged products (79.74%) and the accuracy of original products (72.6% - 81.06%). 
With respect to the correct detection of precipitation events, the two-step approach resulted in 
lower POD values (i.e., 0.67) compared to the one single-step approach (i.e., 0.88), indicating 
that a smaller percentage of wet days have been correctly reproduced by the products. However, 
as FAR reveals, in the two-step merging, the proportion of wet days that have been erroneously 
reproduced over the total number of wet days generated is higher than the relevant proportion 
in the single-step products, i.e., average values equal to 0.2 for D-RF, D-GBDT and D-XGB, 
and 0.38 for F-RF, F-GBDT and F-XGB. Furthermore, the values of bias score (BS) show that 
two-step merging leads to underestimation of wet days (𝐵𝑆 < 1), but it clearly provide much 
more balanced results, with respect to the proportion of correct and erroneous reproduction of 
wet days, i.e., mean BS value approximately equals to 0.84 for the two-step models and 1.45 
for the single-step models.

Overall, the results show that the two-step merging approach shows an improved or equally 
good performance compared to the single-step approach with respect to all categorical metrics 
(except to POD). In parallel, the POD values of D-RF, D-GBM and D-XGB are higher than 
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the values of two OPPs (GPM.E and CMORPH) and close to POD value of SM2Rain. With 
respect to the other categorical metrics, two-step merging outperforms the OPPs and provides 
results better or equally good with the BPPs.

A further assessment of the precipitation products with respect to their capacity to provide 
precipitation events in specific precipitation ranges is given in Figure C1 in Appendix C.  

4.2 Assessment of precipitation intensities reproduction

Figure 3 summarises the performance of precipitation products with respect to precipitation 
amounts, for the 303 evaluation points. The boxplots show that in all data merging scenarios 
examined, the merged products outperform both OPPs and BPPs, with respect to all 
performance metrics. Particularly, the merged products improves the KGE values of OPPs by 
22% up to 550%, and higher KGE values (6% - 32%) than BPPs. Furthermore, the merged 
products exhibit RMSE values that are reduced by 20% - 45% on average compared to the 
values of OPPs, and reduced by 16% - 30% with respect to BPPs. Furthermore, the merged 
products exhibit a very good performance in reproducing the mean and variance of 
precipitation process, as captured in the reference dataset, as indicated by KGE 𝛽 and KGE 𝛾, 
respectively. The superiority of merged products is also indicated by the ranges of variation of 
performance metrics, which were found much narrower than those of original products as well 
as of benchmark products, in all performance metrics. 

Figure 3: Boxplots of six continuous performance metrics for fifteen precipitation products, including 
three benchmark datasets (GPCC, ERA5, GPM.F), three low-latency datasets (SM2R, GPM.E, 
CMORPH), 3 merged products following the per time step training (TS-RF, TS-GBDT, TS-XGB), 3 
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products following the full training (F-RF, F-GBDT, F-XGB) and 3 three the two-step merging (D-RF, 
D-GBDT, D-XGB). Blue dots represent the mean values of each performance metric.

A further assessment of the precipitation products in specific precipitation ranges is given in 
Figure C2 in Appendix C.

4.3 Assessment of statistics reproduction

Finally, we assess the performance of precipitation products with respect to the reproduction 
of certain statistical characteristics, and particularly, the mean value, variance, skewness, 
probability dry, mean value of non-zero amounts and autocorrelation coefficient of lag-1. As 
in the case of performance metrics a pixel-by-pixel assessment was conducted and the results 
are presented in the form of boxplots in Figure 4. Specifically, the boxplots provide the relative 
difference between the statistical characteristics of the reference dataset and precipitation 
products. As it is shown, all merged products outperform OPPs and BPPs, and in almost all 
cases the mean values (blue dots) are closer to zero and the ranges of variation of values are 
much narrower. For instance, the average relative difference between observed and modelled 
variance is approximately 25%, while for SM2Rain is 40%, for GPM early run -181% and for 
CMPORPH is -95%. Substantial is also the improvement in the reproduction of lag-1 
autocorrelation coefficient (plot f of Figure 4). 

Figure 4: Boxplots of relative difference between statistical characteristics of reference dataset and 
fifteen precipitation products, including three benchmark datasets (GPCC, ERA5, GPM.F), three low-
latency datasets (SM2R, GPM.E, CMORPH), 3 merged products following the per time step training 
(TS-RF, TS-GBDT, TS-XGB), 3 products following the full training (F-RF, F-GBDT, F-XGB) and 3 
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three the two-step merging (D-RF, D-GBDT, D-XGB). Blue dots represent the mean values for each 
statistical quantity.

The two-step merged products exhibit a better performance in the reproduction of the mean 
value of the entire series as well as the mean value of non-zero precipitation records. However, 
the substantial improvement inherited by the two-step approach concerns the reproduction of 
probability of zero values as indicated in the relevant plot of Figure 4 (plot d) as well as in plot 
d in Figure C3 in Appendix C. As we see, single-step merging approach tends to significantly 
underestimate the probability of zero values (by approximately 25%), indicating that the 
merged product contains a larger percentage of non-zero values than that observed in the 
reference dataset. This is also associated with the higher POD values of this approach, which 
is attributed to the tendency of the method to generate non-zero values. The mean relative 
difference between observed and modelled probability dry is approximately 24% for the single-
step merged products and approximately -7% for the two-step merged products. A closer 
comparison of statistics of products developed via the single-step and two-step merging 
procedure is given in Figure C3 of Appendix C.

Finally, we compared the single-step and two-step training strategy with respect to the 
computational time required. Table 1 presents the time to train the three ML models by using 
a 3.00 GHz Intel Core i9 processor with 256 GB RAM. As it is evident, the full training strategy 
required more time for the case of GBM and RF, while in the case of XGB the training 
procedure lasted much longer in per time step strategy. However, the computational time for 
both strategies is within reasonable ranges, and hence no evidence to prevent us using the full 
training strategy can be drawn. 

Table 1: Computational time required in second to train the three ML algorithms, following the per 
time step and full training strategy.

TS-XGB TS-GBM TS-RF F-XGB F-GBM F-RF

Computational time (s) 1597.72 241.77 67.67 73.07 344.79 263.75

5 Discussion and Conclusions

This work provides evidence and empirical insights on critical conceptual and technical aspects 
of ML-based data merging for the development of new precipitation products. Particularly, the 
present work focused and discussed: a) the conceptual formulation of PDM problem and its 
interconnection with the building of ML models, b) the selection of precipitation products and 
auxiliary covariates and their implication in the latency of the PDM method, and c) the selection 
of merging approach (single-step or two-step) to provide precipitation estimates. In this 
context, we go beyond the typical formulation of the problem and provide a generic definition 
that formulates PDM as a spatio-temporal prediction problem. Based on this definition, we 
discussed three alternative model training strategies, and particularly the full, per time step and 
per pixel training strategy. The former strategy (that builds a single model for the entire spatio-
temporal domain) has significant advantages over the other two (that follow a fragmented 
approach by building a model for each individual time step or pixel), enabling the development 
of merging methods with high predictive capacity and extendability both in time and space, as 
well as much higher applicability in operational applications. Focusing on the latter critical 
aspect, we argue that the building of ML models on the basis of the full training strategy, along 
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with the use of low-latency products enables the production of merging methods and new 
products, which are also of low latency, and goes beyond the development of only static 
precipitation products. Finally, this work provided new evidence-based insights with respect to 
the different ensemble tree-based ML algorithms and merging approaches (single-step vs two-
step merging) adopted. Towards this, we employ key statistical properties to evaluate the 
products, further to the widely used performance metrics.

We performed a series of precipitation data merging experiments, based on a dataset composed 
of seven daily precipitation products, from ground-based observations, satellites, reanalysis, as 
well as auxiliary covariates, from 1009 uniformly distributed cells, over 4 countries around the 
world (Australia, USA, India and Italy). By merging low-latency precipitation products (i.e., 
SM2R, GPM.E and CMORPH), we developed and comparatively assessed nine new 
precipitation products. Particularly, using three different ensemble tree-based ML algorithms 
(i.e., RF, GBDT and XGB), we developed six single-step merging products on the basis of full 
and per time step training strategies, respectively, as well as three two-step merging products 
following the former training strategy. The comparison of different approaches revealed the 
following key findings:

1. With respect to the training of ML models, it is argued that the full training strategy is a 
competitive alternative to the typical per time step one, enabling the development of models 
not only with good performance, but also with high generalization capabilities and 
predictive capacity, within reasonable computational times.

2. With respect to the merging approach, combined use of classification and regression 
models, in the context of two-step merging results, outperforms single-step merging, 
enabling a much better reproduction of precipitation occurrence characteristics along with 
precipitation amounts. This is reflected in the much lower values of FAR that indicates a 
much lower percentage of erroneously predicted precipitation events as well as in the much 
better reproduction of probability dry.

3. With respect to the reproduction of statistical and stochastic regime of precipitation 
process, data merging improves substantially the compliance of statistics of satellite-based 
products with those of ground-based measurements, while significant improvements are 
noticed in the variance, probability dry and lag-1 autocorrelation coefficients. 

4. With respect to the efficiency of different ML algorithms, the analysis did not reveal the 
clear dominance of a particular algorithm from those examined, with respect to performance 
metrics and statistical characteristics examined. However, we can argue that the gradient 
boosting decision decision trees is inferior to the other random forest and extreme gradient 
learning, with respect to the computational time required.

The present work can be further expanded in various directions. An obvious one is to further 
concretize the evidence-based insights on the basis of larger, both in terms of time span and 
spatial extent, datacubes, as well as on the of merging precipitation datasets at finer temporal 
(e.g., hourly) and spatial (e.g., 1km x 1km) resolution. At these finer scales, the large number 
of zero values along with the heavy-tailed behaviour of precipitation amounts, which form a 
highly imbalanced datasets, pose significant challenges. In this context, the evaluation of the 
different algorithms, training strategies and merging approaches, by adopting hyper-parameter 
tuning strategies and imbalanced data curation techniques is of high interest and importance. 
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Appendix A: Machine Learning models

Random Forest (Breiman, 2001) is a widely-applied bagging algorithm, which builds an 
ensemble of individually trained (de-correlated) decision trees, variated with respect to their 
structure or their training, to provide aggregated predictions. The algorithm attempts to 
alleviate the typical overfitting issue encountered in simple decision trees, and improve their 
performance, via two randomization mechanisms that enable diversity in tree generation: (a) 
the training of each individual tree on a randomly selected bootstrapped copy of the training 
dataset, and (b) the use as predictors in each tree a fraction of randomly selected features. Key 
hyper-parameters of the RF model are the number of trees in the forest, tree-related parameters 
(here we use the minimum node size to control the depth and complexity of individual trees), 
as well as the parameters of two randomization mechanisms, i.e., fraction of variables randomly 
selected in each tree and the characteristics of bootstrapping mechanism (fraction of training 
set for each tree and re-sampling with or without replacement). The hyperparameters used in 
the training of the RF algorithms are given in Table A1.

Table A1: Hyper-parameters of RF algorithm.

Hyper-parameter Value

Number of trees 500

Fraction of variables randomly sampled 1/3 of the covariates

Minimal node size 10

Fraction of dataset to train each tree 100% (bootstrapped with replacement)

Trees splitting rule Sum of square residuals for regression and Gini impurity for classification

Gradient boosting decision trees (Breiman, 1996; Friedman, 2002, 2001) is a boosting ML 
algorithm that, in contrast to RF, builds decision trees sequentially. At each boosting step, a 
new tree is trained on the errors of the previous one, while the algorithm tries to reduce the 
largest errors by optimizing the loss function in a gradient descent optimisation context. The 
final outcome is the step-wise aggregation of sequential predictions, after weighting them 
according to a learning rate. The two randomization mechanisms, described above for the RF 
algorithm, find applicability also in GBDT. Stochastic GBDT (Friedman, 2002) enables the 
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random subsampling of the dataset used to train each tree in the sequence as well as the random 
selection of a fraction of features used as predictors in each tree. The main hyper-parameters 
of GBDT are: the number of boosting steps (also known as iterations or number of trees), the 
learning rate (also known as shrinkage rate) that weights the contribution of each tree to the 
final prediction, the tree-related parameters (here we use the minimum node size as in the case 
of RF), as well as the bagging parameters (i.e., the number of features inserted in each tree and 
the fraction of training dataset to be resampled). The hyperparameters used in the training of 
the GBDT algorithms are given in Table A2.

Table A2: Hyper-parameters of GBDT algorithm.

Hyper-parameter Value

Number of trees 500

Learning rate 0.1

Depth of individual trees 7

Minimum number of observations in terminal node 10

Further to the classical GBDT algorithm, here we also employ a more recent implementation 
of boosting decision trees, provided by the extreme gradient boosting (XGB) suite of models 
(Chen and Guestrin, 2016). XGB offers additional features and flexibility, including among 
others: (a) regularization parameters and dropout techniques to reduce model complexity and 
prevent overfitting, (b) definition of custom loss functions and evaluation metrics, (c) use of 
parameters to account for imbalanced samples, while its implementation enables (d) 
parallelization of the procedure as well as (e) early stopping. 

Table A3: Hyper-parameters of XGM algorithm.

Hyper-parameter Value

Number of trees 300

Learning rate 0.3

Depth of individual trees 6

Early stopping rounds 10
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Appendix B: Performance metrics

Table B1: Continuous performance evaluation metrics

Performance metric Metric symbol Equation

Mean error (mm/d) 𝑀𝐸 𝑀𝐸 =
∑ 𝑃𝑟𝑒𝑓 ― 𝑃𝑒𝑠𝑡

𝑁

Root mean square error 
(mm/d) 𝑅𝑀𝑆𝐸 𝑅𝑀𝑆𝐸 =

∑ 𝑃𝑟𝑒𝑓 ― 𝑃𝑒𝑠𝑡
2

𝑁

Kling-Gupta efficiency 𝐾𝐺𝐸 𝐾𝐺𝐸 = 1 ― (1 ― 𝑟)2 + (1 ― 𝛽)2 + (1 ― 𝛾)2

Pearson’s correlation 
coefficient 𝑟 𝑟 =

∑(𝑃𝑟𝑒𝑓 ― 𝑃𝑟𝑒𝑓)(𝑃𝑒𝑠𝑡 ― 𝑃𝑒𝑠𝑡)

∑ 𝑃𝑟𝑒𝑓 ― 𝑃𝑟𝑒𝑓
2

∑ 𝑃𝑒𝑠𝑡 ― 𝑃𝑒𝑠𝑡
2

Bias ratio 𝛽 (𝐾𝐺𝐸 𝐵𝑒𝑡𝑎) 𝛽 =
𝑃𝑒𝑠𝑡
𝑃𝑟𝑒𝑓

Variability ratio 𝛾 (𝐾𝐺𝐸 𝐺𝑎𝑚𝑎) 𝛾 =
𝜎(𝑃𝑒𝑠𝑡)
𝜎(𝑃𝑟𝑒𝑓)

where 𝑃𝑟𝑒𝑓 and 𝑃𝑒𝑠𝑡 represent the reference dataset and precipitation estimates, respectively, of length 𝑁. The 𝑃𝑟𝑒𝑓 and 
𝑃𝑒𝑠𝑡 are the mean value of reference dataset and precipitation estimates, respectively, while 𝜎( ∙ ) operator presents the 
standard deviation. 

Table B2: Categorical performance evaluation metrics

Performance 
metric

Metric 
symbol

Equation Explanation

Accuracy (%) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Proportion of correctly classified events as “rain” or 
“no-rain”.

Probability of 
detection 𝑃𝑂𝐷 𝑃𝑂𝐷 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Proportion of correctly predicted “rain” states 
among the observed “rain” states.
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False alarm ratio 𝐹𝐴𝑅 𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑁
Proportion of incorrectly predicted “rain” states 
among the predicted “rain” states.

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
Proportion of correctly predicted “rain” states 
among the predicted “rain” states.

Critical success 
index 𝐶𝑆𝐼 𝐶𝑆𝐼 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Proportion of correctly predicted “rain” states over 
the total number of “rain” states observed and 
predicted.

Bias score 𝐵𝑆 𝐵𝑆 =
𝑃𝑂𝐷
𝐹𝐴𝑅

Indicates whether the product underestimates (𝐵𝑆
< 1) or overestimates (𝐵𝑆 > 1) the “rain” states

where 𝑇𝑃 is the number of true positive predictions, 𝑇𝑁 the number of true negative predictions, 𝐹𝑃 the number of false 
positive predictions and 𝐹𝑁 the number of false negative predictions. 

Appendix C: Supplementary results

Figure C1 and Figure C2 present the performance of precipitation products (on 303 evaluation 
points), on the basis of three categorical (POD, Precision and FAR) and continuous (ME, 
RMSE, r) performance metrics, respectively, in specific ranges of precipitation amounts. 
Particularly, the ranges studied include: light precipitation ([0.5, 5] mm/d), moderate 
precipitation ((5, 20] mm/d), heavy precipitation ([20, 40) mm/d) and violent precipitation ([40, 
) mm/d). 
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Figure C1: Boxplots of three categorical performance metrics, estimated in different ranges of 
precipitation amounts, for twelve precipitation products, including three high-latency datasets (GPCC, 
ERA5, GPM.F), three low-latency datasets (SM2R, GPM.E, CMORPH), as well as merged products 
obtained from single-step (F-RF, F-GBDT, F-XGB) and two-step merging (D-RF, D-GBDT, D-XGB). 
Blue dots indicate the mean values of performance metrics.
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Figure C2: Boxplots of three continuous performance metrics, estimated in different ranges of 
precipitation amounts, for twelve precipitation products, including three high-latency datasets (GPCC, 
ERA5, GPM.F), three low-latency datasets (SM2R, GPM.E, CMORPH), as well as merged products 
obtained from single-step (F-RF, F-GBDT, F-XGB) and two-step merging (D-RF, D-GBDT, D-XGB). 
Blue dots indicate the mean values of performance metrics.

Next figure presents a comparison of statistical characteristics of the reference data on the 303 
evaluation points against the statistical characteristics of the merged products obtained for the 
RF algorithm with the single-step (red dots) and two-step (blue dots) merging approach
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Figure C3: Scatter plots comparing the statistical characteristics of the reference and merged products, 
on 303 points, produced using RF algorithm with the single-step (red dots) and two-step (blue dots) 
merging approach.
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Abstract

The development of accurate precipitation products with wide spatio-temporal coverage is 
crucial for a wide range of applications. In this context, precipitation data merging (PDM) that 
entails the blending of satellite-based estimates with ground-based measurements holds a 
prominent position, while currently there is an increasing trend in the deployment of machine 
learning (ML) algorithms in such endeavors. In the light of recent advances in the field, this 
work discusses key aspects of the PDM problem associated with: a) the conceptual formulation 
of the problem, that is closely related to the training of ML models and their predictive capacity, 
b) the selection of products fused, that is associated with the latency of final product and 
operational applicability of the method, c) the efficiency of single-step and two-step merging 
approaches, with the former one treating the problem via only regression algorithms and the 
latter one via the combined use of classification and regression algorithms. By formulating 
PDM as a spatio-temporal prediction problem, we define and assess two different training 
strategies for the ML models, termed as full and per time step strategy, which entail the building 
of a single or several ML models, respectively. Furthermore, the performance of the full 
training strategy, which allows the development of predictions in both spatial and temporal 
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dimensions, is assessed in the context of single- and two-step merging. In each of the three 
scenarios, three popular ensemble tree-based ML algorithms, i.e., the random forest, gradient 
boosting and extreme gradient boosting algorithm, are employed resulting in nine merged 
products. To provide empirical evidence, we employ a datacube composed by ground-based 
daily precipitation observations, satellite-based and reanalysis estimates, as well as auxiliary 
covariates, from 1009 uniformly distributed cells (representative of a sampling area of 25 x 
25km), over four countries around the world (Australia, USA, India and Italy). The large-scale 
experiment indicates that: (i) full training strategy is a competitive alternative to the per time 
step strategy, since it enables the development of methods with improved accuracy, with 
respect to performance metrics and reproduction of statistics, but also with higher predictive 
capability and operational applicability, (ii) two-step merging enables a much better 
reproduction of precipitation occurrence characteristics, as reflected in the improvement of 
relevant categorical metrics, the reproduction of probability of no demand and autocorrelation 
coefficient, (iii) no significant difference was noticed in the performance of different ML 
algorithms. 
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Highlights: (up to 5 bullet points)

• Formulation of precipitation data merging as a spatio-temporal prediction problem.
• Comparison of alternative training strategies for Machine Learning models with different 

generalization capabilities.
• Comparison of alternative ensemble tree-based ML algorithms.
• Comparison of alternative merging approaches (regression vs classification-regression).
• Most prominent option: Coupling of generalised training strategy with classification-

regression merging approach.
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