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ABSTRACT
Highly turbulent water flows, often encountered near human constructions like bridge piers, spillways, and weirs, 

display intricate dynamics characterized by the formation of eddies and vortices. These formations, varying in sizes 
and lifespans, significantly influence the distribution of fluid velocities within the flow. Subsequently, the rapid velocity 
fluctuations in highly turbulent flows lead to elevated shear and normal stress levels. For this reason, to meticulously 
study these dynamics, more often than not, physical modeling is employed for studying the impact of turbulent flows 
on the stability and longevity of nearby structures. Despite the effectiveness of physical modeling, various monitoring 
challenges arise, including flow disruption, the necessity for concurrent gauging at multiple locations, and the duration 
of measurements. Addressing these challenges, image velocimetry emerges as an ideal method in fluid mechanics, 
particularly for studying turbulent flows. To account for measurement duration, a probabilistic approach utilizing a 
probability density function (PDF) is suggested to mitigate uncertainty in estimated average and maximum values. 
However, it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses. In 
response, this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a 
generic yet accurate description of flow dynamics in such applications. This integration enables an approach based on 
the probability of failure, facilitating a more comprehensive analysis of turbulent flows. Such an approach is essential 
for estimating both short- and long-term stresses on hydraulic constructions under assessment.
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1. Introduction
Highly turbulent flows exhibit complex behavior, 

characterized by rapid and irregular fluctuations 
in velocity, pressure, and other flow parameters [1].  
Many hydraulic structures and systems, such as 
piers, dams, channels, pipelines, and pumps, are 
susceptible to high-intensity turbulent flows [2].  
Knowledge of turbulent flow characteristics 
helps in assessing the hydraulic loads, including 
pressure fluctuations, impacts, and dynamic forces, 
acting on structures. This information is crucial 
for ensuring the structural integrity, stability, and 
safety of hydraulic constructions under various 
flow conditions. For this reason, various numerical 
methods, such as the large eddy and the direct 
numerical simulation, have been developed to study 
turbulent flows [3]. However, turbulent flows often 
involve gas-liquid interfaces, which significantly 
increase the complexity of flow descriptions and 
can challenge even the most sophisticated numerical 
models [4]. For this reason, more often than not, 
scale models of hydraulic systems are built to study 
turbulent flows. Nevertheless, the monitoring of 
these physical models, even within meticulously 
controlled environments, is a laborious and 
demanding task.

Turbulent flows pose inherent challenges in flow 
measurement due to their unpredictable fluctuations 
and irregular nature. Conventional mechanically-
based methods and acoustic Doppler velocimeters 
often introduce disturbances to the flow, making 
accurate measurements difficult. While there are 
intrusive methods available that can provide reliable 
measurements of high frequency with minimal 
flow disturbance, they are limited in their ability 
to obtain simultaneous measurements at multiple 
locations [5,6]. On the other hand, image velocimetry 
has been widely suggested by researchers as a non-
intrusive method that offers accurate and reliable 
measurements of flow in both natural [7,8] and man-
made hydraulic structures [9]. 

Image velocimetry stands out as an exceptionally 
well-suited method for studying turbulent flows, 
offering distinct advantages over traditional 

techniques such as current meters and acoustic 
Doppler velocimetry. One of its primary merits 
lies in its non-intrusive nature, allowing for flow 
measurements without physically disrupting the 
system under investigation. This characteristic is 
particularly crucial when studying turbulent flows, 
where the introduction of probes or other intrusive 
devices can alter the flow dynamics. Also, image 
velocimetry enables the determination of velocity 
fields with high temporal and spatial resolution, 
providing a detailed and comprehensive view of 
the turbulent characteristics, and for this reason, 
has gained significant popularity in hydraulic 
laboratories [2,10].

Image velocimetry can be based on different 
methods of video analysis, including approaches 
based on correlation, feature-tracking, or optical-
flow analysis. Correlation-based techniques, such as 
Particle Image Velocimetry (PIV), rely on tracking 
the movement of identifiable features or particles 
in consecutive images [11]. Feature/particle tracking 
methods (PTV) focus on tracking specific features 
or points of interest in the flow field across multiple 
frames to track the movement of features and 
estimate the flow velocities [12]. In space-time image 
velocimetry (STIV) a search line of arbitrary length 
is set in the mainstream direction of the image, and 
the flow velocity is calculated from the gradient of 
the striped pattern that appears in the space-time 
image generated by stacking the image intensity 
information in the time direction [13]. Lastly, optical 
flow (OF) methods provide estimates of pixel or 
image region motion between consecutive frames, 
based on inverse methods applied to brightness 
variations in the image sequence [7]. Depending on 
the employed inverse method, there are different 
alternatives for the optical flow (OF) algorithms, 
such as the Horn-Schunk method, Lucas-Kanade 
method, and Farneback method [14].

PIV and OF have emerged as the most suitable 
methods for turbulent flows. PIV’s capability to 
capture detailed flow phenomena, including wall-
normal vortices and low-speed streaks, has been 
demonstrated, offering pivotal information to 
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understand underlying turbulence statistics such 
as streamwise velocity fluctuations, turbulence 
intensities,  and Reynolds shear stress.  This 
elucidates peak values and their locations near solid 
flow boundaries. PIV has served as an indispensable 
tool in studying bed shear stress from remotely 
measured surface turbulent dissipation fields in open 
channel flows [15]. On the other hand, the OF method, 
specifically employing the Farneback algorithm, 
provides denser spatial resolution and increased 
computational efficiency. This allows researchers 
to characterize the behavior of turbulent flow, and 
observe the formation of eddies, turbulent structures, 
and surface features like bumps and dimples [16].

Regarding the study of the impact of turbulent 
flows on nearby hydraulic structures, understanding 
Reynolds stresses and drag force is pivotal [17]. 
Typically, these stresses are estimated by the 
quantities vx´

2, vx´·vy´, and vx
2, respectively, where 

vx and vy are the velocity vector components at a 
specific point of the flow field, and vx´ = vx–〈vx〉

and vy´ = vy –〈vy〉. The typical approach to obtaining 
foundational insights is to use the time-averaged 
values〈vx´

2〉and 〈vx´·vy´〉for the Reynolds 
stresses, and the maximum value, max (vx

2), for 
the drag force. However, if the aforementioned 
quantities are obtained from observations of short 
time durations, the limitations of this approach 
become apparent when considering potential impacts 
over extended periods, where significantly larger 
magnitudes compared to the previously mentioned 
time-averaged and maximum values may emerge. 
Recognizing these limitations, a transition to a more 
comprehensive perspective becomes imperative. In 
this context, utilizing a probabilistic framework not 
only offers insights into dynamic behavior but also 
facilitates the analysis of stresses. This has been 
highlighted by scholars who suggest proceeding 
from Reynolds stress to PDF level of description [17].  
Assuming vx follows a normal distribution, the 
quantities vx´² and vx², representing the Reynolds 
normal stress and the drag force respectively, are 
expected to adhere to a central and non-central chi-
square distribution respectively, with one degree of 

freedom [18]. In cases where the standard deviation is 
not 1, variable substitution is required [19].

As the probabilistic framework adeptly addresses 
normal stress, the complexity deepens when 
examining shear stress, specifically the product 
vx´·vy´. In contrast to normal stress, where a closed-
form solution aligns with the non-central chi-square 
distribution, for shear stress deriving the distribution 
of the product of the two random dependent 
variables, vx´·vy´, is a formidable mathematical 
challenge [20,21]. An alternative practical approach 
is the utilization of a numerical stochastic model to 
navigate the intricacies of this product distribution. 
A multivariate stochastic model could be used 
to generate synthetic time series of velocity at 
various locations in the flow field. Subsequently, 
the corresponding values of Reynolds stresses and 
drag force could be estimated using the formulas 
mentioned earlier. Finally, by applying an empirical 
distribution to these time series, one could obtain the 
probability of exceedance.

Analyz ing  tu rbu len t  f lows  us ing  image 
velocimetry yields vast datasets, demanding a 
nuanced approach to ensure statistically consistent 
results. The necessity to filter out spurious velocities 
further emphasizes the need for a methodologically 
rigorous framework. Moreover, the simultaneous 
monitoring of multiple locations introduces a 
layer of complexity that warrants a comprehensive 
probabilistic perspective. A stochastic model not only 
facilitates the probabilistic assessment of extreme 
velocity occurrences but also provides a systematic 
means to tackle the intricacies of the distribution of 
the product vx´·vy´. At the same time, the stochastic 
model serves as a statistical filter to manage spurious 
velocities, ensuring that the obtained data reflects the 
true nature of turbulent flows.

In this study, we demonstrate the efficacy of 
integrating an image velocimetry algorithm with a 
stochastic model to address the previously mentioned 
challenges posed by turbulent flows. By harnessing 
the power of image velocimetry for non-intrusive, 
simultaneous measurements at multiple locations, 
and coupling it with a robust stochastic framework, 



48

Journal of Environmental & Earth Sciences | Volume 06 | Issue 01 | April 2024

we aim to provide a comprehensive understanding of 
turbulent flow dynamics. This holistic approach not 
only enables a probabilistic assessment of extreme 
velocity values but also navigates the complexities 
associated with drag force, and shear and normal 
stresses calculations. It should be noted that the 
application of stochastic models to turbulent flows 
has been suggested by various researchers [22,23]. 
However, unlike these previous studies, which 
employed a stochastic approach to enhance the 
accuracy of numerical modeling, our study takes 
a distinctive approach. We utilize a stochastic 
model not only to improve the analysis of image 
velocimetry data but also to provide a probabilistic 
assessment of the stress factors arising from the 
intense and highly varying flow conditions. This 
dual application sets our study apart, allowing for 
a more comprehensive understanding of turbulent 
flow dynamics and its implications for hydraulic 
structures.

2. Materials and methods

2.1 Case study—hydraulic jump

A hydraulic jump serves as a compelling example 
of localized turbulent flow. When supercritical 
flow abruptly transitions to subcritical flow, a surge 
of kinetic energy is dissipated, causing a sudden 
increase in turbulence within the jump region. 
This localized turbulence is characterized by rapid 
fluctuations in velocity and pressure. The intensified 
turbulent flow can induce dynamic hydraulic loads 
on adjacent structures, such as embankments or 
bridge foundations, potentially jeopardizing their 
stability and integrity. The energy dissipation 
inherent in hydraulic jumps makes them (the adjacent 
structures) particularly prone to erosive forces, 
which, coupled with the turbulent nature of the flow, 
can lead to the scouring of riverbeds and banks.

Understanding the dynamics of turbulent flow 
within hydraulic jumps is crucial for assessing 
the potential impacts on nearby constructions and 
implementing effective engineering solutions to 
mitigate risks and ensure the longevity and safety 

of hydraulic infrastructure. For this reason, in this 
study, we have chosen this characteristic case of 
turbulent flow to demonstrate our methodology, i.e., 
analyze the video of a hydraulic jump with image 
velocimetry and then process the obtained time 
series with a stochastic model.

The video used in this study was obtained from 
the supplementary material of the publication of 
Mortazavi et al. [3]. This video represents a hydraulic 
jump with inflow Froude number of 2, Weber 
number of 1820 and density ratio of 831. The 
video has 598 frames, a frame rate of 24 fps, and a 
resolution of 960 × 540 px. The first frame of this 
video is displayed in Figure 1.

Figure 1. The vectors of the time-averaged velocities along the 
100 points of the track line (marked by the origins of the vectors) 
are processed by the image velocimetry. The upper window is a 
zoom-in around the track line.

In this study, the Free-LSPIV particle image 
velocimetry algorithm [24–26] was used. Particle image 
velocimetry (other image velocimetry variants 
include particle tracking, space-time, optical flow 
etc. [27]) is based on the assumption that the most 
probable displacement of the particles within a 
flow captured in two subsequent frames of a video 
is the displacement that maximizes the correlation 
function. The process involves dividing the preceding 
frame into tiles, referred to as interrogation areas. 
Subsequently, these areas are compared for similarity 
(via the correlation function) with all subregions 
of the corresponding search areas, in the following 
frame. This enables a reliable estimation of motion 
yielding valuable insights into the velocity field of 
the fluid or particles under consideration [11].

The Free-LSPIV algorithm processes video 
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frames along a predefined track line, with an 
arbitrary number of points representing the centers of 
interrogation areas. Sequential runs of Free-LSPIV, 
each using different predefined track lines, can be 
employed to obtain velocities over a specific area 
of the flow. However, for this study, a single track 
line was utilized. The algorithm outputs velocity 
vectors at these points for the time intervals between 
the video frames. In this case study, velocity vectors 
were obtained at 100 points (Figure 1).

The data obtained by Free-LSPIV were stored 
in the 2D matrix V with dimensions nt × 2n. In 
this case, nt was 597 (representing the number of 
intervals between the 598 video frames), and n was 
100 (indicating the number of points along the track 
line, as shown in Figure 1). This resulted in  200 
columns of V, which store the vector components 
along the principal flow directions (streamwise and 
vertical) for the 597 time steps. The matrix contained 
NaN (not a number) values corresponding to time 
instances and locations for which Free-LSPIV could 
not obtain velocity estimations due to the lack of 
distinct features (particles) in the specific locations 
of the corresponding frames.

Because some of the algorithms used in the 
analysis cannot handle NaN values (e.g., the fast 
Fourier transformation algorithm), 1D linear 
interpolations (applied separately for each column of 
the matrix V) were used to fill the missing values.

2.2 Stochastic analysis of image velocimetry data

The stochastic model used in this study was 
a multivariate autoregressive of order 1. This is 
described by the following equation [28,29]:

vt = A vt–1 + B εt

(1)

vt and vt-1 are 2n × 1 vectors of which elements 
are the transposed rows t and t–1 of the matrix V, 
respectively, A is a 2n × 2n matrix, εt is a 2n × 1 
vector with independent and identically distributed 
random numbers following the N(0,1) distribution, 
and B is a 2n × 2n matrix, where 2n is the number 
of the random variables (in this case, 2n equals 

200 with the first 100 values corresponding to the 
streamwise vector components and the next 100 to 
the vertical vector components of the 100 points 
along the track line).

The matrices A and B can be calculated with 
the following formulas based on the available 
observations:

A = cov[V, V1] (cov[V, V])–1

(2)

BBT = cov[V, V] – A cov[V, V] AT

(3)

where V1 is the vertical circular shift of V (the row t 
of V is the same as the row t+1 of V1).

The r ight-hand side of  Equation (2)  and 
Equation (3) can be computed directly from the 
data. However, a decomposition should be applied 
to the matrix obtained by the right-hand side of 
Equation (3) to obtain the matrix B. In this study, 
the eigendecomposition method was employed [30]. 
According to this method, any square matrix, the 
right-hand side of Equation (3) in this case, that 
has eigenvalues λi and eigenvectors zi, i = 1, …, 
2n, equals the product Z L Z–1, where Z is the 2n × 
2n matrix with the eigenvectors zi and L the 2n×2n 
diagonal matrix with its eigenvalues λi 

[31]. Since 
the right-hand side of Equation (3) is symmetric, 
the matrix Z is orthogonal (or orthonormal) [32], 
and hence Z–1 = ZT. If L0.5 is the matrix for which  
L0.5 L0.5 = L, then Equation (3) becomes:

BBT = Z L Z–1 = (Z L0.5) (L0.5 Z)T

(4)

and therefore 
B= Z L0.5

(5)

While various researchers have provided an 
intuitive description of the physical meaning of 
matrices A and B, attributing the former to the 
strength of the influence of memory and the latter 
to the strength of randomness, concerns have been 
raised regarding the mathematical consistency of this 
definition, particularly with respect to the concept of 
“memory” [33].
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Equation (1) applies to variables with a zero 
mean. Consequently, the observed time series 
should be standardized to have a zero mean before 
applying Equations (1) to (5). Subsequently, the 
generated time series from Equation (1) should be 
destandardized (by adding back the mean) to restore 
the intended statistical properties.

3. Results
The stochastic model described by Equation (1) 

was applied to produce 20000 × 200 synthetic velocity 
values (100 streamwise vector components and 100 
vertical vector components at 20000-time steps). 
Figure 2 displays the mean and standard deviation 
of the synthetic and observed velocity values at the 
100 points along the track line. Figure 3 displays 
the correlation coefficient between the streamwise 

components of the velocities at two subsequent 
points, and the correlation coefficient between the 
components of the velocity vector at all 100 points.

Figures 4 and 5 display the histogram and the 
second-order characteristics (the power spectrum 
and the climacogram) of the streamwise and vertical 
components of the velocity vector at the point i = 50 
of the track line. 

The red line in the power spectrum of Figures 
4 and 5 indicates the theoretically expected slope 
of –5/3 at the inertial sub-range, based on the 
Kolmogorov conceptual framework for turbu-
lence [34]. The figures also provide the slope of the 
trend line that best fits the spectrum and the Hurst 
coefficient of the climacogram. The Hurst coefficient 
is related to the slope of the climacogram for the 
higher scales (or lower frequencies) according to the 
formula H = 1 + slope/2 [33].

(A) (B)
Figure 2. Comparison of the mean and standard deviation values of the observed and synthetic velocities at the 100 points of the 
track line; (A) mean and standard deviation values of the components of the velocity vectors along the streamwise direction, i.e., 
mean(vxi) and std(vxi), (B) mean and standard deviation values of the vertical components of the velocity vectors, i.e., mean(vyi) and 
std(vyi), where i = 1, …, 100 in both (A) and (B).

(A) (B)
Figure 3. Comparison of the correlation coefficients of the observed and synthetic velocities at the 100 points of the track line; (A) 
ρ(vxi, vxi+1), where i = 1, …, 99; (B) ρ(vxi, vyi), where i = 1, …, 100.
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Figure 4. First- and second-order characteristics of the observed 
velocity (597 time steps) at point i = 50 of the track line. The 
left column corresponds to the streamwise component of the 
velocity vector and the right column corresponds to the vertical 
component.

Figure 5. First- and second-order characteristics of the synthetic 
velocity (20000 time steps) at point i = 50 of the track line. The 
left column corresponds to the streamwise component of the 
velocity vector and the right column corresponds to the vertical 
component.

A collective comparison of the slope of the power 
spectrum of the observed and synthetic data is given 
in Table 1. The spectrum slope is estimated in the 
frequency region [0.02, 0.4] for all points of the 
track line. This region was selected because it gave 
the closest mean value to the expected theoretical, 
and at the same time the lowest standard deviation.

Table 1. The mean and the standard deviation of the 100 
spectrum slopes of the velocity values at the 100 points along 
the track line.

Mean Standard deviation
Observed streamwise component –1.68 0.21
Synthetic streamwise component –1.66 0.20
Observed vertical component –1.69 0.27
Synthetic vertical component –1.66 0.22

A collective comparison of the H coefficient of 
the observed and synthetic time series is provided in 
Table 2.

Table 2. The mean and the standard deviation of the H 
coefficients of the two velocity vector components at the 100 
points along the track line.

Mean Standard deviation
Observed streamwise component 0.70 0.078
Synthetic streamwise component 0.58 0.043
Observed vertical component 0.70 0.075
Synthetic vertical component 0.58 0.037

Figure 6 displays the return period plot of vx
2, vx´

2 
and |vx´·vy´| at points i = 1 and 50 of the track line. 
The return period of a specific value is estimated 
with the formula T/Δt = 1/(1 – P) [33], where Δt is the 
time step of the assessment, 1/24 second in this case, 
and P is the probability of non-exceedance of this 
specific value. The latter is estimated empirically 
with the Hazen plotting position, which is consistent 
with a set of statistical preconditions [35]. The 
probability of non-exceedance is estimated also for 
vx

2 and vx´
2 from the chi-square distribution with one 

degree of freedom.

(A) (B)
Figure 6. Return-period plot of vx

2, vx´
2 and |vx´·vy´| at points (A) 

i = 1, and (B) i = 50 of the track line.

4. Discussion
Figures 2 to 6 and Tables 1 and 2, featuring the 



52

Journal of Environmental & Earth Sciences | Volume 06 | Issue 01 | April 2024

statistical metrics outlined in the preceding section, 
are dedicated to scrutinizing the effectiveness of 
the stochastic model in interpreting data acquired 
through the image velocimetry algorithm. The model 
showcased commendable performance in accurately 
capturing both first and select second-order statistics 
observed in the data. At all 100 points along the track 
line, it accurately reproduced the mean and standard 
deviation of the observed velocity time series, the 
correlation coefficient between the streamwise 
velocity components of two neighboring points, and 
the correlation coefficient between the two velocity 
components of any point. Yet, for this kind of 
application, it is crucial to ensure that the synthetic 
data manifests the distinctive statistical properties 
originating from the hydraulic conditions that define 
turbulent flows.

An essential characteristic of stochastic processes 
representing turbulent flows is the trend of the 
spectrum in the inertial sub-range of fully developed 
turbulence. Within this sub-range, smaller eddies 
transfer energy to larger eddies, creating a cascade 
of energy across various length scales. According 
to Kolmogorov, the spectrum in this sub-range 
tends to follow a power law with an exponent 
equal to –5/3 [34]. In our case study, the spectrum of 
both the synthetic and observed data demonstrated 
average slopes compatible with this power law in 
the frequency range [0.02, 0.4] (refer to Figures 
4 and 5). Regarding the synthetic time series, this 
was encouraging since the mathematical analysis 
of autoregressive models, like the one used in this 
study, suggests that the log-log slope of the power 
spectrum of a time series produced with Equation (1) 
smoothly ranges from 0 for low frequencies to –2 for 
high frequencies, with the rate of decay determined 
by the values of the matrix A [33]. Noticeably, the 
average log-log slope of the synthetic time series 
in the inertial sub-range was virtually equal to the 
theoretically expected value of –5/3 (Table 1).

Another important characteristic of stochastic 
processes that represent turbulent flows is the long-
term persistence, also known as Hurst-Kolmogorov 
(HK) behavior. The accurate representation of 

the HK dynamics is very important for assessing 
the hydraulic stresses induced by turbulent flows. 
According to Nordin et al. [36], the range of the 
cumulative sum of departures of any subset of the 
observed time series of the velocity of a turbulent 
flow with mean value um presents a scaling behavior 
according to the rule:

R ~ σ sH

(6)

where σ is the standard deviation of the subset, s 
is the time scale or the subset length, H the Hurst 
coefficient, and R = max{Σt ut – t um } – min{Σt 
ut – t um } with t = 0, …, s. The value of R ranges 
from 0 to higher values, where 0 corresponds to a 
time series of a constant value. Higher values of R 
indicate both persistence and higher excursions from 
the mean value.

From Equation (6) it becomes evident that the 
Hurst coefficient plays an important role in the 
duration and magnitude of the deviations of the 
velocity from the mean value. According to Table 2,  
the average Hurst coefficient of the observed and 
synthetic velocities is 0.70 and 0.58 respectively. 
This deviation was expected because of the 
Markovian nature of the stochastic model employed 
in this study. The climacogram of the synthetic time 
series (Figure 5) exhibits the typical pattern of the 
climacogram of a Markovian process [33]. In this 
case study, the Hurst coefficient of the observed was 
relatively low. However, H values up to 0.9 are not 
uncommon in turbulent flows [37]. For such cases, 
a generalized Hurst-Kolmogorov stochastic model 
should be considered [1].

Figure 6 is the most important output of this study 
and could form the basis for a probabilistic assessment 
of the potential impacts of turbulent flow on nearby 
construction. The return period plots at points i = 1 and 
50 provide a direct visual assessment of the stressful 
conditions at these assessed locations. The magnitude 
of the stresses decreases with distance from the 
hydraulic jump, which is manifested by the lowering of 
the curves.

Consider a scenario where the previous case 
study concerned the assessment of the stress on a 
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construction at point 1 of the track line. If the study 
was limited exclusively to the analysis of the data 
obtained by the image velocimetry method, the 
reported maximum vx

2 value during the 25-second 
video recording period would be 34.87 (m/s)2. 
However, there is no specific reason why the 
assessment period should be constrained to the 
duration of the video or the duration of any other 
monitoring procedure (e.g., the duration of sampling 
with a current meter). The assessed construction 
will remain subject to stresses for extended periods. 
Ideally, the stress values used for the design or the 
estimation of impacts on the construction should 
be based on the following formulation: given the 
expected duration k Δt of a stressful event, and an 
acceptable probability of exceedance at least once 
during the assessed period (probability of failure) 
equal to R, what are the expected maximum stress 
values. The handling of this probabilistic formulation 
is as follows. Given the values of k and R, and by 
employing the probability of failure equation [38]:

R = 1 – (1 – Δt / T)k

(7)

One could solve for T, and then from Figure 6 
obtain the estimation for the design values. 

Figure 6 indicates that a stress level of 34.87 (m/
s)² corresponds to a return period of 308 time steps 
(each time step being 1/24 second). This results in 
a relatively short duration of 13 seconds, which is 
notably shorter than the expected duration of high 
flows capable of inducing intense turbulence and 
increased stresses on a structure.

It should be noted that in a comprehensive study, 
Figure 6 should also include the confidence limits 
of the return period plots [33]. This would require 
generating not a single, but a set of synthetic time 
series.

Future research could focus on alternative 
stochastic models to address various issues that were 
unveiled in this study. 

·As mentioned previously,  models  that 
accurately represent the Hurst-Kolmogorov behavior 
should be assessed. This will enable the capture 
of this important second-order characteristic for 

reproducing the effect of persistence.
·The stochastic model used in this case study 

is 1D in the sense that the index set of the process 
concerns one dimension, the time in Equation (1). 
By extending the set to three dimensions, one could 
explore comprehensive spatio-temporal approaches, 
like those employed in geostatistics [39]. However, 
multidimensional modeling is challenging and, for 
this reason, is employed only in a small portion of 
stochastic model applications.

·The histograms in Figure 4 suggest that some 
of the observed time series do not follow normal 
distribution. It should be noted that Equation (3) is 
an underdetermined system of equations, therefore 
Equation (5) is only one of the infinite alternative 
solut ions.  For  example,  Koutsoyiannis  has 
suggested a solution of Equation (3) that preserves 
the skewness [28]. This may prove advantageous in 
cases where the distribution of the involved random 
variables is not Gaussian.

·An alternative coordinate system could be 
employed to express the velocity vector into scalar 
variables. For example, in weather forecast modeling 
they have suggested employing polar coordinates 
since with Cartesian coordinates there is an incentive 
to minimize the wind magnitude in the face of 
predictive uncertainty. Using polar coordinates, 
accounting for both magnitude and angular direction, 
may offer advantages in such instances [40].

5. Conclusions
In this study, we presented a novel approach that 

integrates image velocimetry with a stochastic model 
to comprehensively analyze turbulent flows, with 
a focus on hydraulic jumps as a characteristic case. 
The synergy of these methodologies allowed for a 
nuanced understanding of flow dynamics, offering 
insights that contribute to both hydraulic engineering 
and structure design.

The proposed stochastic model, a multivariate 
autoregressive model of order 1, demonstrated 
commendable performance in capturing statistical 
properties of turbulent flows. Through the analysis 
of synthetic and observed data, we observed the 
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model’s ability to reproduce key characteristics of 
the statistical properties and structure.

The power law behavior in the inertial sub-
range of fully developed turbulence was verified, 
with the spectral analysis revealing an exponent 
close to the theoretical –5/3. This alignment with 
Kolmogorov’s theory reaffirms the accuracy of 
the image velocimetry data and the stochastic 
model. Additionally, the study delved into the long-
term persistence, or Hurst-Kolmogorov behavior, 
revealing insights into the scaling behavior of 
velocity deviations from mean values.

The significance of this work lies in its potential 
applications for assessing hydraulic stresses on 
nearby constructions in turbulent flow scenarios. 
By providing a probabilistic framework for extreme 
velocity values, the methodology presented here 
offers a valuable tool for hydraulic engineering 
practices. The return-period plot emerges as a 
pivotal output of the stochastic model, allowing for 
a probabilistic assessment of potential impacts on 
nearby constructions over extended durations.

In conclusion, the integrated approach presented 
in this study opens avenues for advancements in the 
field of turbulent flow analysis. By bridging image 
velocimetry and stochastic modeling, we not only 
validate the accuracy of our methodology but also 
contribute valuable insights that can inform the 
design, safety considerations, and risk assessments 
of hydraulic structures under diverse flow conditions. 
Moreover, the demonstrated efficacy of our 
integrated approach in hydraulic model experiments 
underscores its applicability in practical settings, 
enhancing the reliability and precision of flow 
analyses crucial for hydraulic engineering.
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