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The challenge of generating synthetic electricity prices

 Electricity market prices are major drivers of the planning, design, strategic management and real-
time operation of energy systems, also including the water-energy-food nexus (Sakki et al., 2022).

 The energy market dynamics can be modelled in stochastic means (e.g., Hou et al., 2017), by 
considering electricity prices as random processes that follow the probabilistic regime and 
dependence structure of historical data.

 Typical use of stochastic models is providing synthetic data to support forecasting or long-term 
simulation studies (here emphasis is put on simulation).

 Since the present structure of energy markets under the Target Model renders them strongly 
dependent on socioeconomic disturbances and highly unpredictable events (financial, geopolitical & 
health crises), challenging issues to account for within the data synthesis procedure are:

◼ the representation of inherent peculiarities of electricity market process, such as volatility, spikes, 
and periodicities across seasons, weeks and the intraday cycle;

◼ the limited statistical information under the Target Model structure;

◼ the need to produce abnormal yet persistent shifts, as observed during the recent energy crisis. 
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Cases of Greece and Portugal
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 Mediterranean countries with similar 
economic conditions, fiscal compliance, and 
financial sector development.

 Quite similar energy mix, strongly relying on 
imported gas, with significant contribution 
of renewables (hydro, solar, wind).

Electricity source Greece (%) Portugal (%)

Coal 10.4 0.1

Oil 9.0 3.1

Gas 37.3 37.0

Hydropower 9.0 16.2

Solar 12.6 6.5

Wind 20.7 28.3

Bioenergy 1.0 8.5

Other renewables 0.0 0.4

Day-ahead market prices, retrieved by the ENTSO-E platform 

(from 1/1/2015 to 31/12/2022). Is it possible to represent their 

irregular dynamics through a stochastic stationary model? 
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Long-term persistence: A common aspect of physical & social processes
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Nile River annual minimum water depth at Roda Nilometer 
(retrieved by Koutsoyiannis, 2013). The Nile’s behavior, first 
detected by H.E. Hurst (1951), has been a benchmark for 
hydrological sciences, highlighting that long-term persistence 
(LTP) is an intrinsic property of geophysics and the climate. 

Hint: LTP is easily formalized in stochastic means, by assigning “heavy-tailed” auto-dependence structures. 

LTP is also omnipresent in complex socioeconomic processes that 
drive the evolution of markets & commodities, e.g., crude oil 
prices. Shifts, trends and long-range fluctuations are footprints 
of a perpetually changing world, dominated by LTP (also 
referred to as Hurst-Kolmogorov dynamics; Koutsoyiannis, 2011).  

Global economic 
crisis (2008)

Post-COVID crisis 
(end 2021)

COVID
Excess of supply, 
also due to new 

sources

30y average 
data = climate
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Mind the autocorrelations!
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The stochastic modelling framework in a nutshell

 Remove of seasonality through data standardization, i.e., 𝑥𝑡
∗ = (𝑥𝑡 − 𝜇)/𝜎 (where 𝜇 and 𝜎 the 

sample mean and standard deviation values of the corresponding month), thus allowing to handle the 
process as stationary.

 Application of Symmetric Moving Average (neaRly) To Anything (SMARTA) scheme to standardized 
data (Tsoukalas et al., 2018), comprising three major modelling elements:

◼ the theoretical autocovariance function (ACF), introduced by Koutsoyiannis (2000), allowing for 
reproducing a wide range of time-dependence structures (including LTP; Efstratiadis et al., 2014);

◼ the Symmetric Moving Average (SMA) generation procedure, as formalized by Koutsoyiannis 
(2000), to be aligned with the ACF;

◼ the Nataf’s joint distribution model (Nataf, 1962), which is related with the Gaussian copula, and 
enables the explicit representation of the process of interest with any distribution model.

 Model configuration (i.e., ACF assignment and distribution fitting), and eventually data synthesis, are 
facilitated through the anySim package, offering a suite of statistical and stochastic tools in R 
environment (Tsoukalas et al., 2020).
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Mathematical background

 Assignment of a power-type theoretical autocovariance function (ACF):

𝛾𝑖 = 𝛾0[1 + 𝜅 𝛽 𝑖]−1/𝛽

 where 𝛾𝑖 is the autocovariance of the process for lag 𝑖, 𝛾0 is the variance and 𝜅, 𝛽 are shape and 
scale parameters, respectively, that are related to the persistence of the process of interest ( ARMA-

 type, for 𝛽 = 0, more persistent structures, as 𝛽 increases). 

 Following the SMA rationale, we consider an auxiliary stochastic process 𝑧𝑖, expressed as:

𝑧𝑖 = ෍

𝑗=−𝑞

𝑞

𝑎|𝑗| 𝑣𝑖+𝑗 = ෍

𝑗=−𝑞

𝑞

𝑎𝑠 𝑣𝑖−𝑠 + ⋯ + 𝑎1𝑣𝑖−1 + 𝑎0𝑣𝑖 + 𝑎1𝑣𝑖+1 + ⋯ + 𝑎𝑠𝑣𝑖+𝑠

 where 𝑣𝑖 are noise variables that are generated from a Gaussian distribution, and 𝑎𝑗 are weighting 

coefficients (symmetric), which can be analytically determined from the sequence of 𝜸𝒋. 

 Prior to parameters 𝑎𝑗, we identify the equivalent autocorrelations that result to the target ones (as 

specified via the theoretical ACF), after mapping of the Gaussian auxiliary process, 𝑧𝑖, to the actual 

domain, 𝑥𝑖 (i.e., the real process, to which a specific distribution model is assigned). 
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Fitting of autocorrelation functions & marginal distributions
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Reproduction of monthly-scale statistics
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Can we trust on synthetic data for real-world decisions? 
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 The multiple peculiarities of electricity market price 
dynamics are satisfactory reproduced by stationary 
stochastic models accounting for LTP.

 The short history of the current market structure, which 
seems to be a major barrier in assigning “plausible” 
modeling assumptions and inferring parameters based 
on the observed data, is counterbalanced by the broad 
experience on stochastics, as a well-recognized and 
trustable approach for representing LTP-driven 
processes, also including the changing hydroclimate.

 Long synthetic prices reflecting a plethora of potential 
market conditions can be eventually used as synthetic 
inputs to energy system simulators, thus allowing to 
quantify uncertainties and evaluate their technical and 
financial performance in probabilistic means (e.g., risk).
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