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Abstract: Recent studies have shown the potential of transformer-based neural networks in increasing
prediction capacity. However, classical transformers present several problems such as computational
time complexity and high memory requirements, which make Long Sequence Time-Series Forecasting
(LSTF) challenging. The contribution to the prediction of time series of flood events using deep learning
techniques is examined, with a particular focus on evaluating the performance of the Informer model
(a particular implementation of transformer architecture), which attempts to address the previous
issues. The predictive capabilities of the Informer model are explored and compared to statistical
methods, stochastic models and traditional deep neural networks. The accuracy, efficiency as well as the
limits of the approaches are demonstrated via numerical benchmarks relating to real river streamflow
applications. Using daily flow data from the River Test in England as the main case study, we conduct a
rigorous evaluation of the Informer efficacy in capturing the complex temporal dependencies inherent in
streamflow time series. The analysis is extended to encompass diverse time series datasets from various
locations (>100) in the United Kingdom, providing insights into the generalizability of the Informer. The
results highlight the superiority of the Informer model over established forecasting methods, especially
regarding the LSTF problem. For a forecast horizon of 168 days, the Informer model achieves an NSE of
0.8 and maintains a MAPE below 10%, while the second-best model (LSTM) only achieves −0.63 and
25%, respectively. Furthermore, it is observed that the dependence structure of time series, as expressed
by the climacogram, affects the performance of the Informer network.

Keywords: flood; river streamflow forecasting; long sequence time series forecasting (LSTF); deep learn-
ing; transformers; attention mechanism; Informer model

1. Introduction

Flood events refer to the natural phenomena characterized by the overflow or inunda-
tion of land areas that are typically dry, caused by excessive accumulation of water. These
events can occur due to various factors such as heavy rainfall, snowmelt, dam failure,
or coastal surges. Floods are of huge importance worldwide as natural disasters that affect
different regions, leaving a profound impact on societies [1]. They transcend geographical
boundaries and affect millions of lives around the world, making them a critical area of
study and research. Understanding the impacts and mitigating the risks associated with
flood events is of paramount importance to safeguard human life and minimise socio-
economic and environmental damage. They can result in loss of life, property damage,
displacement of communities, disruption of essential services, and long-term ecological
consequences. The severity and frequency of flooding events vary globally, making ac-
curate forecasting and alertness crucial for effective disaster management and mitigation
strategies. In the context of the above, the accurate prediction of daily river streamflow,
which constitutes an important factor in flooding, is essential.

Precise streamflow forecasting is particularly needed in agricultural water manage-
ment, because it affects irrigation scheduling, mitigation of drought and flood, and many
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other actions that ensure agriculture stability and optimize crop yields. On the other hand,
timely and accurate forecasts can reduce the impact of drought, allowing for proactive
water management strategies through adjustments in irrigation and water-saving plans
ahead of the dry seasons [2]. Likewise, streamflow predictions are vital in flood prevention
and management, thus protecting farmland from flooding and associated losses. Hence,
this pre-emptive approach provides a robust tool for agriculture water managers to make
informed decisions for improving the overall efficiency of water use in agriculture.

Various techniques are employed to achieve accurate and reliable results for estimating
river streamflow, most of which are either physically based models or data-driven. Physically
based models for streamflow prediction depend on specific hydrological hypotheses and
necessitate extensive hydrological data for effective calibration [3]. They represent hydrological
systems truthfully and show what is happening with the processes involved. They also prove
particularly beneficial when a deep understanding of the physical processes is essential,
such as assessing the impact of land use changes or climatic variations on streamflow [4].
Beyond data constraints [5], these models often require complex parameterization, a process
prone to challenges and imprecision. Unfortunately, the calibration of these models is resource-
intensive and time-consuming. As a result, there is a growing interest in enhancing data-driven
models for streamflow prediction, which are more efficient and cost-effective.

For time series prediction of river streamflow, advanced approaches like statistical
models, such as autoregressive integrated moving average (ARIMA) [6], and seasonal
decomposition methods are widely used. These statistical models leverage historical data
to forecast future flow values, considering seasonality and trends. Moreover, machine learn-
ing algorithms—including k-Nearest Neighbors (KNN) [7], Artificial Neural Networks
(ANN), Light Gradient Boosting Machine Regressor (LGBM), Linear Regression (LR), Mul-
tilayer Perceptron (MLP), Random Forest (RF), Stochastic Gradient Descent (SGD), Extreme
Gradient Boosting Regression (XGBoost), and Support Vector Regression (SVR)—have been
widely used as well [4]. There is also great interest in deep learning methods, like Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM) [8] networks and Convolu-
tional Neural Networks (CNN) [9]. Some other models follow a combined methodology
utilizing artificial neural networks that obey any given law of physics, known as Physics
Informed Neural Networks (PINNs) [10].

In recent years, modern deep learning models like Transformers, have gained popular-
ity (Figure 1) for many tasks, including time series prediction, due to their ability to capture
complex temporal long-range dependencies and non-linear patterns. Through an attention
mechanism, transformers grant a complete and interrelated view of the entire time series
being analyzed. These methods could play a crucial part in accurate forecasting of river
streamflow and thus empowering water resource managers to make informed decisions
for flood management, drought mitigation, and sustainable water allocation.
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Figure 1. The number of publications and citations per year from 2017 (until 2 June 2024), re-
lated to Transformer networks (data were obtained from Dimensions AI [11], using the keywords:
“transformer model”, “attention mechanism”, “self-attention in neural networks”).
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1.1. Literature Review
1.1.1. Traditional Methods

Time series forecasting has attracted great scientific interest among researchers of
many disciplines and for the analysis of various tasks, including the area of hydrology and
streamflow prediction. Many algorithms have been used over the years to solve the prob-
lem of forecasting, from classical statistical methods to advanced deep learning algorithms.
In the book of Box et al. [12], there are several statistical methods and techniques used
to analyse and forecast time series data, including the Autoregressive Integrated Moving
Average (ARIMA) model [13]. This model follows the Markov process and creates an au-
toregressive model for recursive sequential forecasting. Exponential Smoothing [14] is used
to examine the practical application for handling trend, seasonality, and other components
of time series data. Similar models have been applied for streamflow forecasting problem
for the last 50 years, like Moving Average (MA), Auto Regressive Moving Average (ARMA),
Linear Regression (LR), and Multiple Linear Regression (MLR) [15–17].

Some limitations of these traditional techniques include the frequent assumption that
the time series data are linear and stationary. Models such as ARIMA and exponential
smoothing have limited ability to approximate complex patterns of time series data, such as
anomalies, abrupt changes, slope changes, and non-linear relationships. Another challenge
of traditional models is the limitations they may have when processing large-scale time
series data or high-dimensional data [18]. As a result, researchers have focused on crafting
models designed to mitigate the limitations inherent in conventional models, e.g., data-
driven approaches in the broader domain of Artificial Intelligence (AI).

1.1.2. Machine Learning Approaches

In the realm of streamflow forecasting, various machine learning techniques have
been used in the literature. Among these, Artificial Neural Networks (ANN) [19] have
gained prominence for their ability to model complex relationships within streamflow data.
Support Vector Machines (SVM) [20] have also been employed, leveraging their proficiency
in handling high-dimensional datasets and capturing nonlinear patterns. Additionally,
Random Forests [21] have demonstrated effectiveness, particularly in mitigating issues
related to overfitting and enhancing prediction accuracy. Gradient Boosting Machines
(GBM) like the extreme gradient boosting regression (XGBoost) [22], which basically is
an optimization of the gradient boosting method for decision tree models, has gained
popularity in streamflow prediction [23]. Recent studies demonstrate a growing role that
artificial intelligence techniques can also play in improving the accuracy and efficiency
of water resource management [24] within agricultural settings. These machine learn-
ing approaches offer diverse methodologies for analysing and forecasting flood events,
contributing valuable insights to the field and addressing the challenges associated with
traditional hydrological models. As researchers dive into the literature, the comparative
strengths and weaknesses of these techniques become apparent.

1.1.3. Deep Learning Approaches

More recently there is also great interest in deep learning methods in streamflow
forecasting. Commencing with Recurrent Neural Networks (RNNs) and extending to
Long Short-Term Memory (LSTM) [25] networks—a distinct subtype of RNNs as well
as Gated Recurrent Units (GRUs) [26], capable at capturing temporal relationships in
streamflow data and generating accurate predictions. Convolutional Neural Networks
(CNNs) [27] can extract critical features from numerous inputs with its convolutions.
Additionally, hybrid and spatio-temporal models that combine CEEMDAN, FE, VMD, SVM,
RF, GRU, and TCN have demonstrated improvements in streamflow forecasting [28,29].
Likewise, big companies like Amazon and Facebook have gained the opportunity to
create their own forecasting models, i.e., DeepAR [30] and Prophet [31] respectively. In [32]
researchers implemented Deep Autoregressive (DeepAR), a methodology based on iterative
networks such as LSTMs producing probabilistic forecasting, for multi-step-ahead flood
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probability prediction. On the other side Prophet’s core idea is to model time series data as
a combination of trend, seasonality and noise components and its performance is evaluated
for daily and monthly streamflow forecasting both in short and long term horizon [21,33].

The year 2017 marked a significant milestone in the field of deep learning with the
introduction of the Transformer model, as documented in the relevant work [34]. This
groundbreaking model introduced the concept of the attention mechanism, empowering
the model to selectively focus on different parts of the input sequence for more effective
output generation. Initially applied to natural language processing (NLP), particularly
in translation, these models have rapidly gained popularity across various fields and
tasks, including time series analysis [35]. The key distinguishing features of Transformer
models, that set them apart from other deep learning models (LSTM, GRU, CNN, etc.)
include their capacity to capture long-range dependencies, their ability to parallelize tasks,
and their effective management of large-scale datasets. Transformer-based applications
in time series tasks [35–37], highlighting the advantages, limitations and possible future
research directions. The increased utilization of models with transformer architecture
prompted researchers to swiftly create various transformer-based models, each tailored
by research groups to address distinct challenges and requirements in time series fore-
casting tasks. In fact, several models, e.g., Linformer (NLP) [38], Reformer (NLP) [39],
Longformer (NLP) [40], SSDNet [41], TFT [42], Autoformer [43], Triformer [44], TCCT [45],
Pyraformer [46], TACTiS [47], FEDformer [48], Scaleformer [49], and Crossformer [50] all
share common structure but also have unique features and improvements for the task
of time series forecasting. However, it is essential to bear in mind that machine and
deep learning models have inherent limitations. Successful model construction relies on
large amount and high-quality training data, but challenges such as overfitting must be
carefully managed.

In the field of streamflow prediction, researchers lately explored the application of
certain transformer models [51–53]; however, these endeavors are still in their early stages
of development. The Informer model [54] (i.e., a transformer-based model), highlighted in
this study, uniquely combines various characteristics and is worth studying. Specifically
designed for predicting long sequences in time series data, Informer has been evaluated
on diverse datasets, including electrical transformer temperature, electricity consumption,
and climate data. They were also applied in tasks such as drought prediction [55], motor
bearing vibrations [56], wind energy production [57], as well as in runoff prediction [58].
The model employs a Kullback–Leibler [59] divergence-based method, i.e., a “distance”
measure for probability distributions, to simplify the attention matrix, significantly reducing
computational complexity.

1.2. Objectives and Structure of the Study

This paper focuses on the problem of streamflow prediction using state-of-the-art deep
learning models, notably the transformer-based models, which have gathered substantial
scientific attention and are increasingly recognized for their efficacy in time series predic-
tion. These models demonstrate promising results in capturing temporal dependencies
within time series data more efficiently. The first objective is to compare five distinct
models: a naive Hurst–Kolmogorov stochastic benchmark model (SB), a time series model
(ARIMA), an optimized machine learning algorithm (XGBoost), an iterative deep learning
network (LSTM), and a transformer-based deep learning model (Informer), in the problem
of river streamflow forecasting utilizing a single dataset. Subsequently, to further assess
and highlight the performance of the most effective model, the best model was exclusively
applied in the forecasting analysis across a large dataset comprising more than 100 indi-
vidual time series of river streamflow within the United Kingdom territory. This focused
evaluation aims to provide a comprehensive understanding of the Informer’s capabilities
and effectiveness in handling a diverse range of temporal patterns within different time
series scenarios.

The contributions of the present paper are as follows:
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• Applying a novel approach by incorporating a transformer-based model (Informer)
into river streamflow forecasting, contributing to the exploration of advanced deep
learning techniques in hydrology. Although these methods (i.e., transformers) are
quite advanced, their utilization in hydrology has not been widespread.

• Utilizing and comparing five distinct models (SB, ARIMA, XGBoost, LSTM, Informer)
for river streamflow forecasting.

• Conducting an in-depth assessment of the Informer model’s performance across a
dataset featuring 112 individual time series of river streamflow in the United Kingdom.

• Providing valuable insights into the Informer model’s capabilities in handling diverse
temporal patterns within different time series scenarios. The performance of the
Informer model was assessed in comparison with the structure of the time series.

Apart from the present (Section 1), which provides a brief introduction in the impor-
tance of the analysis of flooding events and exploring Artificial Intelligence (AI) approaches,
there are four more sections. The methods used are described in Section 2, while the data
and results of the two different applications are described in Sections 3 and 4. In Section 5
further discussions are provided, and Section 6 concludes the outcomes of this study.

2. Materials and Methods

This section introduces five models (SB, ARIMA, XGBoost, LSTM and Informer)
applied to time series forecasting of daily streamflow in the River Test and analyses their
limitations. This selection of models was made to ensure representation from each category:
benchmark, statistical, machine learning, deep learning, and transformer models.

2.1. Stochastic Benchmark (SB)

Establishing a benchmark model is crucial for comparative analysis. For this task, we
introduce the Stochastic Benchmark (SB) method as our benchmark model. The stochastic
benchmark method provides a fundamental baseline for evaluation, embodying a simpli-
fied yet robust approach in hydroclimatic time series forecasting. This method can serve as
an alternative to other benchmark methods, such as the average or naïve methods.

This approach is based on the assumption of a Hurst–Kolmogorov (HK) process,
characterized by its climacogram. The climacogram [60] is a key tool in stochastic time
series analyses of natural phenomena. The term is defined as the graph of the variance of
time-averaged stochastic process x(t) (assuming stationarity) with respect to time scale k
and is denoted by γ(k) [61]. The climacogram is proven valuable in identifying long-term
variations, dependencies, persistence, and clustering within a process, a characteristic
shared with Transformer models. This can be achieved by using the Hurst (H) coefficient,
which is equal to half of the slope of the climacogram on a double logarithmic scale graph.

Considering a stochastic process x(t) (here we denote stochastic variables, by un-
derlining them) in continuous time t, representing variables like rainfall or river flow,
the cumulative process is defined as follows:

X(t) :=
∫ k

0
x(t)dt. (1)

Then, X(t)/k is the time-averaged process. The climacogram γ(k) of the process x(t)
is the variance of the time-averaged process at time scale k [62], i.e.,

γ(k) := var
[

X(t)
k

]
. (2)

In Hurst–Kolmogorov (HK) processes, the future depends on the recorded past and
the climacogram is expressed in mathematical form as [63]:

γ(k) = λ2
(α

k

)2−2H
(3)
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where the α and λ are scale parameters with units of time and [x], respectively, while
the coefficient H is the Hurst coefficient, and describes the long-term behaviour of the
autocorrelation structure, or the persistence of a process [64]. More specifically, based on
the Hurst coefficient, three cases can be distinguished as follows:

• H = 0.5; the process has random variation (white noise).
• 0.5 < H < 1; the process is positively correlated. It seems to be the case in most

natural processes, where the time series shows long-term persistence or long-term
dependence.

• 0 < H < 0.5; the process is anti-correlated.

As described in Koutsoyiannis [65] in classical statistics, samples are inherently defined
as sets of independent and identically distributed (IID) stochastic variables. Classical
statistical methods, aiming to estimate future states, leverage all observations within the
sample. The above pose challenges when applied to time series data from stochastic
processes. This leads to the following question: what is the required number of past
conditions to consider when estimating an average that accurately represents the future
average over a given period of length κ?

The estimation of the local future mean at period length κ with respect to the present
and the past, i.e.,

µ
κ

:= E
[1

κ
(x1 + ... + xκ)|x0, x−1, ...

]
. (4)

Assuming that there are a large number of n observations from the present and the
past, but only ν ≤ n are selected for estimation [65], then we have:

µ̂
ν

:=
1
ν
(x0 + x−1 + ... + x−ν+1) (5)

while we can answer the above question by finding the ν that minimizes the mean square er-
ror:

A(κ, ν) := E
[
(µ̂

ν
− µ̂

κ
)2
]
. (6)

As demonstrated in [65] the standardized mean square error can be expressed in terms
of the climacogram as:

A(κ, ν) =
(1

κ
+

1
ν

)(
κγ(κ) + νγ(ν)− (ν + κ)γ(ν + κ)

)
. (7)

For the case of the Hurst–Kolmogorov process for which the Equation (3) is valid,
the value of ν that minimizes the error A is:

ν =
κ(

max(0, 2.5H − 1.5)
)2.5 . (8)

The above Equation (8) distinguishes two cases depending on the value of H coefficient.
If H ≤ 0.6, this yields ν = ∞, which means that the future mean estimate is the average of
the entire set of n observations (equivalent to average method). However, if H > 0.6, then
it can be used ν < n terms for estimating the future average.

In this paper the above methodology is used to create a new, simple and theoretically
substantiated benchmark model for comparison with other models. The SB method makes
the simplistic assumption that future values will remain similar to the average of past
values, ignoring any potential trends, seasonality, or sudden changes in the time series data.
As a result, it becomes a crude approach.

2.2. Autoregressive Integrated Moving Average (ARIMA)

For many years now, the ARIMA model has been applied as an important statistical
method in making forecasts. It combines three basic components: autoregressive (AR),
order of integration (I), and moving average (MA). Thus, in some way, it effectively captures
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the underlying patterns and dynamics within time series data. This model is characterized
by three primary parameters:

1. p—the order of autoregressive terms; The autoregressive component (AR) signifies
the correlation between an observation and the number of preceding observations.
The parameter p refers to the number of lag observations or autoregressive terms in
the model.

2. d—degree of differencing; The differencing component (I) is employed to render the
time series stationary by eliminating trends or seasonality. The parameter d denotes
the number of differences required to achieve stationarity, i.e., the statistical properties
of the series, such as mean and variance, remain constant over time.

3. q—order of moving average terms; The moving average component (MA) considers
the impact of past error terms on the current value. It calculates the weighted average
of the previous forecast errors. The parameter q represent the size of the moving
average window.

Usually the determination of the best set of parameters (p, d, q) is done with a metric,
the aim of which is to find the combination of parameters that provides the optimal balance
(trade-off) between model complexity and a strong fit to the training data. In the context
of the ARIMA model, the Akaike Information Criterion (AIC) [66] metric serves this role,
which compares the goodness of fit of different models. Lower AIC values indicating a
better balance between fit and model complexity. It is calculated based on the log-likelihood
function and can be written as:

AIC = 2k − 2ln(L), (9)

where L is the maximum log-likelihood and k is the number of model parameters.
The main disadvantage of ARIMA is that it assumes linearity and stationarity, making

it hard to deal with non-linear relationships. In addition, it struggles with long-term
forecasting due to its limited capacity to capture complex temporal patterns, as well as
with outliers.

2.3. Extreme Gradient Boosting (XGBoost)

XGBoost (eXtreme Gradient Boosting) [67] algorithm is a powerful machine learning
algorithm based on the gradient boosting framework, and it became popular marking
dominating performance in Kaggle competitions [68]. It is about an ensemble method,
meaning that it utilizes several algorithms (base learners) by boosting approach. In the
boosting approach, each model is trained to correct the errors of the previous base learners,
resulting in a model that progressively improves its performance (sequential learning) by
optimizing an objective function. Boosting algorithms play a crucial role in dealing with
bias-variance trade-offs. In XGBoost, the base learners are decision trees [69], where each
leaf node is associated with a numerical weight. Each sample is routed to a specific leaf
based on its input features, with the leaf’s weight representing the model’s prediction
for that sample. Gradient boosting involves creating new models to correct the errors of
previous ones, ultimately combining them for the final prediction. The term ’gradient
boosting’ comes from the use of the gradient descent algorithm to minimize prediction
error as new models are added. XGBoost defer from other boosting algorithms because
it applies regularization in the objective function to avoid overfitting, and parallel tree
building, making it much faster. Those characteristics combining a highly efficient, flexible
and portable algorithm. Figure 2 depicts the structure of the XGBoost algorithm and its
training process.

Following [67], the objective function that needs to be minimized at t-th iteration is:

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft) (10)
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Ω( f ) = γT +
1
2

λ∥w∥2 (11)

where yi is the target value, ŷi is the prediction, l is a differentiable loss function, ft(xi) is
the output of the new model at iteration t, and n is the number of training samples. The first
term of Equation (10) measures how well the model perform on training data, and the
second term Ω is a regularization term that measures the complexity of the base learners
(i.e., trees), to avoid overfitting. In Equation (11) T stands for the number of leaves in the
tree, with leaf weights w, and γ, λ are regularization parameters. The task of optimizing
this objective function can be simplified to minimizing a quadratic function, by using the
second order Taylor expansion [70].

Tree 1 Tree 2 Tree n

Data set (X,Y)

Iteration…..

…
..

𝑓1(𝑋, 𝑌) 𝑓2(𝑋, 𝑌) 𝑓𝑛(𝑋, 𝑌)

𝑓(𝑋, 𝑌)

…..

Final output

Sample of data

Construction of 

Decision trees

Predictions

Figure 2. The architecture of the XGBoost algorithm.

XGBoost is sensitive to hyperparameters and careful tuning is required to achieve good
performance. This process can lead to pretty high optimization, particularly when working
with large datasets. The model only accepts numerical values for processing. Additionally,
the model’s complexity makes it less interpretable compared to simpler algorithms.

2.4. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks represent an enhanced version of Recur-
rent Neural Networks (RNNs) [71], engineered to hold onto information from previous data
for extended periods. They are designed for processing sequential data. LSTMs adeptly
address the challenge of long-term dependencies through the incorporation of three gating
mechanisms and a dedicated memory unit. They were first introduced by Hochreiter
and Schmidhuber in 1997 [72] marking a milestone in deep learning. In many cases it is
very important to know the previous time steps for a long length, in order to obtain a
correct prediction of the outcome in each problem. This type of networks try to solve the
“vanishing gradients” problem [73] (i.e., the loss of information during training that occurs
when gradients become extremely small and extend further into the past), which remains
the main problem in RNN’s. At its core, LSTM consists of various components, including
gates and cell state (also referred as the memory of the network), which collectively enable
it to selectively retain or discard information over time. In a LSTM network there are three
gates as depicted in Figure 3, and the back-propagation algorithm is used to train the model.
These three gates and the cell state can be described as follows:

1. Input gate: decides how valuable the current input is for solving the task, thus choosing
the inflow of new information, selectively updating the memory cell. This gate uses
the hidden state at former time step ht−1 and current input xt to update the input gate
with the following equation:
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it = σ(Wixt + Uiht−1 + bi). (12)

2. Forget gate: decides which information from the previous cell state is to be discarded,
allowing the network to prioritize relevant information. This is determined by the
sigmoid function. Specifically, it takes the previous hidden state ht−1 as well as the
current input xt and outputs a number between 0 (meaning this will be skipped) and
1 (meaning this will be utilized), for each number of the cell state ct−1. The output of
the forget gate ft can be expressed as:

ft = σ(W f xt + U f ht−1 + b f ). (13)

3. Output gate: regulates the information that the network outputs, refining the data
stored in the memory cell. It decides what the next hidden state should be and this is
achieved through the output vector ht. The output of this gate ot is described by the
equation:

ot = σ(Woxt + Uoht−1 + bo) (14)

4. Cell state: the long-term dependencies are encoded in the cell states and in this way
the problem of “vanishing gradients” can be avoided. Cell state ct at current time step
updates the former ct−1 by taking into account the candidate cell state c̃t, representing
the new information that could be added to the cell state, the input vector it and the
forget vector ft. Cell states updated values are as follows:

c̃t = tanh(Wcxt + Ucht−1 + bc) (15)

ct = c̃t ⊙ it + ct−1 ⊙ ft. (16)

σ

tanh

Hidden state input 

ht−1

Cell state input 

ct−1

Input data xt

σ tanh

σ

σ

tanh

𝒄𝑡

𝒉𝑡

𝒄𝑡

𝒉𝑡
Forget gate Input gate Output gate

Sigmoid function 

Hyperbolic tangent 

function 

element-wise product

pointwise addition

𝒇𝑡 𝒊𝑡 𝒐𝑡

+

+

𝒙𝑡−1 𝒙𝑡+1

ct−1

ht−1

ct+1

ht+1

Figure 3. Illustration of the LSTM cell architecture, for the time instances t − 1, t, t + 1, with the
corresponding gates (Adapted from [74]).

Final output ht of the LSTM has the form:

ht = ot ⊙ tanh(ct). (17)

To summarize, Equations (12)–(17) express the mathematical calculations that are
performed sequentially in the LSTM model, where it, ft, ot are the input gate, forget gate
and output gate vectors respectively, with subscript t indicating the current time step;
Wi, W f , Wo represent weight matrices for connecting input, forget, and output gates with
the input xt, respectively; Ui, U f , Uo denote weight matrices for connecting input, forget,
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and output gates with the hidden state ht−1; bi, b f , bo are input, forget, and output gate bias
vectors, respectively; c̃t the candidate cell state and ct the current cell state. Two activation
functions is being used with σ and tanh stands for sigmoid function and hyperbolic tangent
function respectively. Finally ⊙ operation is the element-wise or Hadamard product and +
operation is simply pointwise addition.

LSTMs in general have huge computational complexity, especially when dealing with
long sequences. Additionally, like other machine and deep learning models, they are prone
to overfitting when there is insufficient training data. Learning dependencies over very
long sequences is challenging due to the aforementioned vanishing (or exploding) gradient
problem. Lastly, the hyperparameter tuning coupled with limited interpretability further
adds to model’s drawbacks.

2.5. Transformer-Based Model (Informer)

First off, an initial examination of transformer models is imperative for our investiga-
tion. The characteristic feature of transformers is the so-called self-attention mechanism,
enabling the model to weigh different parts of the input sequence differently based on their
relevance. This attention mechanism allows transformers to capture long-range depen-
dencies efficiently, breaking the sequential constraints of traditional models like LSTMs.
The transformer architecture consists of encoder and decoder layers, each comprised of
multi-head self-attention mechanisms and feedforward neural networks. The encoder
processes the input sequence using self-attention mechanisms to extract relevant features.
The decoder then utilizes these features to generate the output sequence, incorporating
both self-attention and encoder-decoder attention mechanisms for effective sequence-to-
sequence tasks. The use of positional encoding provides the model with information about
the position of input tokens in the sequence. Parallelization becomes a strength, as trans-
formers can process input sequences in parallel rather than sequentially, significantly
speeding up training and inference.

The Informer model, which was proposed by Zhou et al. (2021) [54], is a deep artificial
neural network, and more specifically an improved Transformer-based model, that aims
to solve the Long Sequence Time-series Forecasting (LSTF) problem [54]. This problem
requires high prediction capability to capture long-range dependence between inputs and
outputs. Unlike LSTM, which relies on sequential processing, transformers, and conse-
quently Informer, leverage attention mechanisms to capture long-range dependencies and
parallelize computations. The key feature lies in self-attention, allowing the model to weigh
input tokens differently based on their relevance to each other, enhancing its ability to cap-
ture temporal dependencies efficiently. The rise in the application of transformer networks
have emphasized their potential in increasing the forecasting capability. However, some
issues concerning the operation of transformers, such as the quadratic time complexity
(O(n2)), the high memory usage and the limitation of the encoder-decoder architecture,
make up transformer to be unproductive in problems when dealing with long sequences.
Informer addresses those issues of the “vanilla” transformer [34] and trying to resolve
them, by applying three main characteristics [54]:

1. ProbSparse self-attention mechanism: a special kind of attention mechanism
(ProbSparse—Probabilistic Sparsity) which achieves O(Llog L) in time complexity
and memory usage, where L is the length of the input sequence.

2. Self-attention distilling: a technique that highlights the dominant attention making it
effective in handling extremely long input sequences.

3. Generative style decoder: a special kind of decoder that predicts long-term time series
sequences with one forward pass rather than step-by-step, which drastically improves
the speed of forecast generation.

Informer model preserves the classic transformer architecture, i.e., encoder-decoder
architecture, while at the same time aiming to solve LSTF problem. The LSTF problem, that
Informer is trying to solve, has an sequence input at time t, following the formulation of [75]:
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Xt = {xt
1, xt

2, ..., xt
Lx
|xt

i ∈ Rdx} (18)

and the output or target (predictions) is the corresponding sequence of vectors:

Yt = {yt
1, yt

2, ..., yt
Ly
|yt

i ∈ Rdy} (19)

where xt
i , yt

i are input and output series of vectors at a specific time t, and Lx, Ly are the
input and output number of elements, respectively. LSTF encourage a longer enough
output length Ly, than usual forecasting cases. Informer supports all forecasting tasks (e.g.,
multivariate predict multivariate, multivariate predict univariate etc.), where dx, dy are
feature dimensions of input and output, respectively.

The structure of Informer model is illustrated in Figure 4, wherein three main com-
ponents are distinguished: encoder layer, decoder layer and prediction layer. Encoder
mainly handles longer sequence inputs by using sparse self-attention, an alternative to
the traditional self-attention method. The trapezoidal component refers to the extracted
self-attention operation, which significantly reduces the network’s size. The component
between multi-head (i.e., a module for attention mechanisms which is often applied several
times in parallel) ProbSparse attention, indicates self-attention distilling blocks (presented
with light blue), that lead to concatenated feature map. On the other side, the decoder deals
with input from the long-term sequence, padding target elements to zero. This procedure
computes an attention-weighted component within the feature graph, resulting in the
prompt generation of these elements in an efficient format.

0
0

0
0

Multi-head
Attention

Fully 
Connected 

Layer

Distilling

Distilling

Multi-head
ProbSparse
Self-attention

Dependency pyramid

Masked Multi-head
ProbSparse
Self-attention

Decoder

Multi-head
ProbSparse
Self-attention

Concatenated 
Feature Map

Outputs

Inputs: Xfeed_en

Inputs: X         ={X       , X  }feed_de 0token

Encoder

Figure 4. Informer model structure (Adapted from ’Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting’, Zhou et al. [54]).

The ProbSparse (i.e., Probabilistic Sparsity) self-attention mechanism reduces the
computation cost of self-attention drastically, while maintaining its effectiveness. Essen-
tially, instead of Equation (20), Informer uses Equation (21) for the calculation of attention.
The core concept of the attention mechanism revolves around computing attention weights
for each element in the input sequence, indicating their relevance to the current output. This
process begins by generating query (q), key (k), and value (v) vectors for each element in
the sequence, where the query vector represents the current network output state, and the
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key and value vectors correspond to the input element and its associated attribute vector,
respectively. Subsequently, these vectors are utilized to calculate attention weights through
a scaled dot-product relation, measuring the similarity between the vectors. Figure 5
provides an overview of the attention mechanism’s architecture, where MatMul stands
for matrix multiplication, SoftMax is the normalized exponential function for converting
numbers into a probability distribution, and Concat for concatenation. The function that
summarises attention mechanism can be written as [34]:

Attention(Q, K, V) = softmax(
QKT
√

d
)V (20)

Attention(Q, K, V)Informer = softmax(
QKT
√

d
)V (21)

where Q, K, V are the input matrices of the attention mechanism. The dot-product of query
q and key k is divided by the scaling factor of

√
d, with d representing the dimension of

query and key vectors (input dimension). The significant difference between Equations (20)
and (21) is that keys K are not linked to all possible Q queries but to the u most dominant
ones, resulting in the matrix Q (which is obtained by the sparse probability distribution of
Q).

K

MatMul

MatMul

Q

V

Scale SoftMax
Mask

(optional)

K

Scaled Dot-
Product

Attention

Q

V

Concat

Linear

Linear

Linear

Linear

Linear
Linear

Linear
Linear

Linear
Linear

Scaled Dot-
Product

Attention

Scaled 
Dot-Product

Attention

h

Scaled
Dot-Product

Attention

Multi-Head
Attention

h

Figure 5. Visualization of attention mechanism (Adapted from ‘Attention Is All You Need’,
Vaswani et al. [34]).

An empirical approach is proposed for effectively measuring query sparsity, which
is calculated by a method similar to Kullback–Leibler divergence. For each (query)
qi ∈ Rd and kj ∈ Rd in the set of keys K, there is the bound lnLK ≤ M(qi, K) ≤
maxj{qikT

j /
√

d} − 1
LK

∑Lk
j=1 qikT

j /
√

d + lnLK [54]. Therefore, the proposed max-mean mea-
surement is as follows:

M(qi, K) = max
j

{
qikT

j√
d
} − 1

LK

Lk

∑
j=1

qikT
j√

d
. (22)

If the ith query achieves a higher M(qi, K), its attention probability p becomes more
“diverse” and is likely to include the dominant dot-product pairs in the header field of the
long-tail self-attention distribution.

The distribution of self-attention scores follows a long-tail distribution, with “active
queries” positioned at the upper end of the feature map within the “head” scores, while
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“lazy queries” reside at the lower end within the “tail” scores. The preceding is illustrated
in Figure 6. The ProbSparse mechanism is tailored to prioritize the selection of “active”
queries over “lazy” ones.

Figure 6. Illustration of ProbSparse Attention (Source: [76]).

The encoder aims to capture the long-range dependencies within the lengthy sequence
of inputs, under the constraint of using memory. Figure 7 is depicting model’s encoder.
The process of self-attention distilling serves to assess the dominant features and generate a
consolidated map of self-attention features for the subsequent level. Essentially, it involves
simplifying the complex self-attention mechanism of the transformer model into simpler
and smaller form, suitable for integration into the Informer model.
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Figure 7. Informer’s encoder architecture (Adapted from [54]).

As distinguished in Figure 7 encoder contains enough attention blocks, convolution
layers (Conv1d) and max pooling layers (MaxPool), to encode the input data. The copies of
the main stack (Attention Block 1) with continuously decreasing inputs by half, increase
the reliability of the distilling operation. The process continues by reducing to 1/4 of the
original length. At the end of the encoder, all feature maps are concatenated to direct the
output of the encoder directly to the decoder.

The purpose of the distillation operation is to reduce the size of the network parameters,
giving higher weights to the dominant features, and produce a focused feature map in
the subsequent layer. The distillation process from the j-th layer to the (j + 1)-th layer is
described by the following procedure:

X t
j+1 = MaxPool(ELU(Conv1d([X t

j ]AB))) (23)

where [X t
j ]AB represents the attention block, Conv1d(·) performs an 1-D convolutional

filters with the ELU(·) activation function [77].
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The structure of the decoder does not differ greatly from that published by
Vaswani et al. [34]. It is capable of generating large sequential outputs through a sin-
gle forward pass process. As shown in Figure 4, it includes two identical multi-head
attention layers. The main difference is the way in which the predictions are generated
through a process called generative inference, which significantly speeds up the long-range
prediction process. The decoder receives the following vectors:

X t
de = Concat(X t

token, X t
0) ∈ R(Ltoken+Ly)×dmodel (24)

where X t
token ∈ RLtoken×dmodel is the start token (i.e., parts of input data), X t

0 ∈ RLy×dmodel

is a placeholder for the target sequence (set to 0). Subsequently, the masked multi-head
attention mechanism adjusts the ProbSparse self-attention computation by setting the inner
products to −∞, thereby prohibiting each position from attending to subsequent positions.
Finally, a fully connected layer produces the final output, while the dimension of the output
dy depends on whether univariate or multivariate prediction is implemented.

Although Informer reduces time complexity compared to vanilla Transformers, it can
still be resource-intensive, requiring significant memory and processing power for very
large datasets. As a deep learning model, its performance depends on the quality and
quantity of the training data, and it also requires careful hyperparameter tuning, which
could be time-consuming and may need specific domain knowledge.

2.6. Evaluation Metrics

To assess the effectiveness of the different models accurately, this paper engages Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) and Nash-Sutcliffe Efficiency (NSE) coefficient as
evaluation metrics. In some cases, the coefficient of determination R2 was also determined.
The formulas for calculating these metrics are provided below.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (25)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (26)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (27)

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

· 100% (28)

NSE = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (29)

R2 = 1 − ∑n
i=1(yi − ỹi)

2

∑n
i=1(yi − ȳ)2 (30)

where yi is the i-th observed value; ŷi is the corresponding forecasted value; ȳ is the mean of
the y observed values; ỹi is the predicted values from the statistical model (linear regression
model) inferred from the observed values; and n the number of total data points for yi.

3. Analysis and Results (Case Study 1: River Test)
3.1. Study Area

The study area centers on the River Test [78] (Figure 8), situated in Hampshire, south-
ern England. It rises at Ashe close to Basingstoke, it spans approximately 64 km2, flowing
southwards until it meets Southampton Water. The River Test is an important watercourse
known for its ecological diversity, historical and hydrological significance. Notably, it en-
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compasses a significant biological area designated as a Special Scientific Interest, spanning
438 hectares (ha).

Figure 8. Study area.

3.2. Data

The hydroclimatic data were collected, stored, processed and consolidated, by national
data centres in England. In particular, data from The CEDA Archive [79], Defra [80], and the
National River Flow Archive [81] were utilized. Dataset contains 12 features, among which
flow from river stations and climate data of the region, i.e., precipitation and temperature
across diverse points within the region of Hampshire in England. The dataset comprises
41 years of daily observations spanning from 1980 to 2021, totaling 15,341 values (slightly
fewer in certain attributes). Figure 9 presents the first 20 rows of the data in tabular format,
displaying all their attributes, while Table 1 provides a description of these characteristics.
Table 2 shows the medatada information about the stations of the dataset.

Figure 9. River Test dataset format.
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Table 1. Description of data features.

Features Description Units

date measurement date d
rainfall_{location} the observed daily rainfall at the location mm

tasmax the maximum daily observed temperature ◦C
tasmin the minimum daily observed temperature ◦C

flow_{location} the daily flow at the specific location m3/s

Table 2. Metadata of stations of the dataset.

Station Name Type of Variable Longitude Latitude

Marborough rain −1.73 51.41
Andover rain −1.48 51.2
Andover temp −1.47 51.22

Bath rain −2.36 51.38
Ower rain −1.53 50.95

Quidhampton rain −1.26 51.25
Salisbury rain −1.79 51.07

Stockbridge rain −1.56 51.10
Ower flow −1.53 50.95

Broadlands flow −1.50 50.95

During the data preprocessing stage, we conducted checks to identify any erroneous
values, temporal gaps or potential outliers in the data. In this study we focus on streamflow
forecasting, while the flow_Broadlands column was selected for the method application.
This column represents the measured flow in the Broadlands area (Figure 8). The fluctu-
ation in flow is closely associated with flooding events, making this data characteristic
particularly important.

The streamflow measurements consists of 15,225 values from 1 January 1980 to 6
September 2021. We split the data into training, validation, and testing sets using a ratio of
0.7:0.1:0.2, a fairly common splitting scheme. Approximately, the initial 33 years were used
for model training, with the remaining data allocated for testing. Figure 10 illustrates the
time series of the station streamflow, with the training (train), validation (val) and testing
(test) data split indicated.

Figure 10. River Test streamflow time series of Broadlands station.
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In this particular case study we aim to forecast streamflow time series at the Broadlands
station using various forecast horizons. The selected forecast horizons include 2, 10, 20,
40, 60, 80, 100, and 168 days. Five different models were employed: a Hurst–Kolmogorov
stochastic model (SB), a common time series model (ARIMA), and machine and deep
learning networks (XGBoost, LSTM and Informer). All analyses and code development
were conducted in Python 3.10.12, utilizing relevant libraries. The computational resources
of Google Colab, specifically the NVIDIA Tesla K80 with 12 GiB VRAM, were leveraged to
ensure optimal conditions for training deep neural networks.

3.3. Model Architectures
3.3.1. SB

For this application, the stochastic benchmark model, described in Section 2.1, was
chosen over a naive model. The naive approach assumes that future values in a time series
will mirror the most recent observed value, or the mean of all values of the time series.
In contrast, the SB model determines the precise number of past terms to consider and
computes a representative average for the forecast horizon at hand. This model serves as a
benchmark for comparison against more sophisticated forecasting models.

In order to find the required conditions (in our case days) to be taken into account
regarding the forecast horizon, it is necessary to calculate the Hurst coefficient H, which
is approximated by the climacogram. Figure 11 shows the climacogram of the time series
of streamflow at Broadlands station. For simplicity, only the long-term dependence was
considered (highlighted with orange in Figure 11), rather than the entire climacogram. This
resulted in a coefficient of H = 0.7, which simplifies things and equations of Section 2.1 are
directly applicable. Utilizing Equation (8) we compute the required ν, based on given κ
and H. Table 3 summarizes those combinations of ν, κ.

y = 751.3x−0.811

R² = 0.77

1

10

100
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n

ce
γ(
k)

Temporal Scale k (days)

Figure 11. Empirical climacogram of streamflow at Broadlands station.

Table 3. Ratio of terms (in days) of past ν and future κ.

κ (days) 2 10 20 40 60 80 100 168
ν (days) 64 320 640 1280 1920 2560 3200 5376

3.3.2. ARIMA

By monitoring the AIC metric values across different parameter combinations, as well
as their corresponding time, it was determined that the optimal parameters for the ARIMA
model are ARIMA(3,1,3). For this specific model the AIC was found to be AIC = 34,941.93
with a corresponding computational time of 9.7 s.



Water 2024, 16, 2882 18 of 32

3.3.3. XGBoost

Using the XGBoost Python package 2.1.1, we constructed a forecasting model by first
generating features based on the date and incorporating lagged values from the time series,
to effectively model time-dependent relationships in the data. To ensure robust model
performance, we employed cross-validation in our evaluation process. After optimizing the
model through Grid Search, we finalized the hyperparameters, which are detailed in Table 4.

Table 4. XGBoost model Hyperparameters.

Hyperparameters Values

n estimators (boosting rounds) 998
Maximum depth 3

Subsample 0.98
Colsample by tree 0.68
Cross validation 5-fold

Gamma 0.5
Objective reg: squared error

Evaluation metric mse
Learning rate 7.5 ·10−3

3.3.4. LSTM

The LSTM model was constructed using the PyTorch library 2.1.0, a widely used tool
for deep learning tasks. During training, the time series data was utilized, and fixed-length
sequences were generated after zero mean and unit variance normalization. Sequentially,
each sequence was fed into the LSTM model individually, with the immediate subsequent
value also recorded, using a sliding window method. Sliding window method divides
training data into overlapping windows of fixed size. Each window serves as an input
sequence for the model, with the target being the future values of the time series [82].
Through testing and experimentation with different architectures, the optimal hyperparam-
eters and network architecture were identified, as summarized in Table 5. This iterative
process involved adjusting and refining the model to achieve the best performance.

Table 5. LSTM model Hyperparameters.

Hyperparameters Values

Neurons 100
Dense Layers (Fully Connected) 5

Dropout 0.2
Batch size 16

Sequence length 180
Optimizer Adam

Activation function ReLU
Loss function mse
Learning rate 5·10−4

Epochs 20

3.3.5. Informer

The final and main model examined in this study is the transformer-based Informer
model, which was also implemented using PyTorch library 2.1.0. Following data parti-
tioning into training, validation, and test sets, normalization is applied, and the data is
segmented into input and target subsequences, as previously, using the sliding window
method. Data were normalized such that the mean is 0 and the standard deviation is 1
(StandardScaler). The input subsequences are then passed through the encoder to the
decoder, where future values of the time series are predicted. Table 6 outlines the model ar-
chitecture, excluding details on the encoder input sequence length and prediction sequence
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length. Through an iterative fine-tuning process involving various combinations of input
and prediction sequences, optimal values, as presented in Table 7, were determined.

Table 6. Informer model Hyperparameters.

Hyperparameters Values

Encoder input size 2
Decoder input size 2

Dimension of model 512
Number of heads 8

Encoder layers 512
Decoder layers 512

Dropout 0.05
Attention ProbSparse

Activation function GELU
Batch size 32
Optimizer Adam

Loss function mse
Learning rate 10−4

Epochs 8
Early stopping patience 3

Table 7. Combinations of input sequence length and prediction length of Informer model.

prediction length (days) 2 10 20 40 60 80 100 168
sequence length (days) 200 100 150 300 300 300 300 250

3.4. Results and Comparison

As previously mentioned, the forecast horizon spans from 2 to 168 days. Table 8
provides a detailed overview of the performance metrics, including NSE, RMSE, MAE,
and MAPE, for each of the forecast horizons, across all models. For each forecast horizon,
the best scores are emphasized in bold. Figure 12 provides a comprehensive and straight-
forward representation of the data presented in the corresponding table, through a bar
chart depicting evaluation metrics. Furthermore, Figure 13 depict the predicted and ground
truth values in corresponding prediction window.

Table 8. Models results of streamflow forecasting on River Test. The best result for each metric at
each forecast horizon is highlighted in bold.

Method Metric 2 10 20 40 60 80 100 168

SB

NSE −269.4 −97.54 −1.670 −0.189 −0.576 −1.065 −0.715 −3.365
RMSE 3.782 4.745 0.865 1.276 1.758 2.292 2.513 3.847
MAE 3.775 4.721 0.767 1.062 1.527 1.994 2.179 3.459

MAPE 0.297 0.397 0.068 0.107 0.168 0.240 0.296 0.502

ARIMA

NSE −8.967 −8.733 −10.99 −5.641 −6.240 −6.546 −6.043 −8.524
RMSE 0.726 1.491 1.832 3.015 3.768 4.381 5.092 5.682
MAE 0.689 1.417 1.756 2.781 3.499 4.082 4.718 5.376

MAPE 0.055 0.120 0.154 0.279 0.381 0.481 0.625 0.758
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Table 8. Cont.

Method Metric 2 10 20 40 60 80 100 168

XGBoost

NSE 0.818 0.877 0.552 0.804 0.745 0.660 0.393 −0.764
RMSE 0.098 0.168 0.354 0.519 0.706 0.930 1.496 2.445
MAE 0.098 0.131 0.301 0.385 0.568 0.756 1.156 2.028

MAPE 0.008 0.011 0.026 0.040 0.063 0.093 0.165 0.292

LSTM

NSE −5.839 0.538 −1.343 0.703 0.845 0.863 0.716 −0.628
RMSE 0.601 0.325 0.810 0.638 0.551 0.591 1.023 2.349
MAE 0.589 0.261 0.637 0.482 0.413 0.452 0.746 1.802

MAPE 0.046 0.021 0.056 0.045 0.041 0.050 0.104 0.255

Informer

NSE 0.888 −0.363 0.663 0.934 0.863 0.951 0.794 0.809
RMSE 0.077 0.558 0.307 0.301 0.519 0.352 0.872 0.805
MAE 0.069 0.502 0.251 0.241 0.465 0.278 0.720 0.564

MAPE 0.005 0.043 0.022 0.024 0.049 0.032 0.095 0.083

(a) (b)

(c) (d)
Figure 12. Bar chart presenting the evaluation metric results. In subfigure (a), the SB method
is excluded due to its high error values, which affected effective visualization. (a) NSE metric.
(b) RMSE metric. (c) MAE metric. (d) MAPE metric.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 13. Prediction results of all five models compared with ground truth across all prediction
windows. (a) Forecast horizon = 2 days. (b) Forecast horizon = 10 days. (c) Forecast horizon =
20 days. (d) Forecast horizon = 40 days. (e) Forecast horizon = 60 days. (f) Forecast horizon = 80 days.
(g) Forecast horizon = 100 days. (h) Forecast horizon = 168 days.
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Insights can be derived from the findings presented in Table 8. The machine and
deep learning models exhibit superior performance compared to both the naive stochastic
approach and the statistical ARIMA model, which struggles to fully grasp the complex dy-
namics of time series. The SB model displayed poor predictive capabilities, with extremely
low NSE values. Meanwhile, XGBoost and LSTM demonstrates robust performance at the
10-day forecasting horizon, but its effectiveness diminished at longer time horizons. At the
10-day forecast horizon, XGBoost ranks as the highest-performing algorithm; on the other
hand LSTM has the lowest MAE value on 60-day forecast. Overall, the Informer model
stands out as the top performer. Remarkably, the Informer model significantly improves
the results, with the prediction error gradually and smoothly increasing as the prediction
horizon extends. This underscores the Informer’s effectiveness in improving prediction
capabilities for long-range forecasting tasks. The Informer’s performance, as measured
by the MAPE metric, does not surpass 10%, while the NSE coefficient achieves 0.8 at the
longest horizon, demonstrating a high level of accuracy.

As noted in the model comparison, the Informer model excels, having the best per-
formance. Figure 14 presents the Informer model’s outcomes in a scatter plot displaying
predicted streamflow values. The solid blue line in the plot represents the ideal estimation,
where if each prediction point of the model matched the actual observed value. Overall,
Informer model demonstrates good performance, with the trend line exhibiting a coefficient
of determination (R2) of 0.91. However, weaker performance is noted at lower values,
corresponding to local minima in our context.

Figure 14. Scatter plot of predicted streamflow values from the Informer model in the River Test.

4. Analysis and Results (Case Study 2: Examining the Performance of the Informer
Model across Numerous Rivers)
4.1. Study Area

The selected study area for evaluating the Informer performance across a substantial
number of time series (>100) covers a wider area of the United Kingdom, where the
previous case study belongs as well.

Given its varied topography and extensive river networks, the UK frequently witnesses
devastating flooding incidents with far-reaching consequences. This study centers on the
rivers of the UK, aiming to devise and assess a deep learning-based method for forecasting
flood events, and more specifically the Informer model.
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A key factor motivating the selection of this study area is the extensive database
maintained by the United Kingdom, known as the National River Flow Archive (NRFA) [81],
which systematically gathers and manages data on river flow from numerous gauging
stations across the entire country. This database serves as a fundamental resource for the
current investigation. Figure 15 depicts the extensive coverage of gauging stations within
the NRFA database, along with the corresponding river networks.

Figure 15. Map of the UK with the locations of available stations from the NRFA database (Source:
https://nrfa.ceh.ac.uk/data/search (accessed on 10 February 2023)).

4.2. Data

As already mentioned, the data were obtained from the NRFA database [81] and are
available online. Similar to the prior study, this analysis focuses on time series data of river
streamflow, aiming to forecast for a specific horizon. Accessing this database allows for
straightforward searches, leveraging filters based on specific criteria relevant to individual
research needs (e.g., real-time data availability, location etc.). In this particular study,
the selection was primarily based on three criteria:

1. The availability of daily streamflow data.
2. The time series should span a long period (i.e., >20 years).
3. The data should be continuous without missing values, with a completeness rate

exceeding 95%.

This analysis resulted in a collection of 112 data stations, with their respective geograph-
ical locations illustrated in Figure 16. The dataset collected represents a broad spectrum of
river morphologies, hydroclimate conditions, and varying amounts of historical data.

https://nrfa.ceh.ac.uk/data/search
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Figure 16. Geographical distribution of the 112 stations used for forecasting.

4.3. Informer Architecture

The evaluation using the Informer model was conducted uniformly across all time
series with identical architecture and forecast horizon (30 days). Since the study’s aim
wasn’t to fine-tune forecast results for each individual river, conducting a thorough hyper-
parameters search on a river-by-river basis was considered unnecessary, computationally
expensive and time-consuming. Based on the case study presented in Section 3, we identi-
fied the optimal architecture tailored to the specified forecast horizon. Thus, the selection
of input and output sequences mirrored that of the previous River Test study and remained
consistent. Following data split into training, validation, and testing sets (maintaining a
70:10:20 ratio), normalization and segmentation into input and target subsequences were
performed as previously. Table 9 outlines the details on the model architecture employed.

Table 9. Informer model Hyperparameters, used in the second case study for the 112 stations.

Hyperparameters Values

sequence length of encoder 300
label length of decoder 48

prediction length 30
Encoder input size 2
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Table 9. Cont.

Hyperparameters Values

Decoder input size 2
Dimension of model 512

Number of heads 8
Encoder layers 512
Decoder layers 512

Dropout 0.05
Attention ProbSparse

Activation function GELU
Batch size 32
Optimizer Adam

Loss function mse
Learning rate 10−4

Epochs 8
Early stopping patience 3

4.4. Results

For the 30-day forecast horizon and utilizing the same architecture, the Informer model
was trained to forecast the river flow for each station. It’s important to highlight that this
approach isn’t ideal for deep learning-based forecasting tasks, as each time series should
ideally be individually treated and optimized. However, addressing such a significant
quantity of time series in this manner demands significant computational resources and
time. Hence, for this specific scenario, the investigation focused on evaluating the model’s
performance using a fixed network architecture.

Figure 17 summarises the prediction results of all 112 stations in a single scatter plot
between observed and estimated flows. The figure also provides the optimal prediction
(red solid line), where the forecast coincides with the ground truth. However, the trend
line of the predictions (blue dashed line) exhibits a coefficient of determination R2 = 0.4,
implying poor model performance. Figure 17 also shows the box plot illustrating the MAPE
performance metrics. Specifically, for every 30-day forecast of each time series, the MAPE
metric was computed once. The sum of these errors, for each time series, is plotted in
the box plot. The diagram depicts the moderate performance of the Informer network,
characterized by a median value of 0.5 or 50%.

(a) (b)

Figure 17. (a) Scatter plot of predicted Informer model values and (b) box plot of the MAPE error
metric between estimated and observed streamflow, examined at 112 stations.
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To examine the underperformance of the model, we analysed the scores of loss func-
tions across the three subdivisions of all time series (i.e., train, validation and test set),
relative to the structure of the time series, as represented by climacograms. Figure 18 dis-
plays all the empirical climacograms. The entire 112 climacograms were sorted according
to their slope, and subsequently, their respective losses on the train, validation, and test sets
were assigned to each one. The results of the earlier investigation are plotted in Figure 19.
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Figure 18. Empirical climacograms of the 112 daily streamflow time series used in the analysis.

Figure 19. Informer performance compared with climacograms. On horizontal axis each climacogram
is sorted based on slope, in ascending order. Climacogram with id near to zero indicates higher H
value, which decreases as we move towards the right of the axis.

5. Discussion and Future Directions

In the past few years, transformer network and the variations of its architecture have
been extensively applied across many domains [35]. Although the high popularity they
receive, their usage in hydrology and streamflow forecasting is still in its early stages
and remains relatively underdeveloped. In the above sections we tried to make some
insights about streamflow forecasting with a transformer-based model. i.e., Informer. We
utilized real-world data to assess the performance of the models, evaluating results with
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widely used metrics—NSE, MSE, RMSE, MAE, MAPE and R2. When some studies analyse
flood prediction with transformer models, they typically rely on data from only one or
two stations to generate their results (e.g., [53,58,83]). In contrast, we also make a case
study where we focus on the Informer model and its performance on more than 100 river
streamflow stations.

In the initial application, where data from River Test were analysed, we compared the
Informer model, the LSTM model, the XGBoost model, the ARIMA model and the Hurst-
Kolmogorov stochastic approach [84]. Data include daily streamflow of Broadlands station
and the chosen forecast horizons were 2, 10, 20, 40, 60, 80, 100, and 168 days. Machine and
deep learning approaches have the best results, with the Informer showing its superiority
over LSTM and XGBoost—especially for long-term prediction (Figure 13). It should be
noted that SB and ARIMA models could have better results if the seasonality was explicitly
modeled. Stochastic approach could replace the classic baseline models in hydrology and
especially in forecasting problems, as it is theoretically authenticated. Based on our results
(Figure 14) Informer model has pretty good performance with a coefficient of R2 = 0.91.
The optimization task in transformer networks is a pretty challenging work, due to their
complex architecture and the vast number of hyperparameters involved. This process is
time consuming, requires computational resources and cautious fine-tuning to balance
performance and efficiency.

Due to this extensive procedure, we chose to universally perform Informer model in
the second case study, with the same hyperparameters. This involved using a large dataset
containing 112 river basins and the model used the best set of hyperparameters, as revealed
from the first implementation for a forecast horizon of 30 days. The upper had a totally
different performance, resulting a coefficient of determination R2 = 0.4 for all the stations
(Figure 17a). Bad behaviour of Informer is represented also by the boxplot in Figure 17b,
where for each station is calculated MAPE error. This case arises with a median value
of 50%. An interesting insight of this large analysis is the fact that model performance
is related to climacogram of the time series. Climacogram is a high effective stochastic
tool [61] for detecting the long-term changes, thereby providing a better understanding
of a process. We analysed stations that provide a wide range of different characteristics,
as illustrated in Figure 18. We then tracked the MSE loss function values across all three
subsets: training, validation, and test sets. An upward trend in MSE loss was observed
as the Hurst coefficient H decreased. Figure 19 shows this outcome, where on x-axis each
climacogram is sorted based on the slope, in ascending order. Thus, climacograms with id
near zero indicates a higher H value, which decreases as we move towards the right of the
axis. From one point of view this observation is a bit anticipated, since a stochastic process
with high Hurst value is less unpredictable in short-term prediction [85]. The situation is
being reversed in long-range prediction, where a time series with high Hurst coefficient
has bigger uncertainty. In our case we had 30 days forecast horizon, which corresponds to
short-term forecasting and results verify the above findings.

The scope of this study may be increased, leading to a major improvement in the
methods employed in the current work to improve the performance and applicability of
the models. To begin with, the development and evaluation of other transformer-based
models and networks for the problem of streamflow forecasting should be considered.
This great popularity they receive in other topics, such as natural language processing,
suggests their likely utility in flood prediction as well. Additionally, in order to improve
forecasts, the exploitation of other flood-related variables (e.g., temperature, rainfall, etc.)
in the context of multivariate forecasting needs to be looked into. Another important
aspect is quantifying the uncertainty of such models and addressing it through probabilistic
forecasting. Moreover, the investigation of the performance of transformer ensemble
modelling with statistical, stochastic, or other deep learning networks and the evaluation of
models by implementing real-time predictions for immediate comparison can bring useful
knowledge. Similarly to the approach taken in this research, an analysis of the impact that
time series characteristics may have on the performance of the Informer model (and beyond)
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should be conducted [86], along with the identification of techniques or transformations to
address any potential issues that arise. On top of that, post-processing techniques might
boost the model’s results. Lastly, but equally important, is the attempt to interpret the
operation of deep learning models (Interpretable AI) [87] and explain their results or the
decisions made (Explainable AI) [88]. A way to achieve this is by incorporating models like
PINNs, which integrate the underlying physics of the problem being addressed.

6. Summary and Conclusions

In this work, we study the contribution of deep learning networks to the prediction of
time series related to flood events. Special emphasis was placed on modern deep learning
tools such as transformer networks and in particular the Informer model. We executed two
applications, where in the first one we compared five models on streamflow data from the
River Test in England. Comparisons with more traditional deep learning networks (LSTM),
machine learning model (XGBoost) and time series model (ARIMA) were included, along
with the introduction of a naive Hurst–Kolmogorov stochastic approach for predictive
modeling as a reference model. A distinct examination was conducted, as a secondary case
study on the Informer model, evaluating its performance across a multitude of rivers in the
UK. The analysis and processing of the applications led to some conclusions, which are
summarised below:

• The stochastic approach is simple and theoretically substantiated on stochastic pro-
cesses, suitable for use as a reference model.

• The technology of transformer based models shows great potential for improving
the accuracy of time series forecasting models for both short-term and long-term se-
quences, when fine-tuning model’s hyperparameters for each time series individually.

• The Informer model significantly decreases the time complexity and memory require-
ments compared to “vanilla” transformers. However the training and learning process
remains a challenging and time-consuming task.

• Regarding the first application, the Informer model demonstrated superior perfor-
mance in the River Test application, outperforming the other models. The ARIMA
statistical model struggled to capture the complex patterns in the time series, when
seasonality is not explicitly modeled. The XGBoost and LSTM network performed
well for short-term forecasting, which is not the case for the long-term prediction,
whereas Informer delivered better results.

• In the second case, exploring the Informer model across numerous rivers revealed that
the performance of the model can be influenced by the structure of the time series data.

• Transformers come with drawbacks such as computational complexity, limited inter-
pretability, and limited scalability. Therefore, each time series needs to be addressed
and assessed independently.

Floods are a major problem nowadays, and accurate forecasting helps in dealing
with them. However, it remains a challenging task to solve. Overall, the transformer’s
architecture is notably promising in addressing complex temporal patterns and concepts.
Nevertheless, as has been noted, computational complexity and scalability pose limitations
that need to be addressed. More analysis on those kinds of networks should be explored in
future hydrologic research. Future research should focus on optimizing these models to
enhance efficiency and interpretability, ensuring their practical applicability in flood fore-
casting, as well as exploring the impact of different hyperparameters on their performance.
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