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Abstract: Decentralized planning of renewable energy systems aims to address the substantial spa-
tiotemporal variability, and thus uncertainty, associated with their underlying hydrometeorological
processes. For instance, solar photovoltaic (PV) energy is driven by two processes, namely solar radi-
ation, which is the main input, and ambient temperature, with the latter affecting the panel efficiency
under specific weather conditions. The objective of this work is to provide a comprehensive investiga-
tion of the role of spatial scale by assessing the theoretical advantages of the distributed production of
renewable energy sources over those of centralized, in probabilistic means. Acknowledging previous
efforts for the optimal spatial distribution of different power units across predetermined locations,
often employing the Modern Portfolio Theory framework, this work introduces the generic concept
of spatial reliability and highlights its practical use as a strategic planning tool for assessing the
benefits of distributed generation at a large scale. The methodology is verified by considering the
case of Greece, where PV solar energy is one of the predominant renewables. Following a Monte
Carlo approach, thus randomly distributing PVs across well-distributed locations, scaling laws are
derived in terms of the spatial probability of capacity factors.

Keywords: renewable energy; distributed systems; spatial reliability; scale; capacity factor; solar PVs

1. Introduction

The large-scale adoption of variable renewable energy sources (VRES) and the need for
their more efficient utilization are propelled by the urgency of satisfying the ever-growing
electricity demand, advancing sustainable development, addressing climate concerns,
and reducing greenhouse gas (GHG) emissions associated with fossil fuels [1]. Among
these renewable sources, solar energy is arguably the most abundant, easily available, and
versatile, allowing for both direct and indirect conversion into various forms of energy. As
such, various solar energy projects have been globally established, with great emphasis
on solar photovoltaic (PV) ones, which currently exceed 1.4 TW of total installed power
capacity [2], while their market share is expected to increase to up to 70% by 2030 [3].
Remarkably, the rather increased adoption rate of solar PVs is not only attributed to the
sharp decrease in their overall cost, but also to the fact that the total annual solar radiation
received by Earth is more than 7500 times the world’s primary energy consumption [4],
meaning that there is still a significant amount of “untapped” solar potential.

However, the broader expansion of solar energy applications is mainly hindered by
the high levels of uncertainty that power production inherits from the resource itself due to
multiple factors, with the primary one being its stochastic and intermittent nature. Accurate
estimation of both the incident solar radiation and the output power of a specific region
remains a formidable challenge. Therefore, the planning, design, and implementation of
solar energy projects should account for both the spatial and temporal variability of solar
radiation [5]. Part of this variability is deterministic since it is attributed to seasonal and
intra-day phenomena [6] caused by the Earth’s rotation and its orbital motion around the
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sun. These are fully explained by the location (i.e., latitude and longitude) and predictable
astronomic variables that are expressed as periodic functions (e.g., solar altitude and
declination). At the same time, solar power is also influenced by topography [7,8], which
is expressed in terms of underlying geographical properties at regional and local scales
(i.e., slope, aspect, altitude, and shading). On the other hand, atmospheric conditions, such
as clouds, aerosol particles, water vapors, and ozone [9], which absorb, reflect, and scatter
solar radiation [10], are random processes that strongly modify the known pattern of global
radiation fields. Furthermore, the output power is subject to additional random processes
that are attributed to microclimatic conditions, e.g., ambient temperature, humidity, and
dust, which may significantly affect the PV panels’ efficiency, thereby reducing the output
power [11–14].

To address the spatiotemporal variabilities of solar radiation, distributed (also termed as
decentralized) PV systems have been introduced, shifting the traditional energy paradigms
rooted in centralized and continuous energy production by integrating numerous spatially dis-
persed, self-sufficient small-scale configurations (either as standalone or grid-connected) [15].
Such systems have been gaining popularity, with their installed capacity now accounting
for almost half of the total solar PV growth [16]. This increase in distributed PV adoption
can be attributed to their ability to leverage geographical smoothing, which reduces output
power variability and uncertainty. More specifically, solar power’s inherent smoothing is a
phenomenon associated with the spatial scale that lies beneath the varying climatic and cloud
conditions (e.g., cloud coverage is typically not homogeneous), and aerosols (haze/pollution)
across geographically dispersed regions [17,18]. The geographical aggregation of distributed
PV systems on a large scale generates a smoother and less intermittent power output with
significantly reduced fluctuations (both positive and negative) compared with that of an
individual PV plant [19]. This indicates that at any given time, the reduced power output
derived from regions where incident radiation may exhibit relatively lower values is expected
to be offset by better-performing regions that simultaneously receive higher radiation values.

From a technical viewpoint, locally based distributed energy systems offer enhanced
efficiency and more flexible (demand-side) management compared to centralized ones,
also reducing reliance on the latter [20,21]. In particular, distributed systems have the
ability to deliver the same electricity services provided by centralized ones while also being
capable of providing additional locational value, namely, by (a) delivering energy in regions
that experience high marginal losses, (b) providing reliable power injections that reduce
net load consumption in regions that would otherwise require network upgrades, and
(c) supplying energy during network failures [22]. Importantly, a combined power supply
system consisting of both centralized and distributed configurations can significantly
increase the overall performance of key electricity service delivery.

The optimal design of distributed PV systems is a multiparametric exercise, accounting
for siting issues (i.e., orientation and tilt angle), ensuring that candidate locations are less
susceptible to power curtailment factors (i.e., high temperatures [12] and dust accumula-
tion [23,24]), sizing criteria (to match load demand), selection of appropriate module types
and technologies, and associated installation and operational costs. Thus far, traditional
design approaches have focused on the spatial distribution of solar radiation [25–27] and
its respective impact on power production [28]. These analyses typically aim to identify
the “best” locations for PV installations, following multi-criteria decision-making (MCDM)
techniques that account for various factors (e.g., slope, land suitability, distance to wa-
ter resources, policy support, etc.) [29,30]. Nevertheless, while the optimal allocation of
PV systems is crucial for maximizing energy efficiency and cost-effectiveness, an equally
important goal is to ensure reliability, as it is pertinent to their long-term performance
and sustainability.

In the classical systems analysis context, reliability is a key probabilistic metric, defined
as the frequency of the successful delivery of requested system services. In the case of PV
systems, this translates to the adequacy and time availability of power delivery to match the
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load demand. Consequently, common reliability indices in the energy literature emphasize
its temporal dimension, as further outlined herein.

On the other hand, studies that delve into the concept of spatial reliability are very
limited; to the authors’ knowledge, this term has only been used so far in the assessment of
power transmission network lines [31] and 5G communication networks [32,33].

The objective of this work is to expand the major notion of the temporal reliability
of energy systems to the space domain. In this vein, it introduces the concept of spatial
reliability as a means of quantifying, in probabilistic terms, the benefits of decentralized
configurations, with a specific focus on PV systems. This may serve as a background
feasibility analysis for the strategic development of PV energy on a large scale (e.g., national
or regional). Its practical implementation in a Monte Carlo context is verified by taking
as an example the case of PV development in Greece, a country where solar energy is
one of the predominant renewables and PV installations prosper. This analysis allows for
assessing the spatial uncertainty in PV power production and extracting the associated
scaling laws in terms of capacity factor values with respect to spatial dispersion.

This article is organized as follows. Section 2 presents a brief overview of works
concerning the optimal spatial distribution of VRES systems, with particular emphasis on
Modern Portfolio Theory (MPT), a well-established methodology that accounts for multiple
factors to provide an optimal frontier of alternative configurations. Section 3 delves into
reliability within VRES systems, highlighting the associated assessment methodologies and
typical indices considered. Section 4 comprehensively introduces the concept of spatial
reliability in VRES systems and suggests suitable probabilistic methods for its quantification.
Section 5 presents the study area and the methodology used to verify the proposed concept.
Finally, Section 6 discusses considerations for future research, and Section 7 summarizes
the key outputs of this research.

2. The Rationale of Optimal Solar PV Spatial Distribution

Overall, the site selection and design of energy systems are multidimensional and in-
tricate procedures that involve multiple conflicting assessment criteria and alternatives [34].
From an investor perspective, the optimal location of the energy system maximizes electric-
ity generation at minimum costs (investment and operation) [35]. However, this spatial
allocation opts for the “best” performing sites that exhibit the highest resource exploita-
tion potential, disregarding factors that may be technical (e.g., grid constraints), as well as
political-geopolitical (e.g., energy security, energy autonomy, and international agreements).
In fact, it has been indicated that solely investing in the most productive areas is not the best
policy, as these solutions often yield significant variability in power output. On the contrary,
the spatial dispersion of assets reduces variability [36–38], especially when combining
less productive locations with the best performing ones, which can improve the overall
risk-production pairing [39].

The benefits of energy systems’ spatial dispersion and the associated geographical
smoothing effects can be captured by the Modern Portfolio Theory (MPT). The MPT, initially
introduced by Markowitz [40], is a widely accepted methodology employed in energy
planning and is typically framed as an investment selection problem that accounts for the
siting and sizing of renewable energy systems. In contrast to previously used methodologies
(e.g., individual least cost alternative), MPT is based on solving an optimization problem
subject to different constraints, whose objective function seeks to either minimize the cost
or risk of the associated portfolio or maximize the assets’ return or yield. Most MPT studies
consider the portfolio capacity factor (CF) to be the “yield”, the standard deviation of
power output to be the “risk” and the installed capacity to be the “budget” [41–43]. The
optimization determines the efficient cost-risk frontier, considering that power production
assets can be defined in terms of cost or return and economic risk for each alternative
technology [38]. This Pareto-shaped frontier indicates that portfolios located on the right
edge are not optimal, whereas portfolios on the left edge are infeasible.
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Many MPT applications for VRES can be found in the literature. The first applica-
tion of MPT in energy planning was conducted by Bar-Lev and Katz, who analyzed the
relationship between the U.S. electric utility industry and fossil fuel procurement [38,44].
Several MPT studies have focused on examining blended portfolios of wind and solar,
utilizing the complementarity of the two sources [45,46], also considering that they are
present in both minimum-risk and cost-efficient portfolios [47]. For instance, Shahriari and
Blumsack [41] identified portfolios (solar, wind, and blended ones) at various spatial and
temporal scales to quantify capacity benefits in various parts of the electrical grid in the
Eastern United States. Hu et al. [43] employed MPT to capture geographical smoothing
effects for China’s future power system, assessing the return and volatility of each VRE
asset in China. Castro et al. [48] propose several improvements in the traditional MPT
approach, such as considering generation cost instead of installed capacity as one of the
objectives, and employ this model in Brazil. Interestingly, their methodology’s new effi-
cient frontier has a much shorter range of standard deviation values, thus proving that
many portfolios obtained from traditional MPT approaches exhibit higher probabilities of
under-production. Furthermore, Mauleón [39] studied the optimal spatial combination of
PVs in Spain and determined that participation of wind energy in solar portfolios for as
low as 10% can significantly reduce the variability of total generation.

Unlike the aforementioned studies that consider blended portfolios of wind and
solar, to the authors’ knowledge, there are limited works on the optimal allocation of
distributed PV systems over large regions (e.g., at the national or regional scale). Among
these, Urquhart et al. [49] performed a multi-objective analysis of the optimal allotment
of PVs across four sites in Lanai, Hawaii. More recently, Carpio [35] formed an optimal
PV portfolio for distributed power generation that featured the highest productivity and
least intermittency across Brazil. Lastly, Pillot et al. [50] formulated an integrated GIS
optimization framework that accounts for the spatiotemporal dimension of PV planning.

3. Reliability Standards Within Energy Systems
3.1. Generic Definitions

In general, reliability is a characteristic of a system driven by uncertainties, and
is expressed as the probability that it will perform its required function under specific
conditions for a stated time interval [51]. Following the rationale of Koutsoyiannis [52],
this typically refers to either a system’s structural integrity or its service delivery adequacy.
In the second case, the concept of reliability, a, is mathematically expressed as follows:

a := 1 −P [Y(t) < D(t); t ∈ T ] =: 1 − β (1)

where Y(t) and D(t) represent the “yield” and “demand”, respectively, at time t, within
a specific time period T , and β is its complementary notion, referred to as probability of
failure or risk. Often, the problem is posed inversely, thus requiring the determination of a
constant demand to be fulfilled at a given reliability level. This quantity, which is expressed
as a single value or by means of a repetitive pattern (e.g., seasonal), is also referred to as
“safe”, “firm” or “reliable” yield.

Both the forward and inverse problems do not have analytical solutions, except for
the specific formulations of Equation (1), in which the yield Y(t) has a simple probabilistic
structure (e.g., it is normally distributed), and the demand is constant, i.e., D(t) = d.
Otherwise, the most effective option is the use of Monte Carlo approaches, thus representing
the randomly varying processes Y(t) and D(t) through a simulation model, and accounting
for the probabilistic/stochastic regime of failure events (i.e., deficits) and their associated
frequencies of occurrence [53]. In this context, and in order to reduce model complexity
and computational burden, the continuous time domain is handled in discrete terms,
thus dividing T into n equal time intervals, ∆t, and estimating reliability empirically, by
counting the number of deficits:

a := 1 − nd/n (2)
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where nd is the number of failed time steps, in which the yield is less than the demand.

3.2. Energy Reliability

With the constantly increasing penetration of VRES into the global electricity mix, and
considering their associated uncertainties, it is imperative to transform traditional electrical
power systems to ensure reliable power delivery. According to the U.S. Office of Energy
Efficiency and Renewable Energy [54], energy reliability is defined as a power system’s
ability to withstand instability, uncontrolled events, cascading failures, or unanticipated
loss of system components, thus ensuring seamless power delivery, even under physical
and cyber events that cause power disruptions. Similarly, in order to frame the reliability
problem in power systems, researchers at the National Renewable Energy Laboratory
(NREL) argue that all three R’s, namely resource adequacy, operational reliability, and
resilience, must be present [55].

In this context, the reliability of energy generation from VRES has been thoroughly
investigated in the literature, with the first study taking place in 1978 by Kahn, who
discussed the reliability benefit of geographically dispersed wind generation due to the
spatial correlation of sites [56,57]. This cumulative effort has helped shape the current
reliability standards in power delivery in industrialized countries, which are very high,
typically targeting no more than 2–3 h of unplanned outages per annuum (translating to
~99.97% reliability) [58] or no more than one day of unmet electricity demand and, in some
cases, only one loss of load event in 10 years—the so-called “1-in-10” standard (i.e., 99.97%
and 99.9% reliability, respectively) [59,60].

The reliability of power systems is typically assessed in terms of adequacy by con-
sidering static conditions. This entails evaluating whether the system can meet the load
demand and operational requirements, also considering the risks of failure [61] through
a series of indices that measure the probability, severity, frequency, and duration of the
expected load shedding [62].

Energy reliability assessment methodologies vary in the literature, both in terms of
the employed models and indices considered. For instance, a common metric used in
the literature since the early works of Kahn is the loss of load probability (LOLP), which
is the probability of a system being unable to match the demand load at a given time.
Another reliability metric pertinent to VRES generator integration into the electricity grid
is the effective load-carrying capability (ELCC), which is defined as the additional constant
load that can be met at the same reliability level as the original system [63]. A series of
reliability indicators for hybrid renewable energy systems can also be found in the work of
Jijian et al. [64], which are typically estimated through probabilistic model simulations.

Similarly, a concise overview of energy reliability studies, specifically related to PV
systems, which is the renewable technology emphasized in this work, is provided herein.
Kumar et al. [65] presented a survey on the reliability evaluation of electrical power systems
when integrating VRES to conventional power systems, including solar PVs. De Oliveira
and Borges [61] investigated the influence of PV generation on the reliability evaluation
of distribution systems, considering irradiance and ambient temperature in the PV power
output, as well as spatial smoothing effects. Abunima and Teh [66] proposed a novel
reliability model that considers various inputs (e.g., weather conditions and detailed system
architecture) to determine the time-varying failure rates of PV systems and their individual
components. Zisos et al. [67] developed a stochastic simulation-optimization framework for
the design of hybrid renewable energy systems (also including PVs), embedding reliability
as a key performance metric. Lastly, of particular importance is the work of Singh et al. [55],
who presented a comprehensive review of reliability assessment methodologies for grid-
connected PV systems, outlining key reliability indices for analyzing their performance.

4. Introducing the Concept of Spatial Reliability

The previous section provided an understanding of how well the concept of reliability
is established in the domain of energy systems, particularly after the large-scale expansion



Energies 2024, 17, 5900 6 of 18

of renewables, albeit with a primary focus on the temporal scale. The benefits of spatial
dispersion, such as leveraging the geographical smoothing phenomenon to reduce power
output variability (already outlined in the Introduction), suggest that it is equally impor-
tant to consider the spatial dimension of reliability. In fact, it is well recognized that the
combination of spatial distribution and temporal complementarity of VRES systems can
improve their overall reliability. On the one hand, temporal complementarity is observed
between two or more energy sources, except when different technologies are utilized to
harness the same energy source. Spatial complementarity, on the other hand, can also be
observed with only one source. As such, the scarcity of one VRES in site x is complemented
by its availability in site y, at the same time, t [68].

Specializing the generic mathematical context of Section 3.1, to the design and man-
agement of VRES systems, reliability may be expressed either as a forward problem
(i.e., reliability of fulfilling a given energy demand) or an inverse one (i.e., a constant
yield or yield pattern that can be achieved for a specific reliability level) [53]. This analysis,
following the inverse problem, introduces the concept of spatial reliability in VRES systems,
defining it as the probability of achieving a guaranteed level of power production over a given
region. The generic mathematical expression of spatial reliability is similar to Equation (1)
by substituting time index t with space index s, i.e.,:

a := 1 −P [Y(s) < D(s); s ∈ Ω] (3)

where Ω denotes a certain spatial domain and Y(s) and D(s) refer to the energy yield and
associated demand at a certain site, respectively. The energy yield can be expressed in
terms of typical performance indices of power production systems. Similar to time-based
reliability, while the space domain Ω is continuous, it is also handled as discrete, thus
dividing Ω into sub-areas (e.g., by delineating a mesh grid) and accounting for an average
performance metric of the energy source under study over each sub-area. An even simpler
approach is to estimate this metric on a point basis, provided that the selected points ensure
a satisfactory representation of the spatial variability of power production over the entire
area of interest.

A typical metric for assessing the performance of renewable energy systems is the
mean annual capacity factor, CF. This metric is generally defined as the ratio of the actual
electricity production, E, to the theoretical maximum that can be produced by a project (or
system of projects) of the total power capacity Pmax during a given time interval, T:

CF =
E

PmaxT
=

∫ T
0 P(t)dt
PmaxT

(4)

In this context, the mean annual capacity factor contrasts the mean annual energy
yield with its theoretical maximum value, assuming the continuous operation of the power
system in its full capacity, for T = 8760 h.

The quantification of both the temporal and spatial reliability of VRES power pro-
duction systems requires inputs that are inherently defined as stochastic since they are
driven by randomly varying atmospheric processes (e.g., streamflow, wind speed, and
solar radiation). As their conversion to power is subject to nonlinear dynamics, typically
expressed in terms of empirical nomographs (e.g., efficiency curves) or even more complex
procedures (the case of hydroelectric reservoirs), an analytical derivation of spatial reliabil-
ity is impossible (the same stands with temporal reliability, as thoroughly discussed in [53]).
In this vein, a Monte Carlo simulation (MCS) is considered an appropriate method for its
quantification, as it is easily formalized through a numerical procedure that accurately
represents real-world systems in probabilistic means.

The implementation of the spatial reliability concept in practice is demonstrated in
the case of solar photovoltaic (PV) energy by considering Greece as the spatial domain
of interest.
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5. Proof of Concept: Distributed PV Energy in Greece
5.1. Study Area and Data

This section delves into verifying the theoretical expression of the spatial reliability
of solar PV energy in a Monte Carlo context. The methodology is applied to the case of
Greece, where solar energy is one of the predominant renewables. The PV power output is
calculated through a simulation procedure that accounts for a typical commercial panel
across 40 well-distributed locations driven by solar radiation and ambient temperature.
This analysis considers an indicative commercial PV panel, the technical characteristics of
which are summarized in Table 1.

Table 1. Technical characteristics of a typical PV module.

Nominal Power, Pnom (W) 400

Panel efficiency (%) 22.6
Operating temperature −40 ◦C to +85 ◦C

Dimensions (mm) 1046 × 1690 × 40

The two input time series across the 40 locations (Figure 1) of interest are derived from
satellite-based hourly weather data of 16 years length (2005–2020). These are retrieved
from the Satellite Application Facility on Climate Monitoring (CMSAF) collaboration [69]
through the Photovoltaic Geographical Information System (PVGIS) application [70]. The
PVGIS portal provides solar radiation data at fine scales (spatial and temporal) using
the Surface Solar Radiation Data Set Heliosat-2 (SARAH-2), with a spatial resolution
of approximately 5 km (0.05◦ × 0.05◦). This is of crucial importance, acknowledging
the high demand for such data, combined with their scarce availability, mainly due to
purchase and maintenance costs, as well as the calibration requirements of the associated
equipment used for ground measurements [71]. Importantly, the calculation of solar
radiation at ground level from satellite images for the CMSAF data is facilitated through
comprehensive algorithms, also accounting for atmospheric data (i.e., water vapor, aerosols,
and ozone), usually providing highly accurate results, with a few exceptions, as outlined by
Lehneis et al. [72].
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The acquired radiation and temperature PVGIS data were contrasted with ground
observations from three meteorological stations operating close to the associated sites,
exhibiting quite satisfactory similarities. Nevertheless, it is important to consider that
discrepancies between the two data sources are expected and are attributable to the fact that
satellite products offer gridded data, which refer to coarse spatial resolutions, compared to
those of meteorological stations, which refer to point-specific measurements.

5.2. Methodology

The hourly solar power production is commonly treated as a linear function of incom-
ing solar radiation, G. Once G exceeds the value of 1000 W/m2, the PVs operate at their
nominal power. In this context, the hourly PV power production is calculated using the
following formula:

Phourly =

{
nactual ·G·Apanel , G < 1000 W/m2

nactual
nnom

Pnom, G ≥ 1000 W/m2 (5)

where nnom is the nominal (theoretical) efficiency of the PV panels, nactual is the adjusted
efficiency of the PV panels after considering temperature effects, G is the solar radiation
(W/m2), Apanel is the PV-occupied area (m2), and Pnom is the nominal power, which is
achieved under the so-called Standard Test Conditions (i.e., for a cell temperature of 25 ◦C,
solar irradiance of 1000 W/m2, and air mass of 1.5).

Temperature effects on solar PV production are well-studied in the literature, as they
are one of the primary factors responsible for significantly degrading conversion efficiency
by up to 12% [73–75]. More specifically, solar cell performance decreases as the temperature
increases, fundamentally owing to the increased internal carrier recombination rates caused
by increased carrier concentrations. Both the electrical efficiency and the power output of a
photovoltaic (PV) module depend linearly on the operating temperature [11]. This analysis
considers the traditional linear expression introduced by Evans and Florschuetz [76] to
estimate the adjusted efficiency, nactual as follows:

nactual =

 nnom, Tc ≤ Tre f

nnom

[
1 − aT ·

(
Tc − Tre f

)]
, Tc > Tre f

(6)

where nnom is the nominal efficiency of the PV panels, and aT is the power temperature
coefficient (%/◦C), denoting the rate of PV efficiency decrease for every unit increase in the
ambient temperature above Tre f (which equals 25 ◦C in this case). This analysis considers
aT = 0.4, which is a typical value for conventional PV modules. Finally, Tc refers to the cell
temperature and is calculated using the following formula:

Tc = Tambient +
NOCT − 20

800
G (7)

where Tambient is the ambient temperature (◦C), G is the solar radiation (W/m2), and NOCT
is the nominal operating cell temperature, which is defined as the temperature of the cell
in a standard reference environment (i.e., ambient temperature of 20 ◦C, solar irradiance
of 800 W/m2, and wind speed of 1 m/s) [75]. In general, the NOCT is constant for PV
modules, and its value is provided by the manufacturer or determined from actual on-site
measurements. However, for the purpose of this analysis, and in the absence of detailed
information (which is beyond the objectives of this research), a constant value is applied for
all sites; thus, NOCT is set at 45 ◦C, which falls within the typical value range of 45 ± 2 ◦C
for monocrystalline and polycrystalline PV modules [77].
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The PV power potential of each location is expressed in dimensionless terms through
the annual capacity factor as follows:

CF =
Eannual

Pnom·8760
(8)

Particularly, in the case of VRES (including solar radiation), which are driven by
randomly varying (i.e., stochastic) atmospheric processes, CF may be regarded as a macro-
scopic financial assessment metric since it contrasts the power system’s response, and
thus economic benefits, with its installed capacity, which is directly associated with the
investment costs [78].

5.3. Baseline Scenario

To better understand the benefits of spatially dispersed PV systems, the individual
power production for the selected locations is first estimated, which hypothetically cor-
responds to the state of centralized systems. This analysis is herein referred to as the
“baseline” scenario. Table 2 summarizes the main outcomes in terms of the key statistical
characteristics of the two input processes and the main output, i.e., the capacity factor,
over the 40 examined locations. The detailed characteristics of each location are given in
Appendix A.

Table 2. Key statistical characteristics (on an annual basis) of all quantities of interest across the
40 locations examined in Greece.

Temperature (◦C) Solar Radiation (W/m2) Capacity Factor

Average 16.07 195.23 0.191
Standard deviation 2.21 12.45 0.013

Minimum 10.62 170.28 0.169
Maximum 18.92 219.50 0.214

The spatial variability of the centralized production is probabilistically expressed
and visualized through the empirical probability curve (inverse cumulative distribution
function-CDF) of the annual capacity factors across the selected locations. The curve
data are derived by sorting the simulated capacity factor values in descending order and
assigning an empirical exceedance probability to each value. In this respect, the vertical
axis represents the PV power potential in terms of the capacity factor, and the horizontal
axis represents the percentage of locations that can guarantee the corresponding capacity
factors. If n is the size of the data (in our case, the number of locations), the empirical
probability of exceeding the sorted value at position
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n + 1
(9)

To provide a continuous spatial probability model, the Kumaraswamy distribution
function is utilized. This is a double-bounded distribution, meaning that it is suitable
for random processes that are bounded at both their lower and upper ends [79]. The Ku-
maraswamy formula is fitted to the empirical probability capacity factor values as follows:

CF = CFmin +
[
1 − (1 −P a)b

]
(CFmax − CFmin) (10)

where CFmin and CFmax are the theoretical lower and upper limits of the capacity factor
values, respectively, a and b are shape parameters, and P is the probability of exceedance.
The shape parameters and the limits CFmin and CFmax, corresponding to P ≈ 1 and P ≈ 0,
are inferred via calibration. We highlight that although the theoretical limits of the capacity
factor are 0 and 1, the values of CFmin and CFmax that are applied in Equation (10), which
are inferred through calibration, are much narrower, thus providing a realistic range of
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capacity factor values for solar energy across Greece. Indeed, the optimized limits of CF
under the Kumaraswamy distribution model are 0.17 and 0.23, and they are considered
reasonable, according to the authors’ experience.

The results of the baseline scenario after fitting the Kumaraswamy distribution are
presented in Figure 2. The mean capacity factor of the selected locations (operating in
a theoretical centralized setting) is 0.195. Remarkably, accounting for the installed PV
capacity over Greece for the year 2022, and the PV power production, i.e., 5788 MW
and 8.97 TWh, respectively, the mean capacity factor at the national level equals 0.177,
which indicates that the spatial distribution of the selected location quite well reflects
the country’s PV installations and their performance. The slight overestimation of this
analysis’ calculated capacity factor is attributed to the fact that a high-efficiency panel is
accounted for throughout all simulation lengths. Therefore, the country’s old installations
that have lower efficiency rates, combined with their respective efficiency reductions due
to equipment aging, are not accounted for in the previous comparison.
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In the context of this research, the exceedance probability is interpreted as a spatial
reliability metric. In the baseline scenario, this translates to the number of locations that
can guarantee a given level of power production. For instance, a spatial reliability level of
80% dictates that a centralized PV setting of 80% of the selected locations (i.e., 32 out of
40) can guarantee power production that corresponds to a (minimum) capacity factor of
approximately 0.185 (as shown in Figure 2). As anticipated, the power output variability
between centralized settings is significant, and as such, the sites that exhibit the highest
irradiance values are favored.

5.4. Monte Carlo Simulation of Distributed Settings

Section 4 illustrated that the benefits of spatial dispersion of VRES can be demonstrated
through the quantification of their spatial reliability. This section depicts this context in
practice by assessing PV performance in a distributed (decentralized) setting, employing a
Monte Carlo simulation (MCS) approach. The rationale is to calculate the “joint” PV power
potential (in terms of the capacity factor) of spatially dispersed sites by distributing the
typical panels in equally probable combinations of locations. Each combination is config-
ured by sampling the available number of PV installation sites within the range [2, n − 1],
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where n is the total number of feasible locations (40, in the case of this analysis). In order
to handle combinatorial explosion and reduce the computational load, 1000 simulations
are performed for each setting. Subsequently, exceedance probability curves are produced
for all combinations, in which the Kumaraswamy distribution is fitted to the empirically
derived data, as shown in Figure 3. Notably, the unit setting refers to the baseline scenario
(i.e., fully centralized deployment of solar panels), which has already been investigated in
Section 5.2.
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The probabilistic curves provide valuable insights, allowing for a better understanding
of PV production capabilities with respect to their spatial dispersion. In the Monte Carlo
analysis, spatial reliability refers to the combinations of locations from the total sample
that can guarantee a given level of “joint” power production (in terms of capacity factor).
It is evident that as more locations are accounted for, and thus, the spatial dispersion of
PV configurations increases, the power output variability decreases. As such, this analysis
reveals the tradeoff between spatial dispersion and guaranteed power output. Interestingly,
the shape of the curves suggests that when the PVs are equally distributed among combina-
tions of the “best” regions and “lesser” performing regions, the guaranteed power output
increases. This may be attributed to the spatial decorrelation of meteorological phenomena
that induce power curtailment (e.g., cloud coverage, dust accumulation, aerosol concen-
tration, and ozone), provided that the distance between the two locations is substantial.
Therefore, centralized settings (and less spatially dispersed ones) exhibit higher production
capacities that correspond to lower spatial reliability levels. On the contrary, distributed
configurations result in reduced power output variability, thus ensuring higher levels of
guaranteed energy yield.

5.5. Derivation of Scale-Reliability-Yield Laws for Solar Energy

In order to provide a better understanding of the tradeoff between PV power output
and the issue of scale in the spatial domain, taking advantage of Figure 3 and considering
a specific probability of exceedance, the empirically derived capacity factors are plotted,
with respect to the number of locations across which PVs are distributed, denoted as a
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spatial dispersion metric, N. An example is provided in Figure 4a, corresponding to a
spatial probability P = 80%. As indicated in the graph, the increase in PV power output
follows an asymptotic law, indicating an increasing performance as more locations are
accounted for (hence, increasing spatial dispersion). While this increase is quite sharp at
the beginning, the following rate of guaranteed power improvement is milder. The same
procedure is repeated for five additional values of P, i.e., 85, 90, 95, 97, and 99%, resulting
in similar mathematical behavior. In this vein, the asymptotic Gompertz function is fitted
to the empirically derived CF values for all spatial probability levels, as follows:

CF = CF∞e−bN−c
(11)

where CF∞ is the theoretical maximum capacity factor value achieved under the fully
distributed setting (common for all settings), and b and c are shape parameters that depend
on the spatial dispersion metric, N. The aforementioned parameters are inferred via
calibration for each reliability level, underlining that all reliability curves should converge
to CF∞, when considering a full PV spatial dispersion. This function allows quantification
of the scaling law derived from distributed production settings with respect to spatial
reliability. The resulting curves illustrated in Figure 4b can be interpreted as the scale-
reliability-yield relationship for solar energy in Greece.
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Acquiring valuable insights from the graphs, it is evident that the guaranteed PV
yield increases when transitioning from centralized to spatially distributed configurations.
Conversely, for the same distribution setting, a larger spatial reliability level may be ensured
under a decreased guaranteed PV yield. Importantly, the asymptotic CF value is estimated
to be up to 0.193, which corresponds to the optimal guaranteed PV yield in Greece under a fully
distributed setting of solar panels of the examined type. This conclusion is of significant
importance for the overall strategic planning of power development at the national level.

6. Discussion

The constantly increasing global population and, consequently, the exponential growth
of associated power demand, combined with the goal of rapid decarbonization of the energy
sector, have imposed a shift in the traditional paradigms of centralized production systems.
Transitioning from conventional configurations, which commonly use fossils, to ones that
valorize VRES primarily requires addressing their main bottleneck, namely, their inherited
variability and intermittent nature. This is typically addressed by coupling VRES solutions
with energy components offering regulation and storage (e.g., hydropower) and by spatially
dispersing them under the context of decentralization to decrease power output variability.
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In this vein, decentralized systems have been gaining popularity since they can operate
either as standalone or grid-connected, providing ancillary services to existing electrical
networks. Importantly, both settings of decentralized systems contribute to energy security
and enhanced resilience.

This work highlighted the benefits of decentralization under the prism of spatial
reliability as a performance metric for the reduction of power output variability. By
considering the spatial distribution of solar PVs across Greek territory, it addressed the
question, “why shouldn’t one simply install all PVs in the “best” performing location?”. In
reality, the answer lies in the complementarity of spatial and temporal reliability. As such,
while the best performing centralized configuration will ensure an overall higher power
output, it may not be able to satisfy the load demand at a given time when the underlying
weather conditions induce power curtailment (e.g., during an overcast day). On the
contrary, spatially dispersed (and thus decorrelated) installations guarantee higher power
injections into the grid at all times compared to centralized ones. The complementarity
between temporal and spatial reliability can be better interpreted through a statistical
analysis of hourly power outputs and associated performance metrics (e.g., capacity factors).
In this respect, deriving the quantiles of guaranteed power output will allow for assessing
reliability as a global concept in two dimensions, i.e., temporal and spatial.

This work utilizes, for the purpose of proof of concept, a typical commercial PV panel
to estimate solar power output. As such, it can be reasonably inferred that considering
panels with different characteristics (i.e., efficiency and temperature coefficient) would
affect the results of this study. Notably, expanding the Monte Carlo framework to also
account for the installation of different PV module types across the candidate locations,
taking into account aging effects, may result in capacity factor values that better reflect the
national one, as per the comparison in Section 5.3.

With regard to strategic PV development over large regions, this work serves as a
background feasibility analysis that assesses the overall power output potential of decen-
tralized settings. However, grid integration constraints, such as the inability to absorb all
available PV generation due to reduced transmission capacity [80], are not accounted for.
Nevertheless, in PV system planning studies, this aspect is essential to consider, as it may
dictate both the siting and the sizing of decentralized configurations.

Furthermore, highlighting the complementarity between solar and wind sources, the
insights of [39] indicate that a small participation of wind energy (i.e., ~10%) consider-
ably reduces the output generation variability. In this respect, further research should
be encouraged to quantitatively assess the spatial reliability of diversified solar PV and
wind portfolios.

In a more general economic context, the cost of distributed power systems must
account for locational value, as well, when contrasted to that of centralized configura-
tions, since the latter are often deemed as more cost-efficient, exhibiting economies of
scale [22]. Locational value is a multi-faceted concept. It can either refer to the energy sector
(e.g., lower transmission costs, decreased distribution losses, and enhanced reliability in
power delivery) or to general socioeconomic benefits for the associated region (e.g., direct
and indirect employment generation stimulated by distributed energy systems). Specifi-
cally, for PVs, the additional locational value of distributed systems can be brought by their
installation above croplands and arable areas (also termed agrovoltaics), allowing for dual
land use and providing additional benefits to both crops (reduced evapotranspiration due
to shading effects) and PV modules (reduced cell temperature by creating microclimate
conditions below the panels) [81]. In a similar context, the development of floating PVs over
distributed open water elements (including hydropower reservoirs) may also be mutually
beneficial, resulting in reduced evaporation losses and increased panel efficiency due to
cooling [82].
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7. Conclusions

This study aimed to investigate the role of spatial scale in the distribution of renewable
energy systems. Acknowledging the highly uncertain and stochastic nature of the input
parameters used to estimate the power production of VRES systems, their energy yield with
respect to spatial dispersion is assessed in probabilistic means by expanding the concept of
energy reliability to the space domain, which, to the authors’ knowledge, is a subject that
has not been previously addressed.

In order to verify this concept, the case of PV development over the Greek territory is
considered. A detailed simulation procedure is formulated to assess the PV power output
by utilizing the capacity factor metric, while also accounting for the primary factor that
significantly affects the overall PV performance (i.e., ambient temperature). A novel Monte
Carlo approach is deployed to quantify spatial probabilities, which would otherwise be
impossible to estimate analytically. In this vein, PVs are allotted through well-distributed
representative combinations of locations, and their “joint” energy yield is estimated. The
results of this analysis, expressed in terms of theoretical probabilistic models (in particular,
through the Kumaraswamy distribution function), depict a significant reduction in the
power output variability that is achieved by spatial dispersion. As such, greater spatial dis-
persion leads to an increased guaranteed yield for a given spatial reliability. The two bound
parameters also have a practical value since they exhibit the range of anticipated capacity
factor values across all sites of interest.

The overall outcome is asymptotic-type scale laws to assess the increase in guaranteed
energy yield with respect to spatial dispersion. These laws can be interpreted in terms
of scale-reliability-yield relationships for solar energy in Greece and reveal the tradeoff
between guaranteed PV yield and spatial dispersion. More specifically, the highest guaran-
teed PV yield for a given spatial reliability is achieved under the fully distributed setting,
whereas under the same distribution settings, a larger spatial reliability level may be
achieved by decreasing the guaranteed PV yield. A major feature of these scale-reliability-
yield curves is their convergence to a common upper value, which denotes the theoretical
maximum mean annual capacity factor to be achieved under a fully distributed planning
of solar PV energy.

In conclusion, the spatial reliability concept may play a significant role in background
feasibility analyses regarding the strategic planning of renewable energy system develop-
ment, allowing for an initial probabilistic estimation of power output over a given region.
As such, decision makers and energy planners can evaluate the necessary degree of PV
spatial dispersion for a requested yield under a given reliability level. Importantly, the
concept of spatial reliability can also be utilized to assess other sources (e.g., wind and
hydropower) or their combined operation (in hybrid systems).
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Appendix A

Table A1. Coordinates and key annual statistical characteristics of the selected locations.

Location Latitude (φ) Longitude (λ) Mean Solar
Radiation (W/m2)

Mean
Temperature (◦C)

Mean Annual
Capacity Factor

Ioannina 39◦35′06′′ N 20◦55′56′′ E 180.33 11.84 0.178
Kastoria 40◦28′26′′ N 21◦12′07′′ E 179.81 12.00 0.177
Tripoli 37◦29′28′′ N 22◦24′32′′ E 198.15 13.30 0.195
Milos 36◦41′30′′ N 24◦28′31′′ E 211.21 18.74 0.211

Kerkira 39◦37′57′′ N 19◦47′47′′ E 196.89 17.20 0.195
Crete 35◦02′33′′ N 24◦59′22′′ E 219.50 18.28 0.212

Kavala 40◦58′05′′ N 24◦49′12′′ E 187.39 15.29 0.186
Larissa 39◦33′23′′ N 22◦31′40′′ E 188.88 16.60 0.181

Leivadia 38◦26′42′′ N 23◦01′26′′ E 186.92 16.23 0.180
Lesvos 39◦07′34′′ N 26◦19′13′′ E 194.72 16.87 0.190
Agrinio 38◦36′34′′ N 21◦20′24′′ E 198.42 16.76 0.192

Thessaloniki 40◦35′49′′ N 22◦48′02′′ E 186.10 17.08 0.180
Gytheio 36◦49′24′′ N 22◦41′47′′ E 210.66 16.36 0.203

Zakynthos 37◦45′52′′ N 20◦50′53′′ E 201.22 18.47 0.201
Rhodes 36◦21′43′′ N 27◦58′48′′ E 216.68 18.70 0.213
Skyros 38◦57′38′′ N 24◦29′41′′ E 195.26 17.48 0.194
Trikala 39◦29′36′′ N 21◦53′08′′ E 187.91 15.76 0.180
Evros 40◦50′31′′ N 25◦59′50′′ E 187.53 14.74 0.182

Athens 37◦58′25′′ N 23◦47′14′′ E 201.33 18.00 0.193
Mykonos 37◦25′44′′ N 25◦19′47′′ E 210.53 18.25 0.210

Patra 38◦07′40′′ N 21◦27′16′′ E 206.68 17.05 0.200
Serres 40◦58′22′′ N 23◦37′29′′ E 184.58 15.97 0.177

Aridaia 40◦58′17′′ N 22◦04′41′′ E 180.90 15.37 0.174
Lamia 38◦51′44′′ N 22◦31′16′′ E 192.20 17.31 0.183
Chios 38◦18′14′′ N 26◦07′53′′ E 208.94 17.91 0.207

Olympia 37◦44′35′′ N 21◦45′27′′ E 198.47 15.49 0.192
Kalamata 37◦04′02′′ N 21◦58′35′′ E 203.65 18.46 0.196
Corinth 37◦55′09′′ N 22◦53′32′′ E 204.27 16.76 0.198
Kozani 40◦19′56′′ N 21◦58′12′′ E 183.35 13.26 0.180

Diakopto 38◦10′11′′ N 22◦17′05′′ E 198.57 12.95 0.197
Grevena 40◦02′44′′ N 21◦25′25′′ E 175.52 13.05 0.172

Karpenisi 38◦56′53′′ N 21◦48′12′′ E 176.31 11.61 0.175
Chalkidiki 40◦03′51′′ N 23◦22′09′′ E 189.14 17.02 0.187

Drama 41◦28′06′′ N 24◦14′06′′ E 170.28 10.62 0.169
Orestiada 41◦30′14′′ N 26◦30′48′′ E 179.18 14.71 0.173

Arta 39◦05′31′′ N 20◦59′42′′ E 197.75 16.90 0.191
Anafi 36◦21′47′′ N 25◦46′09′′ E 214.57 18.92 0.214

Patmos 37◦18′36′′ N 26◦32′53′′ E 213.73 18.55 0.213
Limnos 39◦54′57′′ N 25◦10′38′′ E 196.53 16.87 0.195
Euvoia 38◦33′09′′ N 23◦45′03′′ E 195.24 16.19 0.190
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