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Abstract

The water-energy nexus plays a crucial role in fostering sustainable growth, since it is the
cornerstone for the interconnected and intertwined systems of water and energy supply,
consumption, and management. This interrelationis the paramount for achieving sustainable
development goals, as both water and energy resources are essential for economic growth,
social prosperity, and environmental stewardship. In this respect, this Ph.D. thesis explores,
describes and quantifies the complex interdependencies within the water-energy nexus,
focusing on the incorporation and management of uncertainty arising from both aleatoryand
epistemic sources. The research investigates the impacts of climatic variability, social
dynamics, and energy market fluctuations on water-energy systems, with a particular
emphasis on optimizing system performance under uncertain conditions.

Since, the water-energy nexus is driven by inherently uncertain hydroclimatic processes and
multiple human-induced procedures (e.g., legal regulations, strategic management policies,
real-time controls, market rules), it is globally recognized that their operation is highly
exposed to emerging climatic, anthropogenic, and energy-market pressures and fluctuations.
In this respect and to move forward fragmented approaches, we aim at establishing an
uncertainty-aware simulation-optimization framework that support systems for water
planning and management, under the holistic prism of water-energy-society nexus. This shift
will require an effective and efficient integration of different theories, i.e., the triptych of
statistics, stochastics and copulas and tools, i.e., simulation, optimization and agent-based
models into a unified methodological framework.

In particular, this framework seeks for the combined effects of the climatic, socialand energy
market uncertainties within the water-energy nexus, as well as the interplay of their cascades
and dependencies that have received considerably less attentionto date. For the description
of climatic and energy market uncertainty, we are taking advantage of stochastic models,
while for the representation of the social dynamics within the technical systems we employ
statistical analyses and agent-based models. Through a combination of advanced simulation
techniques and optimization procedures, this research identifies uncertainty-aware strategies
for adaptive management and decision-making, that affect the system’s performance, as
guantified in terms of economy, reliability and resilience.

The uncertainty-aware simulation-optimization framework for water-energy systemsis stress-
tested at three scales of interest: (a) the design scale, aiming at the optimal sizing and mixing
of small hydropower plants; (b) the long-term management scale, aiming at assessing the
policies of water utilities, under changing hydroclimatic and socioeconomic conditions; and
(c) the combination of short, mid and long-term scale, aiming at defining their optimal
operation policy under changing hydroclimatic and socioeconomic conditions, also dominated
by issues of scheduling of energy production under uncertain energy market fluctuations. For
the validation of the concepts, methodologies and tools a series of hypothetical and real-
world cases are examined covering a wide range of spatial and temporal scales.

Overall, this research contributes to the emerging field of water-energy nexus by addressing
the challenges posed by uncertainty and variability across multiple domains. Eventually, the
findings offer valuable insights and toolboxes for policymakers, planners, and stakeholders
involved in managing and optimizing water and energyresources in a changing and uncertain
environment.
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Ektevic eAAnvikn MepiAndn

AVTIKELPEVO TNG EPEUVAG

To mAéypa vepoU-evépyelag Tmailel koboplotikd polo otnv mpowbnon tn¢ PLwoLUNg
ovantuéng, kabwg amotelel Tov akpoywviaio AiBo yia ta Stacuvdedepéva kat aAAnAévdem
OUCTH ATA KATaVAAWoN G KoL SLaxeiplong vepou Kal evépyelag. Autr n aAAnAetaptnon eivat
v loTn¢ onuacilog yLo TNV eMiTEVEN TWV OTOXWV BLWOLUNG avATTTUEN G, KaBw¢ TOo0 oL U SatLkol
000 KO Ol EVEPYELOKOL TIOPOL ELVAL ATTAPALTNTOL YL TNV OLKOVOULKE OVATTTUEN, TNV KOLVWVLKA
gunuepia kat t Stoxeiplon tou meptBaAAovtog. e auTo To AaioLo, N mapolca SLEAKTOPLIKNA
SLatpLpn e€epeuva, TepLlypAadEL KoL TOOOTLKOTIOLEL TG TTOAUTIAOKEG 0AANAeEQPTH OELG EVTOC TOU
TIAEYLOTOG VEPOU -EVEPYELOC, EOTLATOVTAG OTNV EVOWHATWon Kal Slaxeiplon tn¢ apeBatdtntag
TIOU TIPOKUTTTEL amo aAsatopikéc (aleatory) kal emiotnuikéc (epistemic) mnyég. H €peuva
OLEPEUVA TLC EMUMTWOELG TN G KALLOTLKN G LETABANTOTNTAG, TWV KOLVWVLKWY SUVOLLLKWVY KAL TWV
OLOKUUAVOEWY TNG EVEPYELOKNAG QAYyOpPAC OTOL CUOCTAMOTA VEPOU-EVEPYELAG, HE LSlaitepn
£udaon otn BeAtiotonoinon t¢ anddoong Toug UTIO cuVONKeg aBeBalotntag.

Aebopévou OtL To TAEyHa vepou-evépyelag kaBodnyeltal amd eyyevwg  aBEéBaleg
UOpOKALHOTIKEG Olepyaoieg kal TOAAAMAEG avBpwroyevelc Sladikoolec (m.}. VOMLKEC
puBuioelc, oTpATNYLKEG TIOALTIKEG Sloxeiplong, €AeyyoL Ot TPAYUATIKO XPOVO, KOVOVEC
olyopac), Elval TTayKooU LW ovayvVwPLOLEVO OTL N AELTOU pyLo ToU G eival Llaitepa ekteBeLiévn
oTLG avodUOUEVEG KALLLOTIKEG, AvOPWTIOYEVELC KOl EVEQYELOKESG TILECELG KOl SLALKU LAVOELG TG
oyopdg. [MPOKEWWEVOU VO TIPOXWPNOOUUE TEPA OO TIG TUTILKEG OUTOOTIALOMLOTLKES
TPOOEYYLOELG, OTOXEVOULE OTNV KaBLEpwon evog MAaLciou Tipooopoiwong-Beltiotonoinong
mou AapPavel umoyn v afefaldtnta Kol umootnpilel ToV TPOYPAUUATIONO Kol Th
Slayelplon Twv OpwY, UTTO TNV OALOTIKA OMTLKNA TOU TIAEYUOTOC VEPOU -EVEPYELXG-KOLVWVIAG.
AuTn n JetaBaon amaltel TNV AMoTEAECUATLKY Kal armodoTIK eVOWHATWonN SLadopeTIkwY
BewpLwv kal epyadeiwv os éva eviaio peBodohoyLko mAaiolo. AUTO EVOWHOTWVELTO TPLMTUXO
OTATIOTIKY), OTOXQOTIK Kol ovuvaptioel¢ oulevénce (copulas), €vtog Twv HOVIEAWV
Tipocopolwaong kal BeAtiotonoinonc.

JUYKEKPLUEVA, QUTO TO TTAQLOLO EMLOLWKEL VO EEETACEL TLG OUVOUOOUEVEG ETITTTWOELG TWV
KALLOTLKWV KOl KOWVWVLKWY oBePalotiTwy, KOBWE KoL QUTWV TIOU TIPOEPXOVIAL OTO TLG
EVEPYELAKEG OYOPEG, KAl SLEMOUV To TTAEYUA vepoU -evépyelag. Eldikdtepa, divetal €udaon
otnv aAAnAenidpaon Twv aAAnAou LWV KoL EEAPTH CEWV TWV TTOPATIAVW TINYWV ofefatotnag,
TLOU €XOUV AAPEL OXETIKA [LLKPH TIPOCOXN LEXPLONEPA. ML TNV TteEpLypadr TN G KALLOTIK G KoL
gvepyelaknG apeBaldtntag, eKUETOAAEUOUAOTE TO OTOXOOTLKA HOVTEAQ, EVW YyLO TNV
ovamnapAdotoon TwV  KOWWVIKWY  SUVOULKWY  EVIOG TWV  TEXVIKWYV  OUCTNHUATWY
XPNOLLOTOLOU UE OTATIOTIKEG OVAAUGCELC KOL HOVIEAO EUPUWV TIPAKTOPWY. MEow £vOg
ouvSuacp ol TMPONYUEVWY TEXVLKWVY TTPOCOUOLWwaoNG Kol Stadlkaolwv BeATiotonoinong, aut)
N épeuva avadelkvl el OTPATNYLKEC TTPOCOPUOOTLKNC Slaxeiplong kat AnPng anopdoewv pe
eniyvwon ¢ apefalotntag, ot omnoieg ennpedalouvv v amoddoon Tou CUCTHUOTOC, OTWE
TLOCOTLKOTIOLELTAL LE OPOUG OLKOVORLLOG, afloTLoTiag Kol avOEKTIKOTNTAG.

To mAaiolo mpooopoiwong-Bertiotonoinong uno afefaldtnta yla ta cuotiuoTa vepou -
evépyelag Sokipdletal og TPELG KALpakeg eviladépovtog: (a) otnv KAlpaka oxedlacpou, e
otoxo tn BéAtiotn SaotactoAdynon toug, (B) otnv KAlpaka pakpoxpoviag Staxeiplong, He
otoX0 TNV AfLOAGYNOoN TWV TIOALTIKWY TwV USATIKWY UTNPECLWY, UTIO WETARAAAOUEVES
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UOPOKALUOTIKEG KOL  KOLWVWVLKOOLKOVOULKEG ouvBnkeg, kat (y) otov ocuvduaouo
BpoxumpoBeoun g, LECOMPOBECUNC KAl LLOKPOTIPOBeoUN G KALLOKAG, LE OTOXO TOV Ko.BopLOUO
¢ PEATIOTNG MOALTIKAG Aettoupylag Toug UTO METABAAAOLEVEG USPOKALUATLKEG Kall
KOLVWVLKOOLKOVOLLLKEG OUVORKEG, OL Omoieg KuplapxoUvtal emiong amd Intruama
TIPOYPULATLOMOU TNG TIOPOYWYI G EVEPYELAG UTIO aEPaLEG SLAKULAVOELG TNG EVEPYELAKN G
oyopdg. Mo tnv avadelén twv pebodoloylwv Kal Twv epyaleiwv fetalovtal Lo OELPA oo
UTIOBETIKEC KOl TIPOYUATLKEG TIEPUTTWOELG TTOU KAAUTITOUV €val eUpU PAoUA XWPLKWY Kol
XPOVLKWV KALULAKWV.

ZTOXOL KOl TPOKANOELG

Onw¢ npoavadépbnke, n mapol oo Epeuva oTOXEV EL OTNV ATTELKOVLON TwV BACLKWY oTolyeiwv
TOU VEPOU, TN G EVEPYELAC KALTNG KOLVWVLAG WG AAANAOCUVEEOEVWY POWV TTOU TTOLPOU GLA{OUV
OUVEPYELEG, AVTLOEOELG KAl OUUMANpwHATIKOTNTEG (EtkOva 1).
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EwkOva 1: INUATIKI avormapdotacon TwY powV VEPOU, EVEPYELAG KOl Kowvwviag wg eviaio
ocloTNUO.

AuT n mpoondBeLa UTTOKELTOL OE €€L BaolkoU ¢ oTOX0oUC, KaBEévag amo Toug Omoloug ELCAYEL
€vav apLBuo mpokAnoswv. Mo cUYKEKPLULEVAL:

() O mpwtog otoxog mepthapBdavel v avobeswpnon Twv UPLOTAUEVWY OXNHATWY
T{POCopoLlWwaNG-BeATIOTONOINONC TTOU XPNOLLLOTOLOUVTAL OTNV UEAETN CUOTNUATWY VEPOU -
EVEPYELAG, TIPOKELUEVOU VO EVOWMATWOoUV OAEC oL TTUXES TNG aBePaldtntag, eEwyevelg kot
evdoyeveig, mou ennpedlouV TETOLA OUOTH LATO.

(B) Evag mapdAAnAog epeuvnTIKOG OTOXOC TIPOKUTITEL OO TNV QVAYKN EVOWHATWONG TG
g€OLPETIKA aBEPALNG KOWVWVLKAG TITUXNG OTNV TEXVLKN Tieplypadn tng dtacuvdeonc vepol -
evépyelag, Slapopdwvovtag £tol pla véa €vvola, NTOL OTOXOOTIKA KOLVWVIKO-TEXVIKA
OUOTNUATA. INUAVTKOG OTOXOG €lval N Habnuatikn TUTTOMOoLNon Kol avamopaotacn Tou
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ovOpWTILVOU TIAPAYOVTO, OKOAOUBWVTAC KL EPUNVEUOVTAC TNV KOWWVLKA OUUTEpLPopd,
oakoAouBwvtag 600 MPOooEeYYIOELG «amO KATW TPOG Ta Mavw» (bottom-up) kol «amo mavw
TPOG Ta KATw» (top-down). Ocov adopd TV « aAmd KATW TPOG TA MAVW» TPOCEYYLON, N
£€peuva auTn aflomolel kal evioyUel Tn Bewpla Twv euduwv MpaKTopwy (agent-based theory),
OMW¢ TAPOUOLACTNKE oo tov Bonabeau (2002), cuvdualovtag th Ue To BEATLOTO OXAUa
oxebloopoU Kal Slaxeiplong vepou-evépyelag. AuTh n poogyylon Ba emitpéel otnv HEAEM
™¢ aAAnAenidpaong Tou avBpWIVOU TAPAYOVIO HUE TO TEXVIKO oUOTNHO, evw Oa pag
entp€Pel TN e€aywyr OUUMEPACUATWY OE LOKPOOKOTILKO emtimedo. Amd thv GAAn mAeupd, n
«QTIO AVW TIPOG TAL KATW » TIPOCEYYLON OELOTIOLEL LoTopLKA Sedopéva kat Paoiletal og auTa yLa
™V neplypacdn Tou avBpwTilvou TtapAyovTa Kol TnG avTidpact|g ToU OTo TEXVLKO cUoTN a.

(v) Evoc akopn epeuvnTikog Afovoc TPOKUTTEL QIO TNV ayopd EVEPYELAC KOl TLC
oAANAenSpAoEeLG TNG otn Slaclvdeon Tou MALYLATOG VEPOU-evEPYELAC. Avayvwpilou e dUo
KploLO EPELVNTLKAL ONELQ OXETLKA UE TNV OlYyOPA EVEPYELOC, NTOL TNV OTTELKOVLON TNG TLUAG
NAEKTPLKAC EVEPYELOC (TT.X., EMLTOKLA, TLUH NAEKTPLKAC EVEPYELOC) KOL TG EMUTTTWOELG TNG O
Sloxeiplon Kot AELTou pyla TwV oU oTH LATWY VEPOU -eVEPYELOC (TT.X. EVEPYELOKOL oTOXOL, KEPSN,
Aoyaplaopol vepoU K.ATL).

(6) H dLapdpdwon evog odokAnpwpévou mAatoiou yla tov avBpwriivo mapdyovta otov dtova
VEPOU-eVEPYELOC, UTIO HEeTAPOAAOUEVEG TIEPIBAAAOVILKEG KOL  KOLVWVIKOOLKOVOULKEG
ouvOnkeg, Ba mepAapPAveL emiong AmpPOPAETTA KAL EYYEVWEG OTOXOLOTLKA YEYOVOTA. € QUTO
o mAaiolo, n €psuva gotldlel OTIC EMIOPACEL KPLOLUWYV, EMELYOUCWY KOL OVWHOAWY
TEPLOTACEWY, TIOU UMOPEL VO EMNPEACOUV TOOO TN ULKPO- OGO KOL TN LOKPO-OU UmepLdopd
HLOG OAOKAN PN G Kovwviag pakpompoBbeopa. AuTd Ta yeyovota TepAAUBAVOUY YEWTTOALTLKEG
OAAQYEG, OLKOVOULKEG KPLOELG KOl OLKPALLEG USPOKALUATLIKEG CUVORKEG (TT.X. EMipoveg Enpaoiec),
TLPOKAAWVTAG LOKPOXPOVIEG eEAAElPELC VvEPOU Ka/r) EVEPYELAG, OL OTIOLEC UE TN OELPA TOUC
OVTOVOKAWVTOL OTLG AVTIOTOLXEG {NTAOELG, TUUECG Kol TLOALTIKEG. Tovi(oupe OTL oTlg cuvrBEelg
TPOOEYYLOELG  povielomoinong TmoOpwv VvepoU KOl EVEPYELAG, OQUTA Ta  OTOLXELD
avtpetwnilovtol UTO TNV umdbeon otabepn¢ katdaotaong (steady-state approach). MNa
mapadelypa, ot It oelg vepol ekdpalovial wWE YVWOTEG ELOPOEG, OL Oomoieg akoAouBouv
TLPOKOOOPLOPEVA ETTOYLKA TTPOTUTIA KOl LOTLBA, EVW OTNV TTPAYHATLKOTN TA €apTwVTaL £vTova
OUTTO TLG KOLVWVLKEG SPAOELC WC TIPOG TNV KATAOTAON TOU OUOTH LATOG KoL OTLG SLAPOPEC TITUXES
Twv aAAaywy (Tt.X. aAAOYEG OTIC USPOKALLATLKEG OUVON KEG Ka/r) oTtou ¢ Aoyaplaopol g vepou
TIOU UTIOPEL VA LELWOOUV TNV KaTavaAwon).

(€) KaBwc o aovag vepol-evépyelag-KOWVWVIOG UTTOKELTAL 08 TIOAAATAEG aBeBaloTnTeS, N
oavalAtnon Toug, N avormapdotacr TOUG, N TIOCOTIKOTOLNGN Kol TEALKA N gpUnVeia TOUG
ormoteAoUV £vav KPLOLLO GTOXO0 TN G TPOTELVOUEVN G EPEVVACG, O OTIOL0G Bal AVTLUETWTTLOTEL HECW
¢ Slebpuvong Tou OTOXOOTLKOU TTOPASELYHOTOC TTPOCOUOIWONG. € QUTO TO TAALOLO, N
£€pEUVOL OTOXEVUEL otn Olelpuvon TNG OTOXAOTKNG Bewplag¢ yla TNV avamapdotoon
KALLOTLKWY, OVOPWTIOYEVWY, EVEPYELOKWY KOl OLKOVOULKWY UETABOAWY WG TuXOLES
Sladikaoieg oe OLadopeg KALUOKEC. INUELWVOUHE OTL TETOLEG TIPOOCEYYLOELS oUVABWC
edapuolovtal otn povtehomnoinon mépwv vepol, HECW TNE AVATTAPACTACN G KAl SnLou pyiag
ouVvBeTIKWV Oedopévwy PBpoxng, aVATIOPAYOVTOC TA OTATIOTIKA XOPOKTNPLOTIKA TWV
OVTLOTOLXWV LOTOPLKWY apXelwv. ATd TV GAAN TAEUPA, OL OTOXOL KAl OL TIEPLOPLOLIOL VEPOU
KQlL EVEPYELOG, KOBWC KoL OL TTOAUSLACTATEG EMLOPACELG OTIO KOLVWVLKEG OUASEG KOl TILECELS
¢ ayopd svépyelog, ekdppalovial ouvRBwE WE YVWOoTA, K TWV TTPOTEPWY, dedopéva. ITnv
TIPAYLLATIKOTNTA, OAQ AUTA €lval eyyevwe LETABANTA KoL OPOPAENTA. JUVETTWG, OL KPLOLUEG
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TITUXEC TNG OYOPAC eVEPYELAG (TL.X. TLLEG NAEKTPLKAC evépyelac), Ba avamapactabolv pe
OTOXOLOTLKA. LECQL.

(ot) O cUVOALKOG EpeLVNTIKOG OTOXOG lval N oUVBeon OAwV Twv MpoavadePBEVIWY evvolwy
kalt pebBodoloylwv oe éva oAokAnpwpévo TAaiolo, umod To Tplopa tou afova vepou-
gvépyelag-kowvwviag. Auto to mAaiolo duvatal va avalUeL TIG TPELG SLaoUVOESEUEVEG POEC
Kal TEALKA va TLOPEXEL UTIOOTN PLEN AmodACEWY yLO TIPOKTIKA {NTHOTA OTOUC UTIEUBUVOUG
Xapagng TOATKWY (r.x. oxedlaoudg, Siaxeiplon, pakpompdBeoun  afloAoynon,
BpoxumpOBeOUOG TPOYPAUUATIONOG, OTPATNYLK QVATTUEN, TPOCOpPUoYy Ot OAAOYES,
ETMUTTWOELC TLOALTLKWV TLLOAOYNONG K.ATL.).

OL KUpPLEG TIPOKAN OELG TIOU GUVSEOVTOL LLE TOUG €EL EPELVNTLKOUC OTOXOUG elval, avtiotolya:

(o) H avamapdaotaon tou vepoU Kal Tn¢ eVEPYELAG wC Slacuvoedepévo ol ot Lo cUVOSED ETAL
OO ONUAVTLKA LeBOSOAOYLKA KOl UTTOAOYLOTLKA {NTraTa. 2€ TETOLO OUOTH AT, TTEPa oo
TG Nén Yvwotég MOAUTTAOKOTNTEG TNG HovIeEAoMolnong udatikwy Topwy (Un YPOUULKES
SUVALKEC, ampOPAenteg HEAAOVTLIKEC OAAOYEC, MeYAAOC oOplOUOC HeTaPANTWV KoL
TIEPLOPLOUWY, OUYKPOUOUEVEG XPNOELC KoL KPLTRPla K.ATT.), T(POKUTITOUV TIPOOBETEG
TIPOKANCELG AOYW TNG ELOOYWYNG EVEPYELOKWY OUVIOTWOWY Kol TWV ouvadwyv powv,
OPLOUEVEG OTO TG Omoleg elval MOPAAANAEC LE TG POEC TOU vepoU (T.X. mepimTwon
USpPONAEKTPLKAG evépyelag). Mia onpavtiky SuckoAia adopda tv avaykn ocvvdeoncg dvo
SLOPOPETIKWV XPOVIKWVY KALLLAKWY, SeSopuévou OTL oth Slaxeiplon uSaTKwY Topwy cuvr Bwg
vloBeTolVTaL HEYAAUTEPO XPOVLKA BrjaTa TTPOCOOLWaoNG, TL.Y. KNVLaLa, VW yLa TNV TILoT)
Kal opBr] amotumwon TNG EVEPYELAKNC Looppomiag (mapaywyn Loxuog €vavil Intnong)
arotLteltal oAU Aemtdtepn avaAuon (m.x. nuepnola n wplaia).

(B) H evowpdtwon tou efalpetikd mepimAokou kal aB€Balou KowwvIKoU TTapdyovia oTo
TEXVLKO cuotnpa (dnAadn oto clotnpo VEpOU-eVEPYELOG) ATOTEAEL EYYEVWC L0 EEQLPETIKA
OUTTOLLTN TLKY) TTPOKAN O, LE TTOAA QL {NTA LLOLTAL TTPOG AVTLUETWTILON. AESOEVOU OTL N TTPOCEYYLON
HEoW €udUwWV TTPAKTOpwV (agent-based approach), mou amotelel 1o Baoikd epyadeio yratny
ovanapaotaon Tng avopwrivng ou umepldopac, akohou Bel € oploUOU LA « OTTO KATW TIPOG
Ta mavw» Bewpnon, pla BepeAlwdng mpokAnon sival n €aodAALON ULOG LKOVOTIOLNTLKAG
LoOpPOTIiaG UETAtY aKpiBELOG KAl UTTOAOYLOTLKN G OTTOTEAECUATIKOTNTAC. H tpwtn amaitnon
T(POUTIOBETEL L0l AVTUTPOCWTTEVTIK TAELVOUNON TWV KOWVWVLKWY CUVLOTWOWV (TPAKTOpwWV)
Kal £vayv pEAALOTIKO OO LATLKO OPLOKO TWV KAVOVWYVY OUUTEPLPOPAG TOUC, TIOU UE TN OELPA
Tou pmopel vat 0dnynoesL og €va UTTEPPOALKA AETTTOUEPEG LOVTEAO. ATTO TNV GAAN TTAEUPA, TO
LOVTEAO aUTO Sev MpEmel va emBAAAEL avuTIEPPANTA EUMOSLO 0T GUVOALKI) UTTOAOYLOTLKNA
Swadikaoia, n omoia mephapPavel eniong £va XpovoBopo HOVIEAO TPOCOUOlwoNG Tou
TexvikoU cuotiuatog. Eva dAlo kplolpo onpeio elval n e€aywyr pog otabepng alAd kat
OlUTOTIPOCAPHOIOMEVNG KOWVWVIOG, HETA TNV KALLAKWON TWV EMUEPOUC KOLVWVLKWY
OUVLOTWOWYV, OL OTTOLEC Elval (Kal TIPETEL VOl ELvall) TPOKATELAN LLUEVEG.

(v) Emiong, n avamoapdotaon Twv TLECEWV TNG EVEPYELAKNG AYOPAC LLE OTOXOOTLKA HEoA
(6nAadn w¢ tuxaio petaParAopeveg TILEC NAEKTPLKAC evEpyelag) eival emiong olaitepa
amoLTnTkn, kabwe n dtadikaoia autr mopouolalel evieAwg Stadopetikeg LSlopopdieg ot
OXE0N UE TG KALLOTLIKEG LETAPANTEC, OTIWC N €viovn PETABANTOTNTA KoL oL aXHEG (Hou et al.,
2017), kaBwg Kal SUTA MEPLOSIKOTNTA, UETALY EMOXWV KAl EVTOC TOU MUEPNOLOU KUKAOU.
Mepaltépw TIPOKANCELG TTPOKUTITOUV ATIO TG TIEPLOPLOUEVEG OTATLOTIKEG TIANpPOdOPIeg TToU
TapEXOVTAL OmoO  UIKPpA Lotoplkd  Osiypota  Ssdopévwv  (Alya  xpovia, svw Ta
U OPOLLETEWPOAOYLKA apXELD ElVOL YEVLKA SLABECLUO YLt OPKETEG SEKAETIEC), KABWC KoL oo
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TNV AVAYKN EVOWHATWONG 0T cUVOETIKA Sedopéva avwpaAlwy dAAG MipovwY PLeTaBoAwY
OTLG TLHEG TNG NAEKTPLKAG EVEPYELAG, WOTE va avamapactabouyv e€alpetikd anpoPAenta
dalvopeva, 0w N TPEXOU OO EVEPYELAKN KPLoN, Ttou aroteAel pellova mapdyovia nieong ya
OAa Ta €BVLKN G KALHaKaG oL ot paTo NAEKTPLKN G evEpyeLag otny EE.

(6) H amoteheopatik) oUVOEDN TWV KOLWVWVLKWY KOL OLKOVOLLLKWY CUVLOTWOWYV OTov dtova
VEPOU-EVEPYELOC €lval Pl OTTOLTNTIKN €pyaoia, TTOU apXLKA OTTOLTEL ToV KATAAANAO OpLOUO
TWV 0plwV, TWV CUVIOTWOWV KoL TwV OLOSIKACLWY TOU OGUVOALKOU KOLVWVLKO-TEXVLKOU
OU OTN LOTOC, KABWGE Kol TwV SLemadwv Tou . e auTo To MAaioLo, To KAeLSL elval n padn otk
Tieplypadn TWV aUTO- Kal €TEPO-eEQPTAOEWY LETOED TWV TTOPWV VEPOU KOl EVEPYELAC, TWV
UTIOSOU WY, TWV AVEPWTIWVY KAl TWV OLKOGU OTNHATWY, KaBw¢ Kot TNG SUVOULKAG dUong TG
ANUng anoddacswy, TG avtidpaong ot oANOYEC Kal TNG TPOOAPHOYNC O aTPOPAEMTEC
TLEPLOTALCELG TIOU TIPOKAAOUVTAL OTTO TIAYKOOULEG AAAQLYEG.

(€) H ted ik mpoomdBeLa mTpooapoyn ¢ Tou dEova VEPOU -EVEPYELAG-KOLVWVLAG UTIO €val eVIaio
mAaiolo elodyel TNV avaykn Oloxeiplong evog TOAU peydAlou aplBuou Sedopévwy,
LETOPANTWV EAEYXOU, TIEPLOPLOUWYV KAl OTOXWV, AOYW TNE TAUTOXPOVN G LLOVIEAOMOLNON G TWV
TPLWV TTAPAAANAWVY powV Kal TWV aAANAEMLEPACEWV TOUG. H EpEUVNTIKA KOLVOTNTA OE OLUTOV
TOV TOULEQ TLAPEXEL LAAA OV OTTAOTIOLN LEVEG SLATUTIWOELG TIOU AlyVOOUV O LLOVTLKEG OU OTN LLLKEG
moAumAokotnteg kat aAAnAsfaptroelc (Giuliani et al., 2021). Népa amd auty ™ Soulkn
TLOAUTTAOKOTN TA, UTTAPXEL ETTLONC Lo KpU bR TTPOKAN ON, KABWC N cUVSECH TWV KOLVWVLKWV KOl
TEXVIKWY UTooUOoTNUATWwY emiPaidet ™ oUleuén 6Vo Sladopetikwv  dLhocodlwv
povtelomoinong, SnAadn Twv povtéAwv euduwy Tpaktopwy (agent-based models), mou
okoAouBoUv €€ oplopol HLO «OMO KATW TPOC TA TAVW» TPOCEYYLON, ME TA HOVIEAQ
Tipooopolwong vepoU-evépyelag mou PBaocilovtal og «Avw TPOG TO KATW» TIPOCEYYLON.
Qoto00, TO TEALKO TPoidV Ba TIPEMEL val Elval YEVLKO, EUEALKTO, UTIOAOYLOTLKA ATTOSOTLKO Kall
npooPactpuo amnd SlapopeTikéG opadeg evllad£POVTOoC Kal GUVOALKA LKavd va emtAUel
T(POPBAN LOTAL TOU TTPAYHLOTIKOU KOGUOU.

OLTapama@vw TIPOKA GELC, TIOU £X0UV OVAYVWPLOTEL WG KOLPLOC ON LaoLog Ot LoVIEAOTTOINoN
Kolvwviko-TieptBailoviikwy ocuotnpdtwy (Elsawah et al., 2020), mpoUmoBétouv TNV
amoteAeopatiky oUvoeon SLadOoPETLKWY TOPEWY TNE EMLOTHKUNG, SNAAdK TNG LNXAVIKAG Kol

NG OU UIEPLPOPLKNG.

Mpotewopevn «epyadelobnkn» yia TNV AVATAPACTOOCN TWV
apepatotitwv

Mpokeipevou va efetaotolV Kot TocoTikomolnBolv ol aBeBaldtnteg mou mnyalouv amo to
KALHQ, TNV Kowwvia, TNV EVEPYELOK ayopad KOl oo TNV Xpron Twv LoVTEAWYV, uloBetolvtal
KoL Ttapou olafovtal Ta avtiotolya epyaleia, ta omolo cuviotoUV pio epyodelodnkn.

JUYKEKPLUEVA, YLOL TNV QVATTOPAOTOON TWV KALLOTIKWY LETABOAWY, KOL CUYKEKPLUEVO TNC
Bpoxng, xpnotuomnololvtal epyaAeia oTOXOOTLKNC TTPocopoiwan tou Baoilovtal oto oxua
SMARTA (Tsoukalas et al., 2018), emitpénovrag tnv povtehomoinon tng Siepyooiag wg
OTAOLUN OTNV €T oLA KALLOKA Kol KUKAOOTAGLUN OTLG KATWTEPES XPOVLKEG KALLLOKEG. Z€ €Tr OLO
eninedo, n Stadikaoio mapaywyng Aapfavel uOYn TV opLaKn Katavourn kot tn Sopn
OUTOOUOXETIONG TWV LOTOPKWY Oedopévy, evowpatwvovtag Tn  Suvopikry Hurst-
Kolmogorov, wote va avamapactabel pe akpifela to Gpalvopevo tng eppovnc. 2tn Ewkova 2
armnelkovilovtal n LOTOPLKA XPOVOOELPA BPoxOonTwong kabwg Kal N cUVOETIKA XPOVOCELPA O
nuepriowa KAipaka, akoAouBwvtag thv npotelvopevn pebodoloyia
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Ewova 2: a) lotoplkn Xxpovooelpd Bpoxontwong. B) ZuvBeTikr Xpovooelpd Ppoxomtwong

EmunpdoBeta, yla thv avamapdotacn th¢ KOWWVIKAG OUUMEPLDOPAC TWV KOTAVOAWTWY
VEPOU-EVEPYELOC, WC EPYOAELO TIPOCOLOLWON G TIPOTELVETAL £val LOVTEAO €UDU WV TPAKTOPWY
(agent-based model). Onwc daivetat otnv Etkova 3, To LOVIEAO TAELVOLLEL TOUC KATOVOAWTEG
Ll Kowvwviag oe opadeg, oL omoiol avtdpouv ota epebiopota wote va PeTaBalAouy Tnv
{ntnon Toug yLa vepod fi/Kal evépyela.
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Environment pressures
Public awareness campaigns (media, social-
media, physical)

Bills(highly connected with energy market price
and policies)

Hydroclimatic information (persistent drought,
high temperature)

Social network impact

.

Attributes Behavioral rules
Meonthly income Adaptation to changes
Household type Willingness to adopt new

. olicies
Education po------ - % *-------- P

Constraints to swift

Environmental

. consumption profile
consciousness

(based on household's

Tendency to follow characteristics)

O R T

‘ Water/Energy consumption

Ewkova 3: IXNUATLKI OTTEKOVLON TNE OUUMEPLPOPAC TWV KATAVAAWTWY O OXEON UE
e€WTEPLKEG TILEDELG KOl epeBiopata.

AKOUO, YLOL TNV avamapactaon TG apeBaldtntag TG oyopac EVEPYELOG, KOL CUYKEKPLUEVOL
™V Topaywyr OUVOETIKWY OeSoUEVWY TUHWV NAEKTPIKAC EVEPYELOG, OKOAOUBEslTaL N
puebodoloyia SMARTA. Mo AemTopepw(, Xpnotpomnotovvtal Vo enineda avaluong Th g TLUAS
NAEKTPLKAC EVEPYELAG, NTOL NUeEPnola Kal wptaic KA{paka. Toviletal 0Tl n CUYKEKPLUEVN
Slepyoaoia xapaktnpiletal amod a) SLatipnon auTooUoXETLONG otV nuepnota KAipaka, B)
SUTAT TEPLOSLKOTNTA (LA V- VO KOL WPA-WPA) KAL ) UTtapEn apvNTIKWVY TLLWV. 2TV Elkova
3 mopouclAalovtal Ol LOTOPLKEG TLUEG NAEKTPLKAG EVEPYELAC avTutapaBallovtag Teg pe éva
Selyna twv ouvBetikwv ot €€ Eupwraikég xwpeg (TaAAio, EABetia, EANASQ, Italia,
MoptoyaAia kat OAAavdia).

Télog, yla TNV QvVamapAcTacn TNG EMOTNULKAG aBefalotntag, Tmpoteivovtol TPELG
puebodoloylec yLa tn povielomnoinon Twv MapapeETpwy, T LovieAomnoinon Tng SoUn G Kot Twy
TOPOUETPWY Kal TNV Babuovounon twv poviehwv. Kabe pebBodoloyia sfetaletal ota
Sladopetika media epappoyng. Na moapddelypa, n HOVIEAOMOINGN TWV TOPAUETPWY
XPNOLUOMOLE(TOL oTNV ekTipnon thg apeBatdtntag tou Babuol amoddoong twv otpofilwy
(Ewkova4), evw ol AAAEC SUO OTNV MOCOTLKOTOLN 0N G TwV AMOKALCEWV TWV HOVIEAWY BpoxNn G-
anoppong (Ewkova 5).
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Ewkova 3: |oTOpLKEG TIUEG NAEKTPLKN G EVEPYELAG avTLTapaBaAilovtag Teg e éva Selypa Twv
oLVOETIKWV ot €€l EupwTaikeg xwpeg (FTaAAia, EABetia, EANGSQ, ITalia, MopTtoyalia kot
OAM\avéia).
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Ewkova 4: 80% meplBwpla ofeBaLotnTog tng oUVOETIKA G XPOVOOELPAC ATIOPPON G
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Ewova 5: looniBaveg kapmUuAeg anodoong, yUpw oo TV EpYO.OTN pLOKA KAUTTUAN amodoong
ubpootpofilou

Nedia epappoyng tnG NPOTELVOUEVNG EPYAAELOOAKNG

Onwg e€nyn Onke n npooavadepbeioa epyadelodr KN EETACTNKE OF (Lot OELPA OTTO TTPAYLOTLKAL
nebla ebappoyn g, AToL yla a) TV e€€taocn ¢ Eupwmaikr g ayopag EVEPYELAG KOL TIPOYVWON
TWUWV evépyelag o Ouadopeg KALUAKEG, B) Tov oxedlaopd Kal TNV HOKporpoBeoun

afloAOynon OUCTNUOTWY OVOVEWOLUWY TINYwV E&VEPYeELag, y) tnv afloAdynon Twv
LOKPOTtPOBEGU WY TIOALTIKWVY SLOXELPLONG OLOTNUATWY VEPOU UTIO TO TIPLoUA TOU TTAEYLATOG
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vePOU-eVEPYELOC-KoLVwVLaC Kal 8) TNV afloAdynon Kal BeATLOTOnoiNoN TwV LOKPOTIPOOECoH WY
TIOALTIKWV SLOXELPLON G OE TARLLEV T PEG TTOAA QA OU OKOTTIOU.

JUYKEKPLUEVA, edapuoloviag TNV epyaleloBnkn emétpele TNV OALOTIKA TIPOCEYYLON
povtelomoinong twv apePfalotitwy oe OAa Ta TTPOPANUAT NXAVIKOU TTOU €EETACTNKAY,
AToL:

e otV MpOoPAedin TWV TIHWY NAEKTPLIKAG EVEPYELAG, OTOU amodeixbnke OtL n xpron
KATAAANA WY OTOXQOTIKWV EPYOAELWV EMITPEMEL TNV avarapaywyn TNG eE0LPETLKA
TOAUTIAOKNG OUUTEPLPOPAG TWV EVEPYELOKWY OYOpWV, KAl TWV EVIOVWV
LETOPANTOTATWY TOUG O OAEG TLG XPOVLKEG KA LLLOKEG

e TOV OXeOLOOUO EVEPYELOKWV £pywv, HUE evdehexn avaAuon tou TPOPARHATOG
BeAtiotomoinong Tou Uiypatog otpoBilwv HKpwVY USPONAEKTPLKWY OTABUWY UTo
TOAAamAEG nyEg afeBalotntog, nrot tng dlattag tng Ppoxomntwong otnv avavtn
AEKAVN AOPPONG, TOU PETAOXN LATIOUOU BpoXN C-amoppon, Tou Pabuol anddoong
TwV USPooTPOBIAWY, KaL TN EMEVSUTIKOU EUKALPLOG.

e OTn pakpompoBeopn Slaxelplon cuoTNUATWY LUSATIKWY TTOPWY, KALPLO. CUVLOTWOoA
TWV OMolwV £LVOIL TO EVEPYELAKO KOOTOC, TIOU LLE TN OELPA TOU EMNPEATELTNV TLUH TOU
vepoU, apa KoL TNV KatavaAlwon, Le ebpoappoyn oto télaitepo oA UmAoko U 6podoTIKO
ocbotnua TG ABrvag, Tou yla pwtn ¢Gopd OVILHUETWTLoTNKE UTIO TO TIplopa evog
OTOXOLOTLKOU TEXVLKO-KOWWVLKOU GUGCTH LATOC.

e  OTOV BEATLOTO TIPOYPAULOTLOMO TV aTOA R P EWVY KALTN G USPONAEKTPLKOG TTAPAYWYNG
TOULEVTAPWYV TTOAAQTTAOU okomoU, e edpappoyn oto udpocluotnua tou MAaothpa,
XOPAKTNPLOTIKO TOU OTolou €lvail N €VIOVN QVTAYWVLOTIKOTNTA TwV SLadopeTLKWV
XpPoswv vepou.

O Nivakag 1 mapouotdlel tnv Aiota twv edlwv epappoywy, EEKLVWVTAS oo £Val LELOVWUEVO
(AToL TV ayopd evépyelag Kal €pya OVAVEWOLUNG EVEPYELOG) KATOANYOVIOG OTNV OALOTLKA
T(POCEYYLON TOU OCUOCTNHOTOC VEPOU-EVEPYELAG-KOLVWVIAG, TIOU XPNOLUOTIOLOUVTOL OTnV
rtapol oo Aldaktopikn AtatpLpn, mepthapBdavovtag Tig mnyEG afefalotnTag mou EETacTnKay.

Yuvoyilovtag, auti n €peuva cupPAAAEL oto avaduopevo Tedio tou MAEypATOC VepOU -
EVEPYELAC QVTLUETWTTIOVTOG TLG TTPOKAN OLC TTou B£Tel n aBeBaldtnta Kot n HetaBAnTotn
og moAAamAoU ¢ Tope(c.

Ev katakAeld, n mapovoa OSibaktopikry Slatplpry mpoodépel epyoieia umootrpLeng
omodACEWY TTPOCAPLOCHEVA OE TIPAYLATIKEG EPAPLOYES, EMITPEMOVING OTOUC UTIEU Buvoug
XOPaENG TOALTIKAG Kal TOUG €eUmMAekOUevoug ¢opeilc va AapPAavouv TeEKUNPLWUEVES
amnoddosls. Méow TtNC Mpooopoiwong Kal BeAtiotonoinong MOAAAMAWY osvapiwy UTIO
ouVvONKeg aBePfaldTnTag, To MAALOLO TTAPEXEL ONUAVTLKEG TTAN POdOPLES, OMWCE N EKTLLLN OGN TWV
OVOLEVOUEVWY KEPSWV Kal TwV emumeédwy KwdUuvou yla UeAAOVILKEG OUVOrKeg, Tou
ennpealovral and KALULATIKEG, KOWVWVIKEG KOLL OLKOVOULKEG AAAOYEC.

AuTn n dLatpLPn BEtel véa mpotuTia ot pebodoAoyieg Mpooopoiwong-BeATioTonoinong ota
OUOCTN LOTO. VEPOU-EVEPYELOCG, EVW TA EPEUVNTIKA TNG OIMOTEAEOUATA KATOOELKVUOUV OTL
UTTopoUV VA CUVELOHEPOUV CNUOVTLKA OTNV UTIOOTAPLEN TOU OTPATNYLKOU OXESLAOUOU, TNG
Slaxeiplong plokou kol Tou oOXedLAOHOU OVOEKTIKWY OCUCTNUATWY VEPOU -EVEPYELAG, HE
£Udoon oTNV AVILLETWTILON TwV LEAAOVTLKWV aBeBaLloTTwV.
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Nivakag 1: Alota twv nedlwv epapuoyng (tithol kebpaAaiwv) Kol oL avIlOTOLXEG TINYES
oBepatotntag mou Anddnkav umtodn.

, , , , , Ayopa ,
Ned A KA K E
£6io epappoyng/ Apefaudtnta otk Kowwvin evépyetac TUOTN LKA
Amo ™ HaKpompoBeoun
npocopoiwon £wg TV TPOPAeYn X

NG ayopa NAEKTPLKA G EVEPYELOG TNG
E.E.

2xeSloopog Kal afloAoynon £pywv
OVOVEWOLLLWY TINYWV EVEPYELAG UTIO X X X
1o mplopa NG afeBalotnTog

Juotnpato USpevonG UM To Tpiopa
TOU  TIAEYHOTOC  VEPO-EVEPYELQ- X X X
Kolvwvia

AVTLLETWTILON TWV OUYKPOU GEWV TOU
TAEYUOTOC  VEPOU-EVEPYELAG: N
neplmtwon Twv TAULEUTA pWV
TLOAAOTTA WV XPH CEWV
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1 Introduction

1.1 Setting the scene

Water resources development and management should follow the global goal of
sustainability. This requires an integrated viewpoint, which also takes into consideration
natural resources protection and energy transition concerns, along with economic growth,
environmental improvement and social prosperity. In this scene, it is recognized that the
concept of water-energy nexus is a critical turning point for the route to sustainability, and
the means to enhance water and energy security (Scanlon et al., 2017).

Water and energy are subject to complex interactions with uncertain physical processes, and
human-induced procedures (e.g., legal regulation, management policies, market rules).
However, the physical and social interrelation in practice is rather fragmented. In fact,
conventional modelling approaches for water-energy problems misuse, if not ignore, the
complex and dynamic anthropogenic behavior and its multiple interactions and feedback
loops with the technical system components (water and energy fluxes, and related
infrastructures).

To move forward this monomeric approach, we aim at establishing a paradigm shift, thus
introducing an uncertainty-aware simulation-optimization framework for water planning and
management, under the holistic prism of water-energy-society nexus. This shift requires an
effective and efficient integration and modelling of three parallel fluxes, i.e., water, energy
and social (Figure 1.1). Also, it is needed to embed different theories and tools (including
simulation, optimization, stochastics, and agent-based models) into a unified methodological
framework. We remark that the key components of Figure 1.1 will be progressively built,
following the structure of the thesis to eventually conclude to the holistic uncertainty-aware
simulation-optimization framework tailored for the water-energy nexus.
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Energy fluxes
.
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Figure 1.1:Schematic representation of water, energy and social fluxes as a nexus.
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1.1 Research objectives and challenges

This research aims at representing the building blocks of water, energy andsociety, as a nexus
of interconnected fluxes that have synergies, antitheses and complementarities. This task is
subject to six key objectives, each one revealing a number of challenges. More specifically:

(a) The first objective involves the revision of running simulation-optimization schemes that
are tailored for water-energy, in order to incorporate all facets of uncertainty, exogenous and
endogenous, that drive such systems.

(b) A parallel research goal originates from the need to account for the highly uncertain social
feature within the technical description of the water-energy nexus, thus formatting the novel
concept of stochastic sociotechnical systems. Key objective is the integration of the
mathematical formalization of the human factor, both from bottom-up and top-down
perspectives. Regarding the bottom-up approach, this research is taking advantage of
adjusting and enchasing the so-called agent-based theory, launched by Bonabeau (2002), and
couple it withwater-energy planning and management schemes. The adaptation of a bottom-
up approach, to study the agent interactions both with the technical (i.e., water-energy)
system and among each other, at the micro level, will allow to draw conclusions about the
system’s (emergent) behavior at the macrolevel. On the other hand, the top-down approach
leverages the historical data and builds upon this to describe the human factor and its
response within the technical system.

(c) Another aspect of research originates from the energy market and its interactions within
the water-energy nexus. We recognize two crucial research points regarding the energy
market, i.e., the representation of the electricity price and its effects in the managementand
operation of water-energy systems. In this respect, key objectives are the mathematical
description of the market-related components (e.g., interest rates, electricity price) and the
exploration of the associated effects (e.g., energy target, profits, water bills etc.)

(d) The establishment of a comprehensive context of the human agency within the water-
energy nexus, under inherently varying environmental and socioeconomic drivers, will also
include disruptive and unpredictable events. In this vein, this research is also focus on the
effects of crucial, urgent and abnormal circumstances, which may affect both the micro-and
macro-behavior of an entire society over the longer term. These may include geopolitical
shifts, economic crises and extreme hydroclimatic conditions (e.g., persistent droughts),
causing long-term water and/or energy shortages, which are in turn reflected to the
associated demands, prices and operation policies. We highlight that in common approaches
for water and energy resources modelling, these elements are handled under the steady-state
hypothesis. For instance, the demands are expressed as known inputs, which follow a priori
specified seasonal patterns, while in fact they are strongly depended on the social actions and
reactions against the system’s state and its various aspects of change (e.g., changes in
hydroclimatic conditions and/or water bills that may reduce consumption).

(e) Since the water-energy-society nexus is subject to multiple uncertainties, their
identification, representation, quantification, and eventually interpretation is a crucial
objective of the proposed research, to be handled by extending the stochastic simulation
paradigm. In this respect, this researchaims at extending the stochastic simulation paradigm
to represent climatic, anthropogenic and energy market threats as random processes across
scales. We remark that such approaches are quite usually applied in water resources
modelling, as the means to provide long synthetic data for reservoir inflows that reproduce
the statistical characteristics of the corresponding historical records. Onthe other hand, water
and energy targets and constraints, as well as the multidimensional effects by social group
and energy market stresses, are typically expressed as a priori known inputs. In fact, allthese
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are inherently varying and unpredictable. Similarly, key facets of the energy market (e.g.,
electricity prices), will be represented in stochastic means.

(f) The overall research target is the synthesis of all aforementioned concepts and
methodologies into a holistic framework, under the view of water-energy-society nexus. This
framework will be able to analyze the three interconnected fluxes, and eventually provide
decision support for practicalissues across the technical system (e.g., planning, management,
long-term assessment, short-term scheduling, strategic development, adaptation to changes,
impacts of pricing policies, etc.).

The main challenges across the six research objectives are, respectively:

(a) The representation of water and energyas anintegratedsystem is subject to a number of
challenging methodological and computational issues. In such systems, apart from the well-
known complexities of water resources modelling (nonlinear dynamics, unpredictable future
inflows, large number of variables and constraints, conflicting uses and criteria, etc.),
additional challenges arise due to the introduction of energy components and associated
fluxes, some of which are parallel to water fluxes (e.g., case of hydropower). A major difficulty
is the need for coupling two different temporal scales, given that in water resources
management, coarser simulation time steps are typically adopted, i.e., monthly, yet for a
faithful accounting of the energy balance (i.e., power production vs. demand) a much finer
resolution (e.g., daily or hourly) is required.

(b) The incorporation of the extremely complex and uncertain social factor within the
technical (i.e., water-energy) system is inherently a highly challenging task, with numerous
issues toaddress. Since the agent-based approach, which is the core tool for representing the
human behavior, follows by definition a bottom-up perspective, a fundamental challenge is
ensuring a satisfactory equilibrium between accuracy and computational effectiveness. The
first requirement presupposes a representative classification of the society’s components
(agents)and a realistic mathematical description of their behavioral rules, which in turn may
result toan over-detailed model. On the other hand, this model should not impose formidable
barriers to the overall computational procedure, which also includes a time-demanding
simulation model of the technical system. Another crucial point is the derivation of a stable
and self-adaptive society, after upscaling the individual social components, which are (and
should be) biased.

(c) Also, the representation of the energy market stresses in stochastic means (i.e., as
randomly varying electricity prices), is also very challenging, since this process exhibits quite
different peculiarities with respect to climatic variables, such as volatility and spikes (Hou et
al., 2017), as well as double periodicity, across seasons and within the intraday cycle. Further
challenges are induced by the limited statistical information provided by the small historical
data samples (few years, while hydrometeorological records are generally available for several
decades), and the need to implement within the synthetic data abnormal yet persistent shifts
to the electricity prices, in order to represent “black swan” phenomena, such as the running
energy crisis, that has been a major stressing factor for all national-scale power systems over
the EU.

(d) The effective coupling of the social and economic components across the water-energy
nexus is a challenging task, which initially requires a proper definition of the boundaries,
components and processes of the entire socio-technical system, as well as their interfaces. In
this vein, the key is to describe in mathematical terms the auto- and cross-dependencies
among water and energy resources, infrastructures, humans and ecosystems, and the
dynamic nature of decision-making, adaptation, reaction to influences, and adjustment to
unexpected circumstances, induced by global changes.
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(e) The ultimate attempt to customize the water-energy-society nexus under a unified
framework introduces the need to handle a very large number of inputs, control variables,
constraints and objectives, due to the simultaneous modelling of the three parallel fluxes and
their interactions. Past research in this area has only provided rather simplified problem
formulations that misrepresent important systemic complexities and intersectoral
interactions (M. Giuliani et al., 2021). Apart from this structural complexity, there is also a
hidden challenge, since the link of the social and technical sub-systems imposes coupling of
two different modelling philosophies, i.e., ABMs, following by construction a bottom-up
approach, with top-down models for water-energy simulations. Nevertheless, the final
product should be generic, flexible, computationally efficient and accessible by different
groups of interest, and overall able to solve real-world problems.

The aforementioned challenges, which have been recognized as of key importance in socio-
environmental systems modelling (Elsawah et al., 2020), presuppose the effective coupling of
different domains of science, i.e., engineering and behavioral, as explained herein.

1.2 Thesis overview and contribution

The primary objective of this thesis is to develop and demonstrate an uncertainty-aware
simulation-optimization framework for water-energy nexus. The scope of this research spans
over three levels of interest: (a) the design scale, aiming at the optimal siting, sizing and mixing
of energy sources; (b) the long-term management scale, aiming at defining their optimal
operation policy under changing hydroclimatic, environmental and socioeconomic conditions;
and (c) the short-term scale, dominated by issues of scheduling of energy production under
the uncertain energy market evolution. For the validation of the concepts, methodologies and
tools a series of hypothetical and real-world cases will be examined covering a wide range of
spatial and temporal scales.

This thesis is divided into nine chapters and an appendix.

Chapter 1lintroduces a preamble to the subject, the motivation of this work and the research
objectives, as well as the challenges.

Chapter 2 provides an extensive literature review on a) the topic of uncertainty in general,
from its historical roots to the application of various scientific fields, b) the concept of water-
energy nexus, and c) the incorporation of uncertainty within the water energy nexus.

Chapter 3 conducts a thorough literature review on the key sources of uncertainty that drive
the water-energy nexus. A section for each source of uncertainty is dedicated, including the
definitions, the common modelling approaches and eventually our approach to deal with.
Specifically, for the hydrometeorological processes we are taking advantage of stochastics,
while for the social uncertainty an agent-based model is developed tailored for water-energy
systems. Eventually, to account for the energy market fluctuations, we also employ the
stochastic theory, by introducing a novel approach for simulating the electricity prices.

Chapter 4 includes two different analyses across the energy market, the first refers to the
simulation of electricity prices and the second to their forecasting across different scales of
interest. The first approach is applied to six European Energy Market by following the
associated framework of Chapter 3, while the second one is stress-test to the Greek Energy
Market by introducing a copula-based tool.

Chapter 5 proposes a generic stochastic simulation-optimization framework, that will be
employed to renewable energy systems (RES), able to address the multiple facets of
uncertainty, externalandinternal, as introduced in Chapter 3. These categorized intoaleatory
and epistemic, exogenous and endogenous, and refer to the climatic processes, the system
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states, and the broader socioeconomic environment. All expressed in probabilistic terms
through a novel coupling of the triptych statistics, stochastics and copulas. Since the most
widespread sources (wind, solar, hydro) exhibit several common characteristics, we first
introduce the formulation of the overall modelling context under uncertainty, and then offer
uncertainty quantification tools to put in practice the plethora of simulated outcomes and
resulting performance metrics (investment costs, energy production, revenues). The
proposed framework is applied to two indicative case studies, namely the design of a small
hydropower plant (particularly, the optimal mixing of its hydro-turbines), and the long-term
assessment of a planned wind power plant. Both cases reveal that the ignorance or
underestimation of uncertainty may hide a significant perception about the actual operation
and performance of RES. In contrast, the stochastic simulation-optimization context allows for
assessing their technoeconomic effectiveness against a wide range of uncertainties, and as
such provides a critical tool for decision making, towards the deployment of sustainable and
financially viable RES.

Chapter 6 focuses on mitigating this emerging paradigm in the modelling of water supply
systems. Inthis vein, this sets the specifications for an adjustable framework that couples four
modelling subsystems, i.e., physical, technical, economic, and social. The overall frameworks
is employed to the highly extended raw water supply system of Athens, Greece, toreveal the
multiple methodological and computational challenges of this implementation in practice.
This consists of: (a) a simplified simulation of water-energy processes and associated
infrastructures (reservoirs, aqueducts, pumps, etc.), in order to fulfill given water demands,
under already optimized operational rules for the long run; (b) a water price model that
accounts for simulated energy consumption, electricity prices, and net present fixed costs,
and (c) an agent-based context that represents water consumer groups, whose behavior is
influenced by water bills, water-saving campaigns, and their social network, as is described in
section 3.2.3. Since the external drivers of the water-energy-society nexus
(hydrometeorological processes and energy price) are expressed in stochastic terms, the
water supply is sketched as a sociotechnical system under uncertainty.

Chapter 7 deals with the optimization of management policy across multipurpose hydropower
reservoirs. In particular, this chapter proposes an uncertainty-aware optimization
methodology that supports operators in accounting for the cascade effects of three main
uncertain drivers, i.e., rainfall, water demands, and energy scheduling. To describe climatic
and energy-market uncertainties stochastic approaches are followed, as described in sections
3.1.3 and 3.3.3, to generate synthetic rainfall and electricity price data, respectively. On the
other hand, for the human-oriented procedures, i.e., water and energy targets, we employ
statistical analyses of historical abstractions to fit copula-based relationships, in which the
desirable releases for energy production depend on day-ahead electricity prices. Eventually,
a toolbox is established that offers insights for decision-making regarding the estimated
profits, their expected changes and the associated risk due to climate or market-oriented
shifts. This approach is demonstrated in a multipurpose reservoir in Greece, Plastiras, which
is affected by highly increasing socioeconomic conflicts.

Finally, there is the overarching conclusions and future research suggestions Chapter 8, to
complete the thesis main body. There also two smaller chapters as Appendices:

Appendix 10.1 provides supplementary material and information of Chapter 4.

Appendix 10.2 provides supplementary material and information of section 5.3.4
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2 Water-energy nexus under uncertainty

Preamble

This chapter conducts a thorough literature review on uncertainty; from the definition and to
its discrimination into several types. Also, this lists the important concepts of water-energy-
food nexus and presents its dimensions and the related interconnections among its
components. In the last section of this chapter, this presents the important concepts around
the uncertainty-aware thinking within the water-energy nexus. The chapter sets the
foundations for developing the uncertainty-aware methodology for the water-energy nexus
presentedin Chapter 3. Most of the material here was prepared originally for the thesis, albeit
a small part of it is also covered on our publications:

A. Efstratiadis, and G.-K. Sakki, The water-energy nexus as sociotechnical system under
uncertainty, Elgar Encyclopedia of Water Policy, Economics and Management, edited by P.
Kountouri and A. Alamanos, Chapter 64, 279-283, doi:10.4337/9781802202946.00071, 2024.

A. Zisos, G.-K. Sakki, and A. Efstratiadis, Mixing renewable energy with pumped hydropower
storage: Design optimization under uncertainty and other challenges, Sustainability, 15 (18),
13313, doi:10.3390/su151813313, 2023.

G.-K. Sakki, I. Tsoukalas, P. Kossieris, C. Makropoulos, and A. Efstratiadis, Stochastic
simulation-optimisation framework for the design and assessment of renewable energy
systems under uncertainty, Renewable and Sustainable Energy Reviews, 168, 112886,
doi:10.1016/j.rser.2022.112886, 2022.

2.1 Unwrapping uncertainty

“A person is uncertain if he/she lacks confidence about his/her knowledge relating to a
concrete question”, (Sigel et al., 2010)

Uncertainty refers toa lack of certainty or predictability about a situation, outcome, or future
events. It is the state of not fully knowing all the facts, details, variables, circumstances or
potential outcomes of a particular situation, thus leading to ambiguity, doubt, or hesitationin
decision-making or understanding. Specifically, uncertainty may arise due to several factors,
such as insufficient (asymmetry) information, complexity, randomness, or unpredictability.
These may be inherent in certain phenomena, processes and systems. Nevertheless, it is a
fundamental aspect of life and plays a significant role in fields such as science, economics,
business, and everyday decision-making (Bevan, 2022). However, uncertainty is widely
referred as anathema or amorphous evil, mainly because this makes decision-making
challenging and, in some situations, uncomfortable. Thus, the increasing of anxiety, regarding
the future, leads to false perceptions about the uncertainty itself and its opportunities in
growth. For instance, the deep knowing and appropriate handling of uncertainty present the
opportunities to adaptability and creativity for all decision making. Therefore, while
uncertainty might provide difficulties, it can alsolead tofavorable results if handled and dealt
with appropriately.

In this respect, the recognition, description and eventually the disentangling of different
aspects and categories of uncertainty is crucial. The unwrapping of uncertainty has been
explored from various disciplines, i.e., environmental sciences (Lépez-Gamero et al., 2011;
Milliken, 1987), medicine (Kim & Lee, 2018), social sciences (FeldmanHall & Shenhav, 2019),
economics (Davidson, 1999) etc. For each discipline, this is defined in various ways. For
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instance, Brown (2004) defined as uncertainty as “our inability to resolve a unique, causal,
world, either in principle or in practice”, while Walker et al. (2003) noted that this illustrates
the starting point of “any departure from the unachievable ideal of complete determinism”. In
addition, Apostolakis (1989) posed the uncertaintyin probabilistic terms, giving the definition
of “the distribution for the uncertainty factor is assessed subjectively, using the different
predictions of the various models to indicate the possibility range of variation”.

Undoubtedly all these definitions highlight that the description and quantification of
uncertainty is a demanding task, since it manifests in numerous forms, depending on the
nature of the context. According to the uncertainty’s architecture, we can discriminate two
kinds, i.e., aleatoryand epistemic. The first is also known as “random uncertainty”, arisesfrom
inherent variability or randomness in a process (Hora, 1996). It is mainly associated with
events or outcomes that are inherently unpredictable due to natural variability or chance. On
the other hand, epistemic uncertainty refers to the incomplete knowledge or understanding
of a system or phenomenon. It stems from limitations in data, information, or scientific
understanding (Kiureghian & Ditlevsen, 2009). Another type of uncertainty is called
ontological, which can be defined as “a condition of complete ignorance in the model of a
relevant aspect of the system” (Gansch & Adee, 2020). This term originates from the
“ontology”, i.e., the study of existence. In this respect, this can be also called as unknown—
unknown, introduced by Taleb (2007), which is the state of we do not know that we do not
know.

In this scene, Beven (2016) made a more detailed classification of these types and specifically
for the epistemic one, regarding the modelling procedure and the associated uncertainties.
Specifically, he recognizes four general types, namely aleatory, epistemic, semantic and
ontological, while he further discriminates the epistemic to three sub-categories that arises
due to system dynamics, forcing and response data and disinformation. The first sub-category
refers to the uncertainty that arises from a lack of knowledge about how to represent the
systemin study in terms of both model structure and parameters, including things that have
not yet been perceived as being important but which might result in reduced model
performance when surprise events occur. The second category refers to the uncertainty
arising from lack of knowledge about the forcing data or the response data with which model
outputs can be evaluated. This varies from the latter concept, since the disinformation regards
to the known wrong or unreliable data, that are eventually useless. Allaforementioned types
of uncertainty can often interact and compound each other, making it challenging to fully
understand or predict outcomes in complex systems or situations. However, the level of
description of its type differs, since the epistemic uncertaintyis theoretically reducible, while
the aleatory and, even more, the ontological are intrinsically not (Hillermeier & Waegeman,
2021; Packard & Clark, 2020).

To express and eventually quantify the aleatory uncertainty, tools that originate from the
statisticaltheoryare used. Specifically, common instruments are probability distributions and
cumulative distribution functions, that provide insights into the range of possible outcomes
occurring within a specified range. Besides these simple tools, more advanced techniques are
used, namely Monte Carlo simulation (Cox & Siebert, 2006), and probabilistic modeling
methods, such as Bayesian networks, Markov chains, and stochastic process. In its simplest
setting, Monte Carlo simulation involves randomly sampling values from the probability
distributions of uncertainvariables and simulating the behavior of the system repeatedly. This
technique provides essential insights into the range of potential outcomes and their
probabilities, allowing for probabilistic risk assessment and decision-making under
uncertainty. On the other hand, a Bayesian networkis a mathematical model for representing
causal relationships among random variables by using conditional probabilities (Imoto et al.,
2006), while Markov chain gives a time dimension, since it is a stochastic model that describes
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a sequence of possible events in which the probability of each event depends only on the state
attained in the previous event (Gagniuc, 2017). In addition, the stochastic processes enable
more sophisticated modeling of complex systems with interconnected uncertainties. These
are able to capture the dependencies and auto- and cross- correlations between uncertain
variables, enhancing the necessary realism and accuracy of aleatory uncertainty modeling.

Similarly with aleatory uncertainty, statistical tools, such as Bayesian statistics, are used to
represent and reduce the epistemic uncertainty (Zhou et al., 2022). However, this can also be
based on the expert elicitation and judgment (Hester, 2012; Hora, 1996). Specifically, experts
in the field of study provide qualitative or quantitative assessments of uncertain structures,
parameters or scenarios based on their knowledge and their experience, thus facilitating the
identification of key sources of uncertainty, prioritizing research efforts, and improving the
robustness of decision-making in the absence of empirical data. Besides this empirical
technique, interval theory-based analyses are also used (C. Wang et al., 2018). In particular,
these provide bounds in parameter estimates or model predictions within specified
confidence levels. Interval methods are particularly useful for handling uncertainty arising
from imprecise or incomplete data, measurement errors, or model simplifications.

In contrast with the other two types of uncertainty, the ontological one is unrecognized and
unquantifiable. Thus, the expert’s judgment is crucial, since they offer their belief, opinions
and insights about the holistic structure or performance of a process and system. In addition,
to account for this uncertainty source, scenario analysis have been tested. Specifically, these
allow for exploring alternative futures or plausible narratives that reflect different
assumptions and conceptual frameworks, thus describing distinct pathways or trajectories of
system evolution, incorporating diverse perspectives, uncertainties, and boundary conditions.

Nevertheless, understanding and quantifying all types of uncertaintyis essentialin fields such
as engineering, finance, and risk management, where decisions must be made inthe presence
of uncertain outcomes and model parameters. Inthe face of intrinsic unpredictability and
randomness, practitioners can more effectively evaluate risks, prepare for contingencies, and
make more informed decisions by recognizing and incorporating the multiple facets of
uncertainty into models and decision-making processes.

2.2 The concept of water-energy nexus
“Water is the driving force of all nature”, (Leonardo Da Vinci)

Water and energy are the twofundamental resources inthe world, and their interdependency
is gaining more and more attention from both academics and the general public, since the
world’s sustainability is hanged from them. The so-called water-energy nexus refers to the
interconnection and interaction between water resources and energy production,
consumption and storage. The popularity of the nexus could be dated back to the World
Economic Forum in 2008, where the global challenges related to economic development were
recognized from the water—energy—food nexus perspective. However, in the literature, there
are many definitions and explanations of this concept and its dimensions. In this scene,
Albrecht et al. (2018) concluded that its target is to employ effective tradeoffs and synergies
between energy, water and food, considering cross-sectoral policies, environmental and
social impacts. Focusing on the water-energy linking, Shrivastava and Stevens (2018) support
that the “underlying idea behind water-energy nexus is that water is needed for energy
generation, e.g., water is the working fluid in power plants where it is used as a heat transfer
fluid in power cycles to generate electricity from fossil fuels”. However, the water and energy
systems are inextricably mutual effect. We underscore that the “nexus” approach originates
from the multidimensional role of water as: (a) energy producer, not only direct, namely for
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hydropower generation, but alsoindirect (e.g., irrigation of biofuels, cooling of thermal power
plants, PVs’ over open water), (b) energy consumer (e.g., pumping, water treatment,
desalination), and (c) energy buffer (water stored to hydroelectric reservoirs, energy
regulation through pumped-storage systems). Undoubtedly, in the energy system, water is
primary for energy production, transportation, and utilization, but it is also a consumer for
multiple uses such as water pumping, cleansing, delivering and sea water desalination
(Sanders & Webber, 2012).

Nevertheless, the concept of the water-energy-food nexus encompasses a broad range of
disciplines and associated researchthat varyin terms of their focuses. For instance, Walsh et
al. (2018) study the water-energy-food nexus, considering the energy component within the
electricity and food price. On the other hand, a significant effort has been made in the
research ofthe role of water-energy nexus inthe side of water, and specificallyin water supply
systems (Vakilifard et al., 2018). Specifically, for the last two decade, the long-term
management and operation of water supply and distribution systems is based on the water-
energy nexus context (Khalkhali et al., 2018; Lee et al., 2017; Sharif et al., 2019; Wu et al,
2020). Focusing on the energy component of this nexus, the synergetic role of renewable
energy within this approach receives more attention (Sarkodie & Owusu, 2020). In this
respect, a critical question arising, regarding the boundaries of such systems. Expanding the
border lines of the water-energy nexus, we can incorporate several dimensions, i.e., social,
economic, environmental and political.

Regarding the economic aspect of the water-energy nexus, the focus is given on the energy
market, and especially in structure and pricing policy. Specifically, the structure of the
electricity market affects substantially the water and energy consumption and efficiency (Zhao
et al., 2021). For instance, taking as an example a representative case, i.e., multipurpose
hydropower reservoir, its strategy is also the aftereffect of the energy market’s operation.
From a social perspective, both water and energy are critical for a society to a proper
functioning, thus any links between them have a strong social effect. For some segments of
society, this effect features more intensively, since they are directly impacted by the nexus.
For instance, in the case of multipurpose hydropower reservoirs the farmers are strongly
affected of high electricity prices or during periods of drought, since a well-compromised
trade-off is difficult to be implemented. Another example originates in the water supply,
whereas the distribution of water needs pumping or desalination, and during high electricity
price periods the water bills expected to be also high.

In addition, the political dimension is equally important, since it manifests the other
components also. Specifically, the policies arising from industry and/or energy-market
reconstruction have strong economic and social aspect. Additionally, a potential lack or
misleading water and electricity policies, as wells as enforcement of regulation may result in
an increase in electricity use, overexploitation of groundwater, and discharge of effluent
without proper treatment. In this respect, Wiegleb and Bruns (2018) made a systematic
review on the drivers of water-energy-food nexus, concluding that the social scientific
perspectives engage with the social, political, and normative elements of the Water-Energy-
Food Nexus.

Within the most visible discourse, the environmental dimension of the water energy nexus is
the key pillar for itself. By definition, the concept of the nexus created to establish a
sustainable environment, preserving the health of natural ecosystems along with economic
growth. In this vein, the nexus has synergies, complementariness and conflicts, as well. For
instance, in the case of hydropower reservoirs, the incorporation of policies that protect the
environment may create water-energy imbalances.
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From the above discussion, the aforementioned four pillars of water-energy nexus, i.e., social,
economic, environmental and political are inherently interdependent and uncertain. The
multiple facets of uncertainty span over all external and internal processes, regarding the
system’s drivers (environmental and social), the fluxes, as well as their conversions across the
water-energy nexus. In this respect, the starting point and simultaneously the cornerstonein
study of the water-energy nexus is the exploration, description and incorporation of the
uncertain factors.

2.3 Nexus’ objectives

As the water-energy nexus is becoming even more important towards the overall goal of
sustainable development (Biggs et al., 2015), the concepts of reliability, resilience and
effectiveness across these systems is expected to be the key quest for their operation.

2.3.1  The concept of reliability

Reliability within the water-energy nexus stands as a fundamental pillar in ensuring the
sustainability of interconnected systems. This concept encapsulatesthe consistent availability
and functionality of water and energy resources to meet societal needs, economic activities,
and environmental goals. In this context, reliability can be articulated concerning both
duration and magnitude, capturing the average occurrence frequency and volume of
deficiencies, respectively (Efstratiadis et al., 2021a). In particular, the time-based reliability is
defined as the probability:

Rr =1=PQy: <yr) (2.1)
where y; is the actual outflow (e.g., water abstraction, energyrelease) through the systemto

fulfil a desirable water or energy demand, y;". Onthe other hand, the quantity-based reliability
is formulated as:

o _Ely
ey

where E[x] denotes the average value of a random process x. We remark that both reliability
metrics are crucial, since a technical system should be reliable against pressures bothin time
and quantity. Besides the pure mathematical expressions, we can discriminate the key
components of water and energy reliability, both in quantitative and qualitative terms (Cizelj
et al., 2001). In particular, for each source we must ensure the water and energy supply
security, quality assurance, continues access and affordability (Gheisi et al., 2016; McCarthy
et al., 2007). Specifically, the water and energy supply can be estimated from the above
equations, while the quality assurance refers to different notion for each source. For water
resources, the quality assurance comprises the maintenance of water quality within
acceptable standards to support human health, ecosystem integrity, and industrial processes,
while for the energy component regards to ensuring stable power generation from diverse
energysources. Overall, both resources should be equitable accessible toall communities, by
means of infrastructure and affordability (Malik, 2002).

(2.2)

Furthermore, the relationship between water and energy underscores the importance of
reliability, since the disruptions in one sector have cascading effects on the other, thus
amplifying vulnerabilities across the overall system. The interdependencies between water
and energy systems introduce complex trade-offs and synergies that influence overall
reliability outcomes. Forinstance, hydropower generation contributes to both energy security
and water availability but can also impact aquatic ecosystems and water quality. Similarly,
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energy-intensive water treatment processes affect both water supply reliability and energy
consumption patterns. Understanding these interlinkages is crucial for devising integrated
management strategies that optimize reliability across the water-energy nexus while
minimizing trade-offs and maximizing co-benefits.

2.3.2  The concept of resilience

Resilience has been deeply investigated across different research fields (e.g., economy,
energy, water, agriculture), where the different disciplines involved are addressing this issue
from their own perspectives. Overall, resilience is the degree to which a system continues to
perform with tolerant reliability under progressively increasing disturbance (Makropoulos et
al., 2018). On the other hand, Grafton et al. (2019) poses the resilience management as the
planning, adaptation and transformation actions intended to influence the resistance,
recovery and robustness (the so-called three Rs) of the social-ecological system under
consideration. In the literature, these are defined as follows: a) resistance is a system’s ability
to actively change, while retaining its identity, or to passively maintain its performance
following one or more adverse events; b) recovery is a time measure, where a higher value
indicates a shorter recovery time, and c) robustness is the level of pressure that the system
can take without failing (Redman, 2014). Finally, Pizzol (2015) highlights that resilience
depends on the system’s elements and the way these elements are connected. Specifically, a
specific architecture and design of a system, which may include less efficient components, can
better manage stresses.

The concept of resilience provides the essential background for the assessment and
evaluation of an a priori determined design of engineering systems under emerging threats
(Nikolopoulos et al., 2020). These mayinclude health and economic crises, population growth,
and sudden large-scale changes (also referred to as “black-swan” events), as well as cyber-
physical attacks (Moraitis et al., 2020), which is a new type of threat. In the context of water
systems that are highly affected by such events, Butler et al. (2017) provides a “roadmap” to
sustainability, consisting of a set of basic definitions and concepts of reliability and resilience,
and, eventually, an associated evaluation framework.

However, in the water-energy nexus this road is even more challenging, since the
complementarities and dependencies of the two components tread a fine line. The first two
targets depend both on the structure and the operation of the system, which are outcomes
of their design and management, respectively. In particular, the tradeoffs and synergies of the
water and energy elements across a well-defined nexus canenrich policy design frameworks,
with perspectives from beside and beyond the resilience rationale (Hogeboom et al., 2021).

2.3.1  The concept of effectiveness

Effectiveness within the water-energy nexus embodies the efficiency and success of
integrated approaches aimed at optimizing resource utilization, enhancing system
performance, and achieving sustainable outcomes (Ahmad et al., 2020). In line with the two
aforementioned concepts, i.e., reliability and resilience, effectiveness manifests the ability of
interconnected water and energy systems to fulfill societal needs, economic objectives, and
environmental goals, while minimizing conflicts and maximizing synergies.

The concept of effectiveness comprises microand macro-levels of studies, since water-energy
nexus regards from the industry scale to the national, even to transboundary one (Dai et al,,
2018). In this respect, key components of its concept is the integrated resource management,
the technological innovations, the policy interventions, and the stakeholder engagement. In
particular, the effective management of water-energy nexus necessitates integrated
approaches that recognize the interconnectedness of water and energy systems and mitigate

49



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

potential conflicts. Inaddition, innovative solutions, suchas smart sensors, data analytics, and
automation technologies, enable real-time monitoring, optimization, and management of
water and energy resources, thus enhancing the effectiveness (Urban, 2017).

Besides the engineering approaches, the effectiveness of such systems is determined by the
engagement of various stakeholder groups and the governance frameworks. In particular, the
policy interventions are essential for promoting synergy and coherence within the water-
energy nexus, regarding the development of integrated water-energy policies, regulatory
mechanisms, and incentive structures that encourage collaboration, innovation, and
investment in sustainable solutions (Kaddoura & El Khatib, 2017). In this line, the meaningful
engagement of stakeholders fosters ownership, accountability, and social acceptance of water
and energy initiatives, thereby contributing to the effectiveness and sustainability of nexus
management efforts (Kliskey et al., 2021; Mohtar & Daher, 2016).

2.4 Embedding uncertainty within the water-energy nexus

Heraclitus, the ancient Greek philosopher, recognized that "The only constant thing in life is
change”. The water-energy nexus, as a key aspect of life, and its associated elements should
not be considered as stable, static and steady. Uncertaintyinthe water-energy nexus can arise
from various factors, including hydroclimatic processes, multiple human-induced procedures
(e.g., legal regulations, strategic management policies, real-time controls, market rules) and
technological innovation .

Sources of

Uncertainties Targets

Climatic

Reliability
Social

Resilience

Economic

Effectiveness
Technical

Figure 2.1: Key components of the water-energy nexus and the associated uncertainties.

In this context, and according to the rationale by Sakki et al. (2022), uncertainties can also be
identified as exogenous and endogenous, where the first refer to the system’s drivers and the
second to its internal processes. In particular, the production of water and energy
(particularly, renewable energy) is driven by inherently uncertain hydrometeorological
processes that exhibit significant peculiarities across scales (e.g., intermittency, intra-dayand
seasonal periodicity, long-term persistence, complex dependence structures, etc.). However,
since these are natural and thus “pristine” processes, their probabilistic regime is, at least
partially, explained by the statistical information provided by past observations. In contrast,
the human factoris strongly unpredictable, thus displaying emergent properties with respect
to highly uncertain environmental, (geo)political and economic drivers, and interactions
among different societal groups, as well. Onthe other hand, the internal uncertainties involve
all kinds of spatiotemporal propagations, exchanges, and transformations across the system
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(e.g., conversion of river flows to hydropower), which are represented through simulation
models of all kinds (physically-based, conceptual, empirical, data-driven).

2.41  Climatic uncertainty

The different disciplines that are involved in the water-energy nexus address the issue of
uncertainty from their own perspectives and methodological means. Environmental sciences
have focused on capturing external uncertainties, and specifically those stemming from the
highly varying nature of the input hydrometeorological processes. However, it is argued that
this source of uncertainty is poorly only reflected when using short historical data within
simulations (Bakhtiariet al., 2021). In fact, these data may not be fully representative of the
actual hydroclimatic regime of the process of interest, and cannot capture long-term changes,
that are of key importance in the assessment of reliability and resilience of such systems. A
more comprehensive approach is offered by stochastic synthesis models that are able to
reproduce the probabilistic behavior and dependence structure of the hydrometeorological
processes.

The use of stochastic models for generating long synthetic data, to be input to deterministic
models, is a common practice in water resources and other environmental sciences
(Efstratiadis et al., 2014). The literature reports numerous modelling attempts for
representing wind, solar and hydrological drivers through statistical and, less often, stochastic
approaches (Aguiar & Collares-Pereira, 1992; Katikas et al., 2021; Palma-Behnke et al., 2021;
Tsekouras & Koutsoyiannis, 2014). The latter offer a more consistent basis for process
description, since they alsoaccount for dependencies in time and space, i.e. among correlated
processes (Ramirez et al., 2021).

The hydroclimatic uncertainty has been widely studied within water-energy systems, and its
applications, also by means of climate change scenarios (Ahmadi et al., 2015; Anghileri et al.,
2018; Caceres et al., 2021; Matteo Giuliani et al., 2016; Oyerinde et al., 2016; Park & Kim,
2014; Paseka et al., 2018) or in terms of large synthetic inputs instead of historical records,
i.e., by employing stochastic simulation (Bertoni et al., 2019; Ortiz-Partida et al., 2019; G. K.
Sakki et al., 2022). Specifically, Suo et al. (2021) enhanced the energy-water nexus model with
climate change scenarios for China in order to simulate water availability under changing
climate, describing uncertainty derived from long-term planning horizon (2021-2050), and
providing optimal schemes for China's energy system management. Similarly, Van Vuuren et
al. (2019) introduced a set of model-based scenarios that enable analysis of the relevant
relationships and dynamics, as well as the options to formulate response strategies under the
changing climate for higher agricultural yields and reduction of food waste purposes.

2.4.2  Social uncertainty

Following the anthropogenic side of the water-energy nexus, itis necessarytoinvestigate the
uncertainty in regulatory policies related to water usage, environmental standards, and
energy production that affect investment decisions and operational practices in both water
and energy sectors. In this respect, Orimoloye (2022) studied the implementation and the
associated actions and policies of the water-energy-food nexus over the years and globally.
Focusing on the water-energy-food nexus, numerous research attempts have been made,
regarding its integration with policy strategies in the presence of partial knowledge and
understanding. In this respect, Mercure et al. (2019) proposed a science-policy-law interface
to enable the designand implementation of nexus-resilient public policies. Other approaches
include the optimization of the system’s policy, analyzing of the interconnections and the
associated uncertainties, originated from energy prices (Namany et al., 2019), system’s
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(water, energyand crop) cost and environmental constraints (M. Li, Fu, Singh, Ji, et al., 2019;
M. Li, Fu, Singh, Liu, et al., 2019) and land competitions (Nie et al., 2019).

Nevertheless, the investigation of the best-compromise trade-offs between physical and
social systems and the anthropogenic effects on the natural resources under uncertainty
requires the research of all social interactions within the system. Inthis respect, Vieira et al.
(2021) developed an economic performance assessment framework, tailored for
multipurpose plants, while accounting for demand uncertainty. Additionally, Molajou et al.
(2021) introduced a conceptual socio-hydrological-based framework, which aims at
investigating the farmer’s response under different socio-economic conditions. Similarly, the
joint uncertainty, induced by climate and demand dynamics are widely explored. Specifically,
Alhazmi et al. (2023) developed a novel analytic for uncertainty-aware day-ahead operation
optimization of the interconnected power and water systems, accounting for the wind and
water demand forecasts. Giuliani et al. (2016) combined climate uncertainty with social one
to assess and advance the representation of human behaviors within the feedback between
natural and human components.

Thus, for obtaining sustainable and viable outcomes across the water-energy nexus, it is
necessary to investigate the socio-climatic tradeoffs among physical and social systems, the
anthropogenic impacts on the condition of natural resources and the social externalities of
naturalresources governance (Bakarjietal., 2017; Biggs et al., 2015). In particular, changes in
population growth, urbanization patterns, shifts in lifestyle preferences, industrial activities,
and land use practices affect the spatial distribution of water and energy resources, posing
challenges for infrastructure planning and resource management. Thus, this structural
uncertainty that regards to consumer behavior should be modelled. The modelling
approaches of the social factor and the associated uncertainties and constraints will be
discussed in section 3.2.

2.4.3 Energy market uncertainty

In contrast to climatic and social uncertainties, the one of the energy market is not broadly
investigated in the water-energy-food nexus. However, the fluctuations in energy prices,
water tariffs, and financing costs can impact the feasibility of infrastructure projects and the
profitability of energy generation facilities. This facet has not been unexplored, since the
energy market dynamics is the aftereffect of the recent deregulation and liberalization.
Specifically, the variation of energy prices is the indirect effect of social uncertainty since the
electricity price process now enables the determination of competitive prices according to
supply and demand market forces. The research on this uncertainty mainly focuses on
forecasting (Kostrzewski & Kostrzewska, 2019) and market structures (Papavasiliou et al.,
2015).

The energy market, as it is operating, has a short history but the fluctuations of the recent
energy crises have many effects. In this vein, Bohi (1991) studied the macroeconomic effects
of the energy price shock in the 1970s and concluded that in a dataset of four countries there
was no correlation between the price shock and the operation of industry. On the contrary,
Van de Ven (2017) concluded that the impacts of the energy shocks are correlated with the
economic development and the associated circumstances, considering thatthe economies are
dependent on a single source. In the scene, the future of the running energycrisis is unclear.
Some economists predict that reshoring will slow the global energy transition as markets
fragment (Goldthau & Tagliapietra, 2022), while some researchers disagree. Nevertheless, the
water-energy nexus, as an energy related work, are strongly dependent on any energy crises
or shocks, and such their design and management should account for these.

52



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

Inthis context and regarding the management of the water-energy systems, the optimal water
allocation among users (energy and water demands) relies on the proper economic
representation of the effects of alternative allocations using hydro-economic models, which
can be the basis for water decision making (Arjoon et al., 2014; Harou et al., 2009). The
aforementioned models are based on the concept of opportunity cost, where the objective is
to maximize the profits from power sold to the day-ahead market and the profits from water
supply and the irrigation, while minimize the penalties of non-fulfilling the water demands. In
this scene, the steady-state approach of hydro-economics models should be more advanced
in order to account for the fluctuations of the market price, the uncertain human factor and
the hydroclimatic variability, as well. All these parameters force the scientific community to
consider the issue of uncertainty and embed it in the design and assessment procedures of
such projects. In this respect, an effort of representing the drivers of the electricity price
fluctuations (K. Li et al., 2019) and the inflation spikes (Ha et al., 2019) has been made, but
stillare open questions in the modelling and their effects in large-scale systems. The modelling
of electricity price process will be further discussed in section 3.3.

2.4.4  Technical uncertainty

Another facet of uncertainty within the water-energy systems relies on its technology. The
rapid advancements in water and energy technologies introduce uncertainty regarding the
future cost-effectiveness, efficiency, and scalability of different solutions. For instance,
emerging technologies such as desalination, water recycling, and renewable energy sources
canreshape the water-energy nexus, but their adoptionrates and performance characteristics
may be uncertain. In this context, Rao et al. (2017) made a review, its relying on the
technological and engineering aspects of various connections in the water-energy nexus, and
the associated challenges imposed by the technological growth.

In addition, mechanical and electrical engineering sciences have explored the internal
uncertainties, which are associated with the system properties (e.g., drop of efficiency due to
ageing, maintenance and equipment malfunction), as well as model assumptions and
parameters (Giannakoudis et al., 2010; Soroudi & Amraee, 2013; Zisos et al., 2023). Ingeneral,
such approaches refer to the microscale of the power machine, in order to capture facets of
uncertainty across quite complex technicalissues, e.g. pitch control to wind turbines (Astolfi,
2019) and hydro turbines (Abbas & Kumar, 2019). In addition, Caputo et al. (2023) proposed
an assessment framework that incorporate uncertainties related to components efficiencies
values given by the relationships used to design the system. Regarding the “flow-energy”’
conversions and their associated uncertainties, Pei et al. (2022) focused on the model
structures and parameterizations within solar works.

2.4.5 Joint uncertainties

However, the combined effects of internal and external uncertainties, epistemic, aleatoryand
ontological, as well as the interplay of their cascades and dependencies, have received
considerably less attention to date (Mirakyan & De Guio, 2015), although it is accepted that
the nonlinearities across the inflow-energy conversions usually amplify the overall uncertainty
(Gensler et al., 2018). This leads inevitably to a fragmented approach in planning and
management practices for the water-energy nexus, arguably impacting their performance, as
guantified in terms of economy and reliability, and the emerging concept of resilience (
Efstratiadis et al., 2021b). For instance, in the engineering context, conventional practices
oftenignore or, at least, underestimate these uncertainties and their dependencies. Yet, it is
argued that the ignorance of uncertainty results into fully deterministic outcomes (i.e., a
unique optimal design), which eventual leads to risky decisions, regarding critical technical
qguantities and the economic viability of water-energy nexus of interest across scales.
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However, addressing uncertainty in the water-energy nexus is a demanding and
multidisciplinary task, since it requires integrated planning, risk management strategies, and
adaptive governance approaches. This may involve scenario analysis, stakeholder
engagement, robust decision-making frameworks, and the development of flexible
infrastructure and policy mechanisms to accommodate changing conditions and mitigate
potential risks. Collaboration among policymakers, industry stakeholders, researchers, and
communities is essential to address the complex and interconnected challenges posed by
uncertainty in the water-energy nexus.

2.5 Conclusions

Uncertainty has been a rather elusive term since its inception, thus making the researchers
considering as an amorphous evil or as a challenge. In any cases, uncertaintyis key driver of
our life, and should incorporated in policy and decision making. There have been numerous
proposed definitions, but all finally conclude that this is any deviation from the total
determinism, i.e., the unreachable ideal. In general, this is discriminated into aleatory,
epistemic and ontological, while a further classification, i.e., exogenous and endogenous, can
be made regarding the system’s boundaries.

For the water-energy nexus in particular, there exist many schemes that correspond to
numerous facets of uncertainty, i.e., climatic, social, energy market and technological. Few
approaches are accounting for joint uncertainties in the assessment, design and long-term
management, leading to fragmented approaches. What we are identifying as missing, is a
generic, flexible and adjustable uncertainty-aware framework tailored for water-energy
systems, able to capture, incorporate and quantify joint uncertainties. Inthis respect, Chapter
3 focus on the modelling methodologies the aforementioned sources of uncertainty, that will
be further considered as inputs in the water-energy nexus.
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3 Enclosing uncertainty in a toolbox

Preamble

This chapter conducts a thorough literature review on the key sources of uncertainty
(endogenous and exogenous) that drive the water-energy nexus, i.e., climatic, social, energy
market and epistemic. A sub-chapter for each source of uncertaintyis dedicated, including the
definitions, the common modelling approaches and eventually our approach to deal with.
Specifically, for the hydrometeorological processes we are taking advantage of stochastics,
while for the social uncertainty an agent-based model is developed tailored for water-energy
systems. Toaccount for the energy market fluctuations, we also employ the stochastic theory,
by introducing a novel approach for simulating the electricity price. In addition, for the
epistemic uncertainty, we provide three different approaches, that based on probabilisticand
non-probabilistic techniques. Eventually, this chapter provides the information to quantify the
uncertainty through copula-based tools. This chapterincludes the key modelling approaches
that will be further usedto the design, long-term management and assessment of the water-
energy systems, presented in the next chapters. Most of the material here was prepared
originally for the thesis, albeit a small part of it is also covered on our publications:

G.-K. Sakki, I. Tsoukalas, P. Kossieris, C. Makropoulos, and A. Efstratiadis, Stochastic
simulation-optimisation framework for the design and assessment of renewable energy
systems under uncertainty, Renewable and Sustainable Energy Reviews, 168, 112886,
doi:10.1016/j.rser.2022.112886, 2022.

3.1 Climatic uncertainty: modelling the hydrometeorological
processes

3.1.1 Definitions

A significant characteristic of the atmospheric processes is their inherent uncertainty. As
randomness and predictability coexist and are intrinsic to natural systems, these systemscan
be treated as deterministic and random at the same time, depending on the time scale. For
instance, inthe short-run its uncertainty is decreased, while in the long-run this phenomenon
is escalated. However, the hydrometeorological processes’ uncertainty originates from well-
known, but challenging characteristics, e.g., periodicity, intermittency, persistence (auto-
dependence), cross-dependence and non-Gaussian probabilistic behavior. In this respect,
various modelling approaches have been employed to handle the aforementioned
peculiarities. Before describing the simulation schemes it is considered useful to provide some
basic definitions and descriptions regarding these main hydrometeorological characteristics.

Periodicity: Periodicity in hydrometeorological processes refers to the variations or patterns
in weather and hydrological conditions that occur in a cyclic manner throughout a specific
period, i.e., year, month, day. For instance, whenthe time scale of interest is finer thanannual,
these processes cannot be regarded as stationary, because of the effects of seasonalitytothe
process mechanisms that are reflected intheir statistical properties. However, periodicity can
be detected at finer time scales (e.g., hourly) for several atmospheric processes, e.g., wind
speed and solar radiation that are driven by the Earth’s rotation. According to Koutsoyiannis
(2004b) a simple method often used to remove seasonality effects is to standardise the
process x; by using seasonal values of mean, u; and standard deviation, g;, i.e. settingz; =
(x; — u;)/ 0y, thus assuming that z; is a stationary process. This simple method fails to catch
other statistical properties, e.g., autocorrelation and skewness, due to the assumption of
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stationarity. In this case, more sophisticated approaches are adopted, assuming a
cyclostationary (also known as periodic) process, also accounting for season-to-season
correlations coefficients (Tsoukalas et al., 2018b). Understanding, simulating and predicting
seasonal patterns in hydrometeorological processes is crucial for various applications,
including water resource management, flood forecasting, agriculture, and ecosystem
management. It helps stakeholders make informed decisions and implement appropriate
measures to mitigate risks associated with seasonal variations in weather and hydrology.

Intermittency: Intermittency in hydrometeorological processes refers to patterns where the
underlying atmospheric conditions are not consistently present but rather appear
intermittently or in a non-continuous manner. For instance, at fine times scales (e.g., hourly)
the precipitation appears as an intermittent processes, as alternates between twostates, the
dry (zerorainfall) and wet (positive rainfall). In order toreproduce the intermittent behaviour,
it is essential to preserve the probability of zero values of the observed time series. In this
respect, Koutsoyiannis (2006) offered an extensive review regarding this aspect, presenting
the modeling approaches. However, he concluded that it requires more analysis, particularly
in their ability to reproduce the rainfall occurrence process and specifically the dry period
structure at different scales. One decade later, Schleiss and Smith (2016) proposed two
methodologies to address this gap. Recently, Dey (2023) provides an approach to model
intermittency, by preserving the temporal structure of the interevent time distribution.

Auto-dependence: A typical characteristic encountered in such processes is auto-
dependence, either short or long range (long-term persistence). The short-term dependence
(SRD) has been extensively discussedin literature (Song & Fujimura, 2021; Wilson, 2016) and
implies an exponential autocorrelation structure that diminishes after few time lags.
Regarding the autocorrelation structure, a plethora of theoretical models can be found (Berne
et al., 1966; Koutsoyiannis, 2000b; Robertson, 2012; Strey, 2019).

Long-term persistence: Long-term persistence, known also as long-term dependence, or
memory, refers tothe phenomenon where certain events exhibit perseverance over extended
periods of time. Specifically, in hydrology, this behavior is the tendency of wet years tocluster
into multiyear wet periods or of dry years to cluster into multiyear drought periods. This
characteristics is related also to the Pharaoh's dream of seven sleek and fat cows coming up
from the Nile, followed by seven gaunt and lean cows; Josephinterpreted this dream as seven
years of plenty followed by seven years of famine and recommended storage. The study of
dependence in time has a long history dating backto the study of Hurst (1951), who observed
that the annual behavior of the level of the Nile river deviated from that of a purely random
process. To account for this hydrological characteristic, alsoreferredtoas Hurst-Kolmogorov
dynamic (HK) and eventually model this, several methods are employed, e.g., using heavily-
tailed autocovariance functions (Barunik & Kristoufek, 2010), climacograms (Dimitriadis &
Koutsoyiannis, 2015; Koutsoyiannis, 2010; Koutsoyiannis, 2004a) and least squares
correlograms (Young & Jettmar, 1976).

Cross-dependence: Besides the autodependence characteristic of the hydrometeorological
processes, it is widely acknowledged that a crucial issue of studying them is the
interdependence. Specifically, they exhibit cross-dependencies either to cause-effect
relationships (e.g., rainfall-runoff) or to spatial proximity (Drogue & Ben Khediri, 2016; Lebar
et al., 2023). In this respect, multivariate stochastic models have been employed to account
for both spatial and temporal dependencies (Efstratiadis et al., 2014; Makhnin & McAllister,
2009; Paschalis et al., 2013).

Non-Gaussianity: A crucial characteristic of hydrometeorological processes is asymmetry,
which is also due to the aforementioned properties, i.e., intermittency and non-negative
values. This implies the use of skewed (i.e., non-Gaussian) distribution functions (Tavares,
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1980). This is more intense in the finer timescales, since the annual series may be modeled by
linear models with Gaussian inputs, while the daily data often demonstrate nonlinear
characteristics and are non-Gaussian as well (Rao & Yu, 1990).

3.1.2  Treatment of uncertainty in common modelling approaches

To handle the aforementioned challenges of hydrometeorological processes in the
representation procedure is a demanding task. In general, a reliable model considers the one
which offer synthetic realizations that resemble the historical data, in the sense that they
reproduce the above characteristics. Thus, a plethora of approaches have been adopted to
represent hydrometeorological processes, originating from probabilistic approaches
(statistics, stochasticsand copulas) or scenario-based ones (e.g., as made by climatic models).
Climatic models assume various socio-economic conditions in the long-run, and thus the
climatic variability is estimated. However, such models are based on hypotheses and regards
to a global scale, thus a downscaling of all these scenarios is needed. In this thesis, the focus
is given in stochastic models that are able to represent the statistic information of the past
observations and include all possible scenarios. Thus, an overview of the common simulation
schemes to generate synthetic timeseries is presented, as classified by Haberlandt et al.
(2011). In particular these refer toa) Linear models, b) Point Process Models, c) Disaggregation
Models, d) Resampling (non-parametric) Models. Nevertheless, the attention will be given to
linear stochastic models, because they have been for years the main tool for stochastic
simulation of hydrometeorological processes.

3.1.2.1 Basic probabilistic concepts: Random variables, Distribution functions and moments

All these models originate from the statistical theory. In this respect, the fundamentals
definitions of the pivotal probabilistic and stochastic concepts should be presented. Let
consider a random variable x, which is the a function that maps outcomes of experiments
from the nonempty set (2, else called set of elementary events or states, to numbers. The
associated cumulative distribution function (CDF) is expressed as:

F(x;t) == P{x(t) < x} (3.3)

while its probability function is:

dF(x; t)
) e 3.4
f(x;t) P (3.4)
Eqg. (3.1) is further expand for n-th order as:
F(lexZP" an;tlltZI"Jtn) = P{E(tl) S xlﬁ&(tZ) S x2""l£(tn) S xn} (3'5)

A proper stochastic process is holistically determined, if we know the nth order distribution.
Important quantitative measures related with the stochastic process are moments. Our focus
is given in following moments, i.e., mean, variance, auto-covariance, auto-correlation,
skewness and kyrtosis.

(a) Mean
u(®) =E[x(0)] = Txf(x; t)de (3.6)

(b) Variance N
Yo () = var[x(t)] = f m(x —p@®)) f(x t) dt (3.7)

— 00
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(c) Auto-covariance

c(t;h) = cov[x(t), x(t + h) | = E[(x(t) — u(®))(x(t + B) — u(t + h)] (3.8)
(d) Auto-correlation
(1) = corrle(@®,x(t+ )] = — ) 39
r(t;h) == corr|x(t),x(t + A OIACEDILE (3.9)
(e) Skewness
C,(6) = (1()2)/2 (3.10)
(a) Kyrtosis
_ 1a(t)
C,(t) = MO (3.11)

Note that s (t) and u,(t) are the third and fourth central moments of the process, i.e.,

n(® = 170 — u()f () dt.

3.1.2.2 Linear stochastic models

The stochastic models has a long history dating back to early 20t century, leading to three
schools thought, i.e., (a) the Stochastic School, (b) the Time Series School and (c) the Monte
Carlo School. (Koutsoyiannis, 2020) The dominant approach in stochastic modelling is to
choose and fit a model from a repertoire offered in books on time-series analysis. The most
widely known modelling approach is autoregressive models which originated in the
researches of Yule (1927) and Walker (1931), that are further earned the stochastic theory
following the rationale of Wold (1948) and Whittle (1953).

These models are mostly known by their acronyms, such as AR(p) (for autoregressive of
order p), MA(p) (for moving average of order p), ARMA(p,q) (for autoregressive moving
average-linear combination of the latter models), ARIMA(p,d,q) (for autoregressive
integrated moving average), ARFIMA(p,d,q) (for autoregressive fractionally integrated
moving average), able of modelling long-range dependence through the use of a real valued
d parameter.

Itis noted that all above categories of linear stochastic models are typically employed for the
simulation of hydrometeorological processes at the annual and monthly time scales. In the
finer scales, these are limited due to their failure to handle intermittency without the use of
additional modelling tricks, such as, truncation of negative values to zero, power-
transformation functions or latent Gaussian processes.

Despite their large popularity, these models suffer from a number of issues, namely a)
definition in discrete time in contrast tothe continuous-time evolution of naturalsystems, b)
definition in terms of the autocorrelation structure whose estimationis negatively biased, and
c) overparameterization. In this scene and to overcome all these limitations, Koutsoyiannis
(2000b) introduced the so-called symmetric moving average (SMA) generating scheme that
can be used to generate any kind of stochastic processes with any autocorrelation structure
or power spectrum. Toadvance this, he also developed an alternative parsimonious approach
for model identification and fitting based on a generalized form of the autocovariance
structure (Koutsoyiannis, 2002), by parametrizing HK processes.

In addition, to overcome the issue of non-Gaussianity, and accept the skewed character of
hydrometeorological processes, several modelling approaches have been adopted. Following
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the rationale by Tsoukalas et al. (2018a) these can be categorizedinto a) explicit methods, b)
transformation-based methods, and c) implicit methods, that treat skewness via employing
non-Gaussian white noise for the innovation term. Regarding implicit schemes, Dimitriadis
and Koutsoyiannis (2018) provided a model that enables to preserve four moments (up to
kurtosis), while a transformation-based approach was followed by Papalexiou (2018),
performing the simulation of the dependence structure in the Gaussian domain by using
autoregressions and back-transforming to the non-Gaussian domain. A quite similar modelling
approach, based on the explicit method, and the Gaussian auxiliary process but combining the
SMA model for the generation scheme instead, is developed by Tsoukalas et al. (2018).

3.1.2.3 Point process models

These models are widely used for simulating hydrometeorological processes at finer scales,
i.e., sub-hourly, hourly and daily. Rodriguez-lturbe et al. (1988) introduced the main theory of
continuous-type point processes in hydrological sciences. Depending on the type of process
that is employed for the cell clustering mechanism, two major models are extensively known,
namely the Neyman-Scott (Cowpertwait et al., 1996) and the Bartlett-Lewis processes (Onof
& Wheater, 1993). Advantages of the point process models are their physical basis. On the
other hand, their main limitations, comparing with the aforementioned linear methods,
underlie their inability to preserve significant statistical and stochastic properties the process.
Specifically, these are weak to a) reproduce the marginal distribution of the process and b)
simulate multivariate processes and season-to-season correlation structures (Kossieris et al.,
2018; Onof & Wang, 2020).

3.1.2.4 Disaggregation Models

Disaggregation models were introduced in hydrology by the novel work of Valencia and
Schaake (1973). Disaggregation allows simulationin stages for different time steps using each
a suitable approach, e.g. modelling daily rainfall with a Markov Chain and then disaggregating
it at the hourly scale with a random cascade. However, a major disadvantage of these models
regards that all fine time scale rainfall disaggregation techniques summarised above have a
common characteristic: they are single-site (Tsoukalas et al., 2019). The problem of multiple
site rainfall disaggregation, both for temporal and spatial dimensions, is of significant practical
interest but presents significant differences from that of single-site disaggregation, including
increased mathematical complexity (Koutsoyiannis, 2003).

3.1.2.5 Resampling Models

An alternative simulation scheme is offered by the so-called non-parametric approaches, also
referred as bootstrapping techniques, which attempt to replicate the empirical distributions
of the observed processes, typically through resampling of historical data (most often using
the well-known k-nearest neighbor algorithm) (Huang et al., 2017; Rajagopalan & Lall, 1999).
This kind of models are widely used in numerous disciplines, including the environmental
sciences, due to their simplicity (Curceac et al., 2019). However, it seems to appear several
and crucial limitations, due to the lack of theoretical basis. Inthis respect, theyare not able to
reproduce both short- and long-range dependence (i.e., persistence) and cross-correlations
among multiple variables. An additional constraint of this technique relies of its inability to
reproduce — extrapolate to — events beyond the range of the observed data.

3.1.3  Hydrometeorological process generator

The proposed hydrometeorological process generator, that will be employed in chapters 5, 6,
and 7, is based on the stochastic theory, and especially on the linear models, thus providing
the ability to account for the uncertainty in modelling natural processes. The crucial driver of
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the water-energy nexus, related to hydrometeorological processes, is rainfall. In this respect,
the description of this generatoris dedicated to the rainfall process, but could be applicable
to other climatic processes, under a proper configuration.

3.1.3.1 Setting the specifications

As already mentioned, precipitation (more precisely, the areal precipitation over the
upstream watershed), as a hydrometeorological process, is characterized by a) long-range
dependence in the annual and over-annual scales, also referred to as persistence or Hurst-
Kolmogorov dynamics (Koutsoyiannis, 2011), which is more intense in the areal scale with
respect to the point one (O’Connell et al., 2023) b) seasonality, and c) intermittency, at the
simulation scale, i.e. daily. Thus, precipitation should be handled as a cyclostationary process
with marginal distributions and auto-correlation patterns across scales that vary periodically,
i.e., from month to month. In this respect, for the generation of synthetic precipitation time
series, a three-level simulation scheme should be adopted to preserve the probabilistic and
dependence properties not only at the time scale of simulation (daily) but alsoat higher ones
(annual, monthly). Furthermore, this should reproduce the long-range dependence attributed
to the changing climate.

3.1.3.2 Modelling procedure

The proposed generator is built upon the Symmetric Moving Average (nearly) To Anything
(SMARTA) scheme by Tsoukalas et al. (2018), as implemented within the anySim package
(Tsoukalas et al., 2020). This allows for simulating stationary processes that exhibit any-range
dependence and arbitrary (more precisely, a priori specified by the modeler) marginal
distributions. In addition, the Nataf-based Disaggregation to Anything (NDA) is adopted
regarding a chain configuration for developing modular simulation schemes that ensure
consistent simulations across any sequence of temporal scales (Tsoukalas et al., 2019). In this
vein, we consider this process stationary at the annual scale and cyclostationary at the
monthly and daily ones. At the annual scale, the generation procedure accounts for the
historical data’s marginal distribution and autocorrelation structure, also engaging the Hurst-
Kolmogorov dynamics.

However, in this modelling procedure, we adopt the Koutsoyiannis’s (2000a) approach,
formalizing the auto-dependence in stationary means, by embedding an Cauchy-type
autocovariance structure within the SMA generation scheme. The mathematical expression
of autocovariance function is:

¥j = Yoll+kpBjl~Y/F (3.12)

where y; is the autocovariance of the stochastic process for lag j, y, is the variance and k,
are shape and scale parameters, respectively, that are related to the persistence of the target
process, x;. By adjusting the values of k and 3, one can take a wide range of autocovariance
structures. For instance, for § = 0 we obtain ARMA-type structures, while as 8 increases, the
process becomes more persistent. The relationship between the autocovariance and Hurst-
Kolmogorov (HK) dynamics is given by:

Y = Vo{%[(]' — 12+ (j+ 1)2F + j2H]} (3.13)

where H is the so-called Hurst coefficient (0.5 < H < 1).
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However, for large time steps this function is well approximated by:
1 1

n=n-pi-52i 319

where =1/ ([21—-H)]) = 1.

In this respect, the analytical expression of k follows:

K
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Figure 3.1: (a) Examples of autocovariance sequences of the type for several values of the
shape parameter (3, (b) Fitting of theoretical autocovariance function to empirical
autocovariance, estimated on the basis of annual rainfall.

The obvious estimation of parameters k¥ and [ relies upon adjusting the theoretical
autocovariances to the empirical ones, as derived by the observed data. We underline that
under the LTP hypothesis, the estimation of empirical autocovariances are subject to
significant bias (Dimitriadis & Koutsoyiannis, 2015), while their uncertainty is further amplified
when the historical data are not long enough. In this vein, it may be preferable to assign
manual parameter values instead of inferring them automatically, i.e., through typical curve-
fitting approaches (Efstratiadis et al., 2014). Another option is to force eq. (3.10) to validate
the first-order autocovariance term, y;, as estimated from the historical data. Inthis respect,
Figure 3.1 demonstrate several autocovariance functions, extracted by using different values
of S but keeping the same k for all cases. In addition, an example of fitting the theoretical
autocovariance function to empirical autocovariance, estimated on the basis of annual rainfall
in a Greekwatershed (Mouzaki, Thessaly), whichis next used as a pilot basin for the design of
a small hydropower plant under uncertainty (section 5.3.2).

The process of annual rainfall is considered to be stationary and follows a specific cumulative
distribution function (CDF), F,.. The overall idea behind SMARTA lies in introducing an auxiliary
Gaussian process z;, simulated through the SMA model, with such parameters that after
applying the inverse of their distribution function, results in the target process x; with the
desirable correlation structure and marginal distribution.
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Inthis respect, according tothe SMA rationale, the auxiliary stochastic process z; is expressed
as a weighted sum of a finite number of backward and forward random variables, i.e.:
q q

z; = Z ajj| Viyj = Z AsVis + o+ a1v_ 1 +agv;i+ a1V + -+ agliys (3.16)
j==-q j==q

where v; are independent identically distributed auxiliary variables (also referred to as noise
variables or innovations) that are generated from a Gaussian distribution, and a; are
numerical (i.e., weighting) coefficients that are assumed to be symmetric, and can be
analytically determined from the sequence of y;. The values of a; approach zero after some
timelag |j| > q, where q denotes a large enough positive integer value (the model resembles
the theoretical ACF up to g, while it decays to zero after 2q time lags). The reader is referred
to Koutsoyiannis (2000a), for a detailed description of the algorithmic procedure.

Prior to the estimation of the auxiliary model’s parameters (i.e., coefficients a;), it is essential
to identify the equivalent autocorrelations that result to the target ones (i.e., as specified via
the theoretical autocovariance function), after the subsequent mapping of the Gaussian
auxiliary process, z;, to the actual domain, x;. For this purpose, the anySim package employs
a simple yet efficient Monte Carlo simulation approach, proposed by Tsoukalas et al. (2018b).
As already mentioned, the above procedure is applicable to stationary processes that follow
given CDFs. In Figure 3.2, an example of fitting for the same annual timeseries is given. As
expected, this dataset is well defined by fitting Gamma distribution.

Next, the synthetic annual data is disaggregated by preserving the seasonally varying marginal
distributions and the lag-1 month-to-month autocorrelation structures. For this advanced
obligation, we are taking advantage of Stochastic Periodic AutoRegressive To Anything
(SPARTA) (Tsoukalas, Efstratiadis, et al., 2018a), also included in the anySim package. This
schemeis able to simulate cyclostationary processes, by defining the marginal distribution of
each month and the establishing s dependence patterns across seasons. In brief, for each
process at each season i, a suitable distribution function, F;(x), is assigned as well as the
target coefficients of auto-correlation (month-to-month correlations), i.e., p; ;. . Also, the
autocovariance function is given for each season, in order to preserve the dependence of each
process, seasonally based. Next, the estimation of the parameters of the auxiliary PAR model
is needed run the model, and eventually generate the auxiliary Gaussian synthetic time series.
In Figure 3.3 a comparison of the simulated, as extracted from the disaggregation through
SPARTA scheme, and the theoretical cumulative distribution functions of the rainfall process,
for each season is demonstrated.
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Figure 3.2: Fitting of Gamma distribution function to the historical annual rainfall.
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Figure 3.3: Comparison between simulated (SPARTA) and theoretical cumulative distribution
functions of the rainfall process.
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Finally, at the daily scale, the synthetic monthly values are disaggregated, which, inturn, also
accounts for the distribution functions, F;(x), and the target autocorrelationstructures, pg,
of the observed daily data for each month. In this case, this process is considered as stationary,
thus employing the disaggregation scheme of SMARTA. However, at the daily scale an
additional feature is needed, namely the probability dry, p; = P(x < x4). Thus, the
distribution followed is zero-inflated, and given by

Pag x<0

pa+ (1—py)Gx) x >0 (3.17)

F(x) = {

where, G(x) is the following distribution for x > x . In Figure 3.4 a snapshot of the historical
and the synthetic timeseries is demonstrated.
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Figure 3.4: a) Historical time series. B) Synthetic time series; randomly selected window of
100 years.
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3.2 Social uncertainty

3.2.1  Definitions and specifications

So far, in water-energy systems modelling, the main focus is given to the representation of
natural processes (e.g., hydrometeorological) and their conversions across technical
infrastructures (e.g., reservoirs, water conveyance and distribution networks, pumping
stations, etc.). Incontrast, the social factor is only marginally reflected (Di Baldassarreetal,
2019; Elshafei et al., 2014), by means of steady-state water and energy demands that are a
priori specified, and thus they cannot be adapted to major social procedures (e.g., legal
regulations, management policies, market rules, media, social networks).

Inthis respect, the establishment of a comprehensive context of the human agency within the
water-energy nexus, under inherently varying environmental and socioeconomic drivers, will
alsoinclude disruptive and unpredictable events. Inthis vein, a well-established research must
focus on the effects of crucial, urgent and abnormal circumstances, which may affect both the
micro- and macro-behaviour of an entire society over the longer term. These may include
geopolitical shifts, economic crises and extreme hydroclimatic conditions (e.g., persistent
droughts), causing long-term water and/or energy shortages, which are in turn reflected to
the associated demands, prices and operation policies. We highlight that in common
approaches for water and energy (particularly, renewable energy) resources modelling, these
elements are handled under the steady-state hypothesis. For instance, the demands are
expressed as known inputs, which follow a priorispecified seasonal patterns, while in fact they
are strongly depended on the social actions and reactions against the system’s state and its
various aspects of change (e.g., changesin water bills that may reduce consumption). A similar
approach is adopted, regarding the policy making across water-energy systems for long-term
management and real-time operation.

However, this steady-state approach, that ignores the social dynamics, by means of decision
making, is rather than an obsolete handling. In general, there are two schools of theory for
decision making, namely the descriptive decision and the normative one. The first one is
concerned with characterizing and explaining regularities in the choices that people are
disposed to make, while the latter seeks to provide an account of the choices that people
ought to be disposed to make (Kacelnik, 2007; Rapoport, 1994). Nevertheless, all human-
induced procedures and decisions are relied on specified behavioural rules that are affected
by influences. Koop et al. (2019) distinguished behaviour influencing tactics into three
categories, i.e., reflective, semi-reflective and automatic. In the first category, the human
attitudes are formed by considering rational arguments, relevant experiences, and knowledge
(knowledge transfer and self-efficacy), while in the semi-reflective category the formulation
of attitudes focuses on rules of thumb and simple heuristics (social norms, data-driven
personal messages etc.). On the other hand, the automatic behaviour influencing tactics are
based on emotional shortcuts, priming, and nudging. Nevertheless, the behavioural sculpture
also relies on the social network of each human. Hence, the modelling of social networks is a
challenging task, since they are highly complex systems because of their size, the interactions
among their components (human beings), as well as the interdependency between the
individual behaviour and the evolving network structure (Pagan & Doérfler, 2019).

Following the ongoing paradigm shift, regarding the coupling of natural and human systems,
it is vital to represent the social dynamics, demand-related and policy, by reflecting the
associated uncertainties. Based on the research of Sharmina et al. (2019), four attributes of
socio-natural systems have been identified, i.e., ‘stochastic events’, ‘diversity of behaviour’,
‘policy interventions’ and ‘co-evolution’. The first three attributes are in fact the input variables
for models, while ‘co-evolution’ covers the interactions between the variables ensuring that
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those relationships are not simplified to the extent where the reality is compromised. In this
respect, Table 1 provides an overview of the sources of uncertainty encapsulated in each of
the four attributes, along with illustrative variables that may be useful in investigating water

and energy demand in the context of non-linearity.

Table 1: The four attributes of socio-natural systems, based on Sharmina et al. (2019).

Attribute Sources of uncertainty Examples of variables to be represented
captured in models
Stochastic Unpredictability, Stochastic representation of
process randomness, “black swan” hydrometeorological processes,
events technological breakthroughs, population
growth, financial and geopolitical crises.
Diversity of | Human behavior (from Social networks exerting group/peer
behavior individual behavior to pressure; attitudes towards energy and
behavioral patterns and water conservation, consumer
practices at a society level classifications, diffusion of information,
social and cultural norms.
Policy Planned or not ‘shocks’ with  Standards for fuel and water efficiency, a
interventions | unpredictable, particularly feed-in tariff, a carbon tax, changes in
unintended, consequences. levels of service provision.
Co-evolutions | Interactions and feedback Key relationships and interactions
loops, path dependency, between the variables specified within
emergence, temporalscales, the other three attributes.
non-linear developments

3.2.2  Treatment of uncertainty in common modelling approaches

The incorporation of the extremely complex and uncertain social factor within the technical
(i.e., water- energy) system is inherently a highly challenging task, with numerous issues to
address. In the literature, the human behavioural models originate from psychology
(particularly social psychology) and sociology, but they are broadly usedin other sciences (i.e,,
economic, political, statistics etc.). Pentland and Liu (1999) revealed the capacity of system
dynamic models (SDM), in order to model and eventually, predict the aggregated human
behaviour. Other popular modelling attempts to describe the human factor and its
interactions with the water-energy systems are agent-based modelling approaches (ABM).
Both approaches are the two most popular mathematical modelling methods for evaluating
complex systems; while SDM are used to study macro-level system behaviour such as the
movement of resources or quantities in a system over time, ABM capture micro-level system
behaviour, such as human decision-making and heterogeneous interactions between humans.
An alternative approach for identifying and interpreting stakeholder behaviours, in order to
handle conflict resolutions within water management, is game theory (Madani, 2010).
However, to overcome the limitations of system dynamics and game theory of representing
the inter-connections between humans statistical models, by means of random graphs, are
used (Newman et al., 2002). In this thesis, the emphasis is given to system dynamics and
agent-based models, and thus the following paragraphs are dedicated to these two
approaches.
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3.2.2.1 Agent-based modelling

Currently, agent-based models are recognized as the state-of-the-art approach for
representing the human behaviour in a wide range of applications, i.e., health systems,
engineering, ecological etc. Their history begins from the early 70’s, when Thomas Schelling
discussed the basic concept of agent-based models as autonomous agents interacting in a
shared environment with an observed aggregate, emergent outcome. In 90’s this
conceptualization is employed, while the current definitions of “agents” are based on the
research of Holand and Miller (1991) that concerns the economic theory. In the terms of
Farmer and Foley (2009), “An agent-based modelis a computerized simulation of a number of
decision-makers (agents) and institutions, which interact through prescribed rules”. Decades
later, the conceptualisation, architecture and implementation is still evergreen, while the
applications are uncountable. Several major advantages credited to ABM have made it
powerful in modelling of coupled human and natural systems. Specifically, ABM has the ability
to model individual decision making, while accounting for heterogeneities, interactions, and
feedbacks. In addition, ABM is able to merge institutional aspects, behavioural structure and
norms with natural processes (Hare & Deadman, 2004). Finally, it offers a spatial ability,
making it possible to “[put] people into place (local social and spatial context)” (Entwisle,
2007). However, the coupling of naturaland human system requires the ability to merge two
conceptually different approaches, i.e., bottom-up, ABM, and top-down.

In addition and besides the wide use of ABM there are still many open methodological issues
to address and questions about their operational use (Berglund, 2015; Polhill etal., 2019). As
pointed by Magliocca (2020), most of modelling approaches do not containagent interactions
or do not base agent decision-making on existing behavioural theories. Focusing onthe water-
energy nexus and the modelling of human factor, by means of demands and policy making,
several efforts have been made toaddress and eliminate theseissues. Forinstance, Zhu et al.
(2023) explore and simulate the complex dynamic interactions in the supply and demand
process of water-energy- food nexus sectors. In addition, Guo et al. (2022) model through
agent-based models the agricultural water-saving compensation policy, responding to
anthropogenic and environmental interventions.

From the consumption perspective, in order to simulate human consumers as agents, ABMs,
which are in fact inspired by the game theory and build upon the aforementioned social
network context, use relatively simple rules to represent behaviors, social connections, and
reactions of a population (Kaiser et al., 2020; Yuan et al., 2014), as well as interactions among
the end-users and the water or energy utility. In the field of water resources, their use is
mainly restricted to explain water consumptions, urban (Bléschl et al., 2019; Darbandsari et
al., 2017; Koutiva & Makropoulos, 2019) and agricultural (Huber et al., 2022; e.g., Marvuglia
etal., 2022), which is an important, yet not the sole anthropogenic footprint across the water
cycle. On the other hand, regarding the practical use of ABM’s in energy systems, Yazdanie
and Orehounig (2021) highlight the need for improving uncertainty analyses against human-
induced factors, such as socio-economic and technological development, population changes,
future costs and policies, and sudden large-scale changes, also referred to as “black-swan”
events.

From the policy-making point of view, a rigorous policy analysis requires some means to
define and identify the mostimportant scenarios. For our good fortune, agent-based models
are suitable for enabling decision-making in an uncertain world. Specifically, these simulation
methods explicitly consider policy decisions as a dynamic response, adaptive over time to new
information, rather than any fixed set of actions. In this respect, Carley’s (2002) agent-based
simulators relate the overall behavior of organizations to data on the knowledge, capabilities,
tasks, procedures, and networks of communication for the agents of which they consist.

67



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

Recently, focusing on the water-energy-food nexus, Mirzaei et al. (2023) coupled two different
groups of stakeholders, i.e., farmers and government to describe their cooperation and the
social pressure, extractingthe policies options that optimize the coupled (technical and social)
system. Generally, ABM is the best-compromise approach for modelling heterogeneity in
individual attributes andinthe network of interactions among population elements. However,
this has a cost; this means that requires more data at the level of individuals, which in turn
lead to a slower modelling process, higher computational costs, and more difficult calibration
in the AB modelling, compared to other approaches.

3.2.2.2 System dynamics

“The human mind is not adapted to interpreting how social systems behave. Social systems
belong to the class called multi-loop nonlinear feedback systems”. In the mid-1950s, Jay W.
Forrester inspired from the human nature and based on this declaration, created the concept
of system dynamics. The main idea based on the fact that people would never send a space
ship to the moon without first testing prototype models and making computer simulations of
anticipated trajectories. Evenif such models and tests do not guarantee the possibility of no
failure, they do identify many weaknesses which can be corrected before they cause large-
scale catastrophes. In this respect, system dynamics are built upon the idea and represent
various of systems, including, the feedback loops of human and natural systems. The core
concepts of the system thinking, such as interconnectedness, feedbacks, adaptive
capacity/resilience, self-organization, and emergence (Williams et al., 2017) are addressedin
that modelling approach, helping people making the best-compromise decisions.

From the modelling perspective, there are two types of diagrams that fulfil the “bathtub” of
the system dynamics, namely causal loop and stock-flow. Causal-loop diagrams are, generally,
employed for qualitative modelling, while stock-and-flow diagrams are appliedin quantitative
modelling, leading to the development of models that can be consequently simulated and
analysed. In Figure 3.5, two simple examples of these two components are demonstrated,
regarding the water demands.

a) b)
Reservoir + Water
storage supply

Inflow Water release

I e el B Y
storage

Water Water

demand shortage

Shortage
Awareness

Figure 3.5: a) Causal-loop diagram for water demand. b) Stock-flow diagram for a simple
operation of a water reservoir.

The system dynamics has been widely used to analyze the WEF nexus worldwide at different
spatial scales, such as global (Susnik, 2018), national (Linderhof et al., 2020) and basin scales
(Ravaret al., 2020). Also, its application has been widely used for describing the social factor
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across the water-energy nexus (Guemouria et al., 2023; Keyhanpour et al., 2021; Phan et al,,
2021). In addition, Zeng et al. (2022) researched the human sensitivity indicated by
environmental awareness, that can adjust the co-evolution behaviours of the WEFS nexus
through feedback loops. In this scene, Giuliani et al. (2016) developed a coupled human
natural model, investigating the adaptation of agricultural users against the climate change
scenarios and different policy options.

However, system dynamics are more suitable toclosed thanto opensystems, originating from
their conceptual architecture. In this respect, this modelling approach tailored for social
components appears to have limitations, regarding the external influences, outside of the
system. Another crucial disadvantage relies on its lack of ability to offer “grey” options.
Specifically, since the “decisions” are described from pure mathematical expressions, these
cannot be influenced from game theory, strategic rules and behavioural adaptation, thus
leading to “white” or “black decisions”, i.e., outputs.

3.2.3 Human factor model

3.2.3.1 Concept

The proposed human-oriented simulator is called to represent the human behaviour within
sociotechnical systems, by accounting for decision, choice and action theories and by
representing at least all major intra- and inter-sector interactions. Due to the explicitly
stochastic nature of ABM, this simulator is built upon this approach. In particular, it allows for
representing memory effects, spatial heterogeneity and mobility, and interactions among
population elements.

As already mentioned, the agent-based approach follows by definition a bottom-up
perspective, thus a fundamental challenge is ensuring a satisfactory equilibrium between
accuracy and computational effectiveness. The first requirement presupposes a
representative classification of the society’s components (agents) and a realistic mathematical
description of their behavioural rules, which in turn may result to an over-detailed model. On
the other hand, this not impose formidable barriers to the overall computational procedure,
which also includes a time-demanding simulation model of the technical system. Another
crucial point is the derivation of a stable and self-adaptive society, after upscaling the
individual social components, which are (and should be) biased.

All above requirements and specifications are addressed within the proposed model. This
ABM is tailored for producing dynamic water and energy demands, by simulating the
consumers behaviour. This simulation requires the exploration twokey aspects inintegrating
individual water/energy users into management:(a) accurately foreseeing household demand
behaviour, (b) assessing how this behaviour is impacted by water and energy management
interventions and strategies such as awareness campaigns and price regulations and c)
describing the social network of each user. To address them, we are taking advantage of
theories from social psychology to simulate the consumption behaviour of urban households,
drawing on concepts like the influence of social norms and the relationship between attitudes,
intentions, and actual behaviours. By employing methodologies rooted in theories like Social
Impact Theory (Latané, 1981), we aim to understand how attitudes towards water
conservation can shift, particularly influenced by early adopters of conservation behaviours
whose attitudes deviate from the social norm.

We argue that the incorporation of the complicated and unpredictable social factor within
technical systems is inherently a demanding task, with numerous issues to address. In
particular, in large cities the society of is highly disparate and extended, thus a parsimonious
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yet representative classification of its components is critical. As shown in Figure 3.6, this
should allow for linking several user profiles with consumption habits, awareness of saving,
adaption to changes, willingness to adopt green economy policies, and tendency to follow
others.

Environment pressures
Public awareness campaigns (media, social-
media, physical)

Bills(highly connected with energy market price
and policies)

Hydroclimatic information (persistent drought,
high temperature)

Social network impact

P [ S

Attributes Behavioral rules
Monthly income Adaptation to changes
Household type Willingness to adopt new

lici
Education ~ [--mm-m- > % *------- poficies
Constraints to swift

Environmental

. consumption profile
consciousness

(based on household's
characteristics)

Tendency to follow

¥
Water/Energy consumption

Figure 3.6: Outline of agent’s behaviour with respect to external pressures and reactions
against water and energy consumption.

3.2.3.2 Model architecture

To unwrap the complexity of this modelling approach, the ODD protocol (Grimm et al., 2020)
is followed, to describe the ABM:

e Emergence: Herein, emergence refers to how the individual behaviors of household
agents collectively shape the overall behavior of the community, which is then
translated into water demand through a water-energy system simulation.

e Adaptation: Household agents adapt their behavior firstly by changing their attitude on
water conservation due to the socialimpact exerted on them (e.g., tendency to follow
others), by means of network and public awareness campaigns (agent-environment).
Then, household agents review their decision regarding water demand behavior
based on a) the structure of their behavior (e.g., willingness to adapt) and b) the water
bills.

e Fitness: At an individual agent level, households measure the fitness of their decision
by assessing their goal of reducing their water bills. Global “fitness” is measured after
aggregating the decisions and result to the monthly domestic water demand.

e Prediction: Household agents anticipate the reduction of their water bill, and keep
memory of previous mechanisms/decisions.
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¢ Interaction: Household agents interact with each other forming social networks and
influencing each other's water conservation attitude. In particular, the agentsinteract
with their social network (agent-agent) and are affected by policy measures.

e Stochasticity: All households are spatially distributed in the urban boundary (which is
configured as a grid), and they can move by following a random uniform distribution
in order to interact with their immediate neighbors and influence each other’'s water
consumption attitude.

Entities and state variables

Each household agent consists of three essential parts, i.e., attributes, behavioral rules, and
memory, which vary across households in the initial set up of the model, and they change
during the simulation, due to both externaland internalinfluences. In the model, we consider
two entities, i.e., the Households and the Water/Energy Saving Campaigns, the interactions
of which are assumed independent, while their further taxonomy is described below.

In particular, the Households are classified into categories according to their income (Hussien
et al., 2016) and their environmental consciousness, in order to describe the range of their
water and energy consumption. The consciousness is further distinguished into three sub-
categories, namely low, moderate, high. Thus, their behavior/adaptation is depended on all
these characteristics and their tendency to be influenced by their social network.

The Water/Energy Saving Campaigns are also distinguished in into a number of categories,
according to their type, namely physical, media and social media based. The physical
campaigns reflect the messages on newspaper, leaflets, workshops in schools, universities,
jobs etc. On the other hand, media and social media campaigns represent the messages on
TV and the Internet, and on the platforms of social media (Borawska, 2017). In general, a
predefined distribution is made but in abnormal conditions (e.g., low water availability) the
campaigns are potently activated.

Process overview

The modelling of urban consumers is based on the simultaneous interaction between the
Households and their external influences. The latter originate from the household’s
environment and include the water/energy bills and water/energy saving campaigns. At each
computational step (month), the moving agents (Households and Water/Energy Saving
Campaigns) take a random step within the feasible model space, while the household agent
receives the bills and compares the current bill with the previous one and decides to change
its water and energy demand behavior state or not. On top of this, if the household meets a
campaign, it decides to adopt saving water/energy policies or to stay stable even in extreme
conditions (e.g., persistent droughts, highly electricity prices). This decision is based on the
agent’s characteristics, regarding its environmental consciousness and the intensity of the
campaign.

At the end, the individual consumption values by all households are aggregatedtorepresent
the performance of water and energy usage at the macrolevel. The aggregated consumption
is used as input to the water-energy system (now expressed in terms of demand) and the
water-energy fluxes and associated costs are recalculated, by considering all inputs as
dynamic variables. More details of model coupling, assumptions and results are given in
section 6.5.3, in which the proposed ABM is adapted to represent water demands.
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3.3 Energy market uncertainty

3.3.1  Europe’s Energy History: A Complicated Tale

Since 1973, when the first oil price shocks occurred, these have led to recession for many
economies and hampered their growth. In this respect, policy makers have been incited to
explore alternative energy sources, to address the increasing environmental consequences
and to protect their economies from violent changes. Energy-related steps are taken by the
Maastricht Treaty (1992) and the Single European Act (1986), which acknowledge the
Community's relevant jurisdiction. In particular, the Single European Act (SEA) was signed with
the goal of establishing a single market by tearing down the obstacles preventing the free flow
of capital, people, products, and services. The energy sector started to liberalize with the
introduction of market prices, division of energy production, transportation, and distribution
activities, andrivalry among operators that eventually became Trans European. Nonetheless,
each Member State continued to be in charge of choosing its own energy mix.

In 2008, an "energy-climate package" was adopted by European leaders. Specifically, they
established a goal for 2020, and the committee chose to translate it into a formula —the 3
times 20, or 3x20 network—in honour of the collective agreement. The requirement for
Member States to cut greenhouse gas emissions by 20%, enhance by 20% and raise the
proportion of renewable energy sources to 20% of total energy used. Because of its varying
degrees of accomplishment, the European Union modified the three 2030 objectives in 2014.
Following to these measure, the European Union conducted the so-called “Green Deal”, which
aims to eliminate net greenhouse gas emissions by 2050. According to this, by 2030, the states
must have decreased by a minimum of 55% when compared to 1990 values, leading to
"carbon neutrality" or "climate neutrality". The plan primarily centred on the phase-out of
fossil fuels, electric vehicles, technology advancements, circular economy principles, building
retrofitting, and sustainable agriculture. However, the European Union was compelled to
reconsider its position on "energy sovereignty," or the necessity of not relying too much on
foreign sources for its energy supplies, after Russia invaded Ukraine in February 2022. In this
vein, the European Community launched the REPowerEU plan that is based on three blocks,
i.e., saving energy, diversifying supplies and supporting our international partners,
accelerating the rollout of renewables.

Therefore, this integrated European energy market is expected to offer a more economically
efficient and competitive electricity system, that willincrease the liquidity and social welfare,
simultaneously enhancing the security of supply and cross-border trade. To the road of
European energy integration and liberalization, a set of rules and policies are developed to
the individual energy markets of all member states, thus introducing the Target Model. This
comprises four markets, i.e., day-ahead, intraday, forward, and balancing. The member states
participate in the Target Modelin a single coupling mode, at day ahead market level, auctions
are held, whereas at intra-day market level continuous trading takes place. All participant’s
orders are collected and allocated at a pan European level, constrained by the inter-zonal
capacity for different bidding areas. Currently, this model is adopted by twenty-six European
countries (Austria, Belgium, Czech Republic, Croatia, Denmark, Estonia, Finland, France,
Germany, Hungary, ltaly, Ireland, Latvia, Lithuania, Luxembourg, the Netherlands, Norway,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Greece, and Bulgaria).

3.3.2  Treatment of uncertainty in common modelling approaches

The energy market, whichis a major driver of the water-energy systems, asit is operating, has
a short history but the fluctuations of the last years, due to the energy crisis, have many
effects. Inthis vein, Bohi (1991) studied the macroeconomic effects of the energy price shock
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in the 1970s and concluded that in a dataset of four countries there was no correlation
between the price shock and the operation of industry. On the contrary, Van de Ven (2017)
concluded that the impacts of the energy shocks are correlated with the economic
development and the associated circumstances, considering that the economies are
dependent on a single source. In the scene, the future of this energy crisis is unclear. Some
economists predict that reshoring will slow the global energy transitionas markets fragment
(Goldthau & Tagliapietra, 2022), while some researchers disagree. Nevertheless, the initial
goal of European Commission to increase the social welfare of this transitionis stress-tested
from the recent energy crisis that began in the aftermath of COVID-19 pandemic and escalated
due to the Russianinvasionin Ukraine (Ozili & Ozen, 2023; Shaikh, 2022). An important lesson
of this situation was that the energy transition process rendered the whole energy market
vulnerable to rising prices and uncertainty of the power supply. In this respect, the
configuration and description of uncertainty in the energy market is crucial for decision-
making in investing and policy designin regional and local scale (Fuss et al., 2008; Venetsanos
et al., 2002). Besides the black-swan events and abnormal situations in a global scale, e.g.,
pandemics, the energy market’s uncertainty with respect to electricity prices originates from
swifts to policies, geopolitical changes, development of new infrastructures and governments’
decisions. Inthis respect, Nikkinen and Rothovius (2019) decomposed the uncertainties in the
energy sector, concluded that the two main drivers are the crude oil and the stock market
uncertainty. Inaddition, Haugen et al. (2023) focused on the European energy transition, that
regards to a renewable-based system and the associated effects in the operation and the
forecast of electricity prices.

From a modelling perspective, different approaches have been adopted to represent the
various sources of uncertainty across the energy market and its components. For instance, the
fundamental models that are physical-based and consider the technical characteristics of the
electricity sector, i.e., capacities and constraints in the transmission systems are popular (Bello
et al., 2016; Kallabis et al., 2016). On the other hand, more theoretical models that originate
from statistics and stochastics are applied to simulate and forecast the electricity prices
(Borovkova & Schmeck, 2017; Higgs & Worthington, 2008; Hou et al., 2017; Md&st & Keles,
2010; Shenoy & Gorinevsky, 2016). In addition, the agent-based simulation models (ABMs)
have experienced an increasing popularity amongst electricity market modelers, since the key
characteristics of a market-based sector, i.e., learning properties, asymmetric information and
imperfect competition can be represented (Weidlich & Veit, 2008). For instance, Fraunholz et
al. (2021) took advantage of ABMs to forecast electricity prices, while Kell et al. (2020)
simulatedin the long-run the transition from coalto gas that was observedinthe UK between
2013 and 2018. Furthermore, financial tools and econometric models to model the price paths
correlated with explanatory variables (e.g., temperature, time, contracts etc.) are used
(Kremer et al., 2021; Narajewski & Ziel, 2020). Another kind of tools originates from game
theory and are used to model the equilibrium of market in competitive electricity markets
(Abapour et al., 2020; Hobbs & Kelly, 1992; Khalid et al., 2019).

Apart from individual models, recent efforts in this field have provided combined approaches
to simulate the variability of electricity prices across scales. Inthis respect, Torralba-Diazet al.
(2020) coupled a fundamental electricity market model with agent-based simulation to
highlight the resulting inefficiency and increasing prices, due to renewable sharing and poor
information. In addition, he fundamentals models have been hybridized with economic and
business models in order to forecast the electricity prices at the short-term scale (Lu et al,
2020; de Marcos et al., 2019).
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We argue that all these approaches and techniques underlie the need of decision support
tools, in the field of newly introduced liberalized energy markets, that account for the
uncertain aspects that shape electricity prices. Undoubtedly, an uncertainty-aware
representation of the electricity price as a random process is subject to several challenges,
including its double periodicity, induced by seasonality (monthly scale)and the intraday cycle
(hourly scale), as well as the detection of spikes, as an after effect of the already mentioned
pandemic and the energy crisis. In addition, the problem is further complicated, due to the
limited statistical information of historical data under the current energy market structure.

333 Electricity price generator

The proposed electricity price generator is built upon the idea of the hydrometeorological
process generator, as described in 3.1.3. In contrast to the climate-oriented generator, the
electricity price one follows a two-level simulation scheme to preserve the probabilistic
properties at the daily and hourly timescales. The electricity price process is also characterized
by a) long-range dependence in the daily scale, b) double seasonality (month to month, hour
to hour), and c) existence of negative values (occasionally). In this respect, the proposed
generator is adjusted to describe different states of the energy market system, to capture the
usual fluctuations across days and seasons, as well as long-term spikes, by means of shifts,
trends and persistent periods of high and low electricity prices (Gudkov & Ignatieva, 2021).

3.3.3.1 Modelling procedure

As before, the proposed generator is built upon the Symmetric Moving Average To Anything
(SMARTA) scheme by Tsoukalas et al. (2018) that couples three major modelling elements: (a)
the theoretical autocorrelation function (ACF), introduced by Koutsoyiannis (2000a), to
reproduce a given autocorrelation structure, (b) the Symmetric Moving Average (SMA)
generation procedure, as formalized by Koutsoyiannis (2000a) in order to be aligned with the
ACF, and (c) the Nataf’s joint distribution model (Nataf, 1962).

Let x, be a discrete-time stochastic process to simulate (in our case, daily electricity prices),
for which we aim to provide a synthetic time series of a large (theoretically infinite) length.
The process is considered to be stationary and follows a specific cumulative distribution
function (CDF), F,. The overall idea behind SMARTA lies in introducing an auxiliary Gaussian
process z;, simulated through the SMA model, with such parameters that after applying the
inverse of their distribution function, results in the target process x; with the desirable
correlation structure and marginal distribution.

Key requirement of the generation procedure is the reproduction of long-term changes within
synthetic electricity price data, in order to represent abnormal spikes and volatilities of the
energy market, as the ones observed during the running energy crisis. This feature is
demonstrated, by embedding the Cauchy-type autocovariance structure within the SMA
generationscheme, following the eq. 3.12. In that case, the ACF remains high for many lags.
An example of this fitting is demonstrated in Figure 3.7, that represents the empirical
autocorrelation for the daily electricity price dataset of France. Next, according to the SMA
rationale, the auxiliary stochastic process z; is expressed as a weighted sum of a finite number
of backward and forward random variables, as expressed in eq. 3.16.
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Figure 3.7: Fitting of theoretical autocovariance function to empirical autocovariances,
estimated on the basis of daily electricity prices of France.

As already mentioned, the above procedure is applicable to stationary processes that follow
given CDFs. Actually, electricity prices are significantly affected by seasonality effects, which
is in contrast to the stationarity hypothesis. To remedy this inconsistency, we apply a
standardization approachto the original data, in order to remove the monthly seasonality. In
this vein, the daily data are grouped by month and they are transformed as follows:
Xt —HUm

*
Xy =
t O

(3.18)
where u,, and g, are the mean value and standard deviation of month m. After running
SMARTA, we apply the inverse procedure to the simulated price data, in order to obtain the
final synthetic time series.
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Figure 3.8: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of France.
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Tosummarize, fromthe modeler’s perspective, the essential tasksinclude the standardization
of historical data and the assignment of the target autocovariance function, as well as the
target CDF. An example of CDF fitting is given in Figure 3.8.

Next, the synthetic daily data is disaggregated by preserving the seasonallyvarying marginal
distributions and the lag-1 hour-to-hour autocorrelation structures. To simulate a
cyclostationary process, we are taking advantage of Stochastic Periodic AutoRegressive To
Anything (SPARTA) (Tsoukalas et al., 2018a). This scheme is able to simulate such processes,
by defining the marginal distribution of each hour and establishing the dependence patterns
across seasons (hours). In this research, daily electricity price timeseries will be used for the
water-energy systems, since finer scales cannot be applicable in the long-term management
and assessment. An application of this framework is presented in Chapter 4.

3.4 Epistemic (endogenous) uncertainty
3.41  Definitions and modelling approaches

Besides the inherent uncertainty of the natural systems, further complexity is established by
using models to describe their mechanisms. The models transfer their errors and assumptions,
thus introducing the epistemic uncertainty that spans from the field observations to the
conceptualization of processes and the parameter estimation strategy. This may be done on
the basis of expert judgement, while in the case of observed response data the common
approach relies on model fitting techniques, also referred to as calibration (or training, for
data-driven models).

Epistemic uncertainty has been researchedin numerous scientific disciplines (Sankararaman
& Mahadevan, 2011), i.e., hydrology (Efstratiadis et al., 2015; Merz & Thieken, 2005),
medicine (Tonelli & Upshur, 2019), energy (Clavreul et al., 2013; Sakki et al., 2022), etc. In
water resources modelling (including hydropower systems), this has been mainly described in
terms of parameter uncertainty and less oftenin model structure (Benke et al., 2008; Jiang et
al., 2018; Moges et al., 2020).

As summarized by Efstratiadis and Koutsoyiannis (2010), when the model parameters are
inferred through calibration, the epistemic uncertaintyis related to the following factors: (a)
measurement errors; (b) use of over-parameterized model structures, whose complexity is
inconsistent with the available information about the system behaviour; (c) inappropriate
representation of the temporal and spatial variability of model inputs; (d) poor identification
of initial and boundary conditions; (e) non-informativeness of calibration data with regardto
the entire systemregime; (f) use of statisticallyinconsistent fitting criteria within calibration
(e.g. error metrics not accounting for heteroscedasticity); (g) weaknesses of nonlinear
optimization algorithms on rough and high-dimensional response surfaces; and (h)
inconsistent assumption of parameters constant in time whilst the environment is changing,
e.g. duetourbanization, deforestation, stream lining and other humaninterventions. We have
to come in terms that model uncertainty will always exist since, by definition, models are
imprecise representations of the real world, even though some of the aforementioned
components may reduce it.

Let consider a model of the following form:
y=f(x0) (3.19)

where x := [x1,%5, ..., X, is a set of external drivers and 6 := [6,,0,, ..., 0,] refers to a set

of parameter of the model, and y = [Xl,y, ...,ym] corresponds tothe model outputs that are
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approximations of the real system’s responses. For instance, for a rainfall-runoff model x
regards to rainfall and potential evapotranspiration processes, and y is the resulting runoff,

while 8 comprises a set of parameter that depend on the modeler choice. Herein, we will
focus on two kinds of epistemic uncertainty, i.e., the parameter estimation uncertainty and
the model structural uncertainty. In particular, the first one refers to the inability to uniquely
locate a ‘true’ parameter set based on the available information. On the other hand, the
model structural uncertainty originates due to simplifications and/or inadequacies and/or
ambiguityin the processes they describe. It is clear that the choice of parameter as well as the
structure of the model is crucial to describe the associated uncertainty. If we consider that the
structure of the model is chosen, the estimation of the parameters is made by a model fitting
on observed data. This is made by employing optimization techniques based on performance
criteria. Undoubtedly, the building models should be consistent, both in terms of structure
and parameters, with the behaviour of the real system. However, the global optimal set of
parameters does not often exist (Wagener & Gupta, 2005). The issue of multiple set of
parameters was discussed by Beven & Binley (1992), introducing the term “equifinality” to
underscore the existence of multiple “behavioural” parameter sets, whichare all acceptable
albeit not equivalent, on the basis of different conceptualizations, data and fitting criteria.
Since now, many efforts have been made to explore the map of equifinal sets of parameter,
even when assuming a specific structure and a single performance measure (Beven, 2019;
Ford et al., 2017; Khatami et al., 2019).

It is clearly admitted that the poor parameter identifiability may result in considerable
uncertainty in the model outcomes. In this vein, a variety of computational techniques is
offered to deal with these limitations and eventually quantify the model predictive
uncertainty, by seeking for promising pathways of its outputs on the basis of different
parameter sets. A common uncertainty assessment procedure across the hydrological
sciences has been proposed by the instigators of equifinality, Bevenand Binley (1992), namely
Generalized Likelihood Uncertainty Estimation (GLUE). This methodology estimates the
overall predictive uncertainty of the model, ignoring the individual effects of the input,
parameter and model structure components. Tofill this limitation, other approaches attempt
to handle them individually, by employing different techniques, e.g., simple uniform random
sampling (Charron et al., 2010), Markov Chain Monte Carlo methods (Luengo et al., 2020),
meta-Gaussian techniques (Montanari & Brath, 2004), sequential data assimilation (RUIZ et
al., 2013), multi-model averaging methods (Arsenault et al., 2015) and joint schemes (Zhang
et al., 2012).

The following sections provide three different approaches to incorporate the concept of
epistemic uncertainty, with respect to available information. The first approach, as presented
in section 3.4.1, deals with a priori quantification of parameter uncertainty, while the other
twosections refer toa posteriorianalyses of total model uncertainty under observed response
data. In particular, section 3.4.2 discusses the use of a stochastic approach to generate
synthetic model errors (where the errors originate from conventional calibration approaches).
Lastly, the third approach regards to the calibration uncertainty per se, providing a two-step
procedure to account for the associated data and the objective function.

3.41 Modelling parameter uncertainty

Let consider a model following the eq. 3.19, where the governing laws and thus the model
structure are a priori known, but the real response of the system is undetermined. In this
respect, this uncertainty can merely be translated by means of randomly varying model
parameters. In order to represent the system’s response under uncertainty, we can assign
suitable distribution functions tothe parameters, to preserve specific statistical characteristics
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(e.g., asymmetry) based on expert judgment. In this respect, we next run the model in a
Monte-Carlo context, by sampling the parameter values from the corresponding distributions.

In our case studies, we mainly employ this approach to “fuel”-energy conversions, which are
further developed in section 5.2.2.

3.4.2 Modelling parameter and structural uncertainty

In contrast withthe previous approach, the existence of observed response data significantly
assist the parameter estimation procedure by allowing to infer the parameters through
calibration. However, the utopian fitting of the model to the real system’s response does not
exist, thus a deterministic approach may lead to misperception of the complex mechanismes.
In this respect, a methodology to effectively use the residuals of the model is provided.

Let consider a calibrated conversion model following the eq. 3.19, and the error timeseries,
e;, is the differences between the observed and simulated quantities. The error is desirable
to follow three specifications (Sorooshian & Dracup, 1980): (1) the error is uncorrelated with
the simulated quantity; (2) the erroris uncorrelated with itself (zero autocorrelation); and (3)
the error is an independent and identically distributed random variable, i.e., without
periodicity or other kind of time variation in its statistical properties. To respect of these we
first transform the runoff by applying:

y =eln(l+ y/e) (3.20)

where ¢ is a scale parameter introduced to avoid zero flow values, which was set the 1% of
the mean daily observed runoff (¢ = 0.01 mm). The rationale of this transformation is
explained by Koutsoyiannis (2014). Following to this, the error process w; is expressed by:

ysim,t

we=In(1+ T) —In(1 + Yopst/©) (3.21)
where y¢im ¢ and y,ps ¢ are the simulated and observed quantity at time t, respectively.

If the system of interest is subject to periodicity, the error process w; is next grouped by
season (e.g., month) and is “unlocated”, in order to avoid the negative parameters, by using
the location parameter:

Wis= Wi — [min(wt,s) - var[wt,s(t)]] (3.22)

where s refer to each month. Next, we generate a stochastic timeseries of errors, taking
advantage of the Symmetric Moving Average (neaRly) To Anything (SMARTA) scheme by
Tsoukalas et al. (2018). In this respect, the target auto-correlation structure is estimated by

using the eq. 3.12. In addition, the marginal distribution for each month is assigned.

Next, the generated w', ;, are transformed by using the inverse transformation of eq. 3.22,
while the final error, egen s, is expressed by:

egens = (Vsims +€)[e™s —1] (3.23)
In this respect, the final simulated quantity, accounting for the model error is given by:
Ygens = (ysim,s + S)e_ws —€ (3.24)

By employing the above methodology of residuals, we are able to account for the predictive
uncertainty of our model and its effects to the downstream models.

This approach is suitable for rainfall-runoff transformations (see application in chapter 5). We
argue that the introduction of hydrological models within the representation of water-energy
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nexus augments the total uncertainty, but it is crucial. Specifically, in many cases, the rainfall
data samples are quite longer than the runoff ones, thus such models are essential to increase
the available hydrological information. Furthermore, the parent processes of the changing
climate are the atmospheric ones, not the streamflow, thus a rainfall-runoff model should be
established to investigate the impacts of changing input processes.

3.4.3 Modelling calibration uncertainty

Another aspect of model uncertainty is the calibration itself. Specifically, different time-
periods or performance metrics result to different set of “optimal” parameters (the well-
known issue of equifinality). In this respect, we propose a stochastic calibration approach,
following the ideas by Gharari et al. (2013) and Efstratiadis & Koutsoyiannis (2010). In
particular, Gharari et al. (2013) proposed the “sub-period calibration”, which aims at
identifying a time consistent parameterization for a certain model structure and data set. This
approach involves two steps. First, the available input and output data sets are split into
(ideally equal length) k sub-periods. The second step regards to the calibration metric, by
employing n different objective functions. Then, each sub-period is calibrated individually by
sampling the parameter space and identifying the n-dimensional Pareto front for each sub-
period, leading to k parameter set. On the other hand, Efstratiadis & Koutsoyiannis (2010)
discussed the multi-objective calibration challenge, emphasizing to the use of multiple fitting
criteria. Specifically, they provided a calibration methodology, in which the individual
uncertainties of the calibration procedure are directly related through the model structure. In
this respect, instead of minimizing the errors, they consider a proper multi-objective
configuration of the calibration problem, assuming a limited number of fitting criteria that
account for different aspects of the model performance.

By merging the two aforementioned approaches, i.e., the “sub-period calibration” and the
different performance measures, we employ a two-step procedure in order to calibrate, inan
uncertainty-wise manner, a rainfall-runoff model. First, we split the historical data into k
different windows of length N. Next, we create k calibration scenarios, in which we apply
randomly varying weights to a multi-objective performance measure comprising different
goodness-of-fitting metrics. Eventually, k parameter sets are extracted, which are considered
as equifinal, since they correspond to optimal solution for each calibration scenario. This
methodology will be employed in chapter 7.

3.5 Quantifying uncertainty through copulas

3.5.1 Definitions and specifications

Copula theory (Sklar, 1973) enables the construction of multivariate joint distributions with
arbitrary marginals. Specifically, copulas are used to describe and model the dependence
(inter-correlation) between random variables. Due tothis flexibility and the need of describing
the correlations between variables, the use of these tools have been spread in a variety of
scientific fields ,including economics (Patton, 2012), renewables (Oteroet al., 2022) and their
interface (Mejdoub & Ghorbel, 2018). In this vein, Klein et al. (2016), by taking advantage of
the copula estimates the predictive uncertainty of hydrological multi-model predictions, while
Fan et al. (2022) used copulas schemes to filter the model errors, and eventually limit the
uncertainty. Besides, the predictive uncertainty copulas are widely used for forecasting
weather conditions, wind speed and economic fluctuations (Mdller et al., 2013; A. Patton,
2013; Wang et al., 2018). In our research, copulas will be used as a key tool for quantifying
uncertainty in forecast terms and in the post-processing of dependent variables across the
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water-energy nexus, by means of predictive uncertainty, in order to offer insights to the
policy-makers. In terms of forecasting, copulas allow for estimating the level of uncertaintyin
the medium-term scheduling, while in terms of post-processing these are able to quantify the
uncertainty after employing an uncertainty-aware framework that supports stakeholders.
Regardless of the application, copula-based tools will be able to offer the level on uncertainty;,
by means of a more nuanced understanding of uncertainty, that will be further translatedin
terms of associated risk. A brief mathematical description of constructing copulas follows.

3.5.2 Brief mathematical framework

For sake of brevity, we give only a short overview about copulas here. For a more detailed
description of the theory, the readeris referredto (Joe, 1997; Nelsen, 2006). Copula function
has a material effect on the shape of the joint distribution, sothe selection of copula function
should be reasonable. There are many type of copula functions that allows for describing the
patterns of tail dependence, ranging from tail independence to tail dependence, and different
kinds of asymmetry. Among all copula types, frequently-used ones include Gaussianand t
copulas, from the elliptical copula family, and Gumbel, Clayton, Frank and Joe copulas, from
the Archimedean copula family (Skoglund, 2010). Their shapes are presented in Figure 3.9.

a) Gaussian copula b) t-copula ¢) Gumbel copula
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Figure 3.9: Contour plots of PDF for Caussian, t, Gumbel, Frank, Joe and Clayton copulas.

For convenience, we will focus on the case of the Gaussian copula, which is the simplest
approach. We remind that these copulas are also used for the construction of non-Gaussian
conditional distributions, based on the method by Tsoukalas (2018).

Let consider X and Y two random variables, while Fy(x) and F, (y) are their cumulative
distribution functions (CDFs)and uy = Fy(x) and uy, = F, (y)are uniformly distributedin the
range [0, 1].

According to copula theory, their joint CDF can be expressed by:

F(xy) = PX <xY <y} = C(F, (%), F () = Cluy,uy) (3.25)

where C(,) denotes the selected copula CDF.
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For a given correlation matrix R € [—1,1 ]%**¢ (where d is the dimension- in our case d = 2,
the Gaussian copula with a parametric R is expressed by:

Cluy, uy) = Pr (P (uy), ' (uy);R) (3.26)

where @, and @ standfor the joint cumulative distribution function and univariate Gaussian
CDF respectively.

The conditional CDF of the X|Y =y, thatis Fyy=,(x) = P{X < x|Y = y} can be obtained
through the following relationship:

9C(uy,uy)

Fxjy=y(x) = ou, = Cyy (uyxuy) (3.27)

where Cyy stands for the so-called conditional copula. For the case of the Gaussian copula,
the latter relationship reads as follows:

-1 — RO
a = Fyjy=y (%) = Cxy(uyx| uy) = qn( (?ﬁ (uY)) (3.28)
which can be inverted to:
ug™ = i (aluy) = & (RO () + TR0 (@) (3.29)

in order to find the value of uy that corresponds to a desired probability of non-exceedance

a = Cxy given the (known) value of uy (compactly written as ugluy). Finally, one can also

obtain the quantile that corresponds to that conditional probability level by employing the
inverse cdf of X, i.e., Fy1(*). The latter reads:

xAFr ) = yaly = g1 (ugluy) (3.30)

while for the Gaussian copula case it only entails a substitution of egs. 3.29 and 3.30.
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Figure 3.10: A scatter plot of the bivariate normal data with histograms for each marginal
distribution.

3.6 Conclusions

In conclusion, this chapter has made significant strides in advancing our understanding and
management of the intricate interplay between water resources, energy systems, and societal
dynamics within the water-energy nexus. Through the development of comprehensive
models, we have effectively accounted for hydroclimatic variability, social complexities, and
uncertainties inherent in energy markets. Regarding the representation of climatic and
energy-market uncertainty, we consider their processes as random variables, and use
stochastic models for the generation of synthetic rainfall and electricity price data. Next, for
the description of the human-induced procedures, an agent-based model, which is the sole
approach that explicitly accounts for internal interactions across the social network, is
developed tailored for the water-energy nexus. Specifically, this enables the swift from the
steady-state hypothesis to a dynamic social subsystem, simulating the household’s behavior
with respect to water and energy consumption.

Besides the climatic, social and energy market uncertainty, three pathways of representing
the internaluncertainty are offered. In particular, allapproaches focus on the parameterand
structural uncertainty, but its one is discuss different aspects. The first approachiis tailored for
the statistical representation of “fuel”-energy conversion models, while the second one
presents a methodology of generating synthetic residuals, accounting for the uncertain
calibration parameters. The last method is dedicated to the calibration itself, merging two
different uncertainty-aware approaches.
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Finally, a framework for quantifying the uncertaintyis presented, based onthe copula theory.
This tools will be employed in forecasting and in the post-processing of dependent variables
across the water-energy nexus, in order to offer insights to the policy-makers.

By integrating these multidimensional factors, varying from climate to the socioeconomic
environment and the modelling approaches, our research provides a robust modelling
framework capable of accounting for the multifaceted uncertainties within the water-energy
nexus. The methodologies developed in this thesis will be further employed in chapters 4, 5,
6 and 7 in order to offer valuable tools for policymakers, planners, and stakeholders to make
informed decisions and formulate robust strategies for managing water and energy resources
in an uncertain future. Specifically, chapter 4 is dedicated to the energy market and its major
component ,i.e., electricity prices, offering two different analyses, namely the long-run
simulation of electricity prices and forecasting across different scales of interest. Inaddition,
chapter 5 discusses the combined uncertainty of climatic, economic and technological, in the
designand assessmentofrenewable-related works. Following to this, chapter 6 step from the
single work to a water-centric system, strongly driven by climatic, social and electricity price
fluctuations. Finally, chapter 7 focuses on the key element of water-energy nexus,
multipurpose hydropower plants, and its long-term management under the joint
uncertainties.
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4 From long-run simulation to forecasting of EU
electricity market

Preamble

The applications of the uncertainty-aware simulation-optimization framework revealed that a
key driver of the water-energy nexus originates from the socioeconomic environment. In this
respect, this chapter focus on the energy market and its footprint, namely electricity prices.
Specifically, this comprises two different analyses of the electricity prices, i.e., simulation of
electricity prices and forecasting across different scales of interest. The first approach is
applied to six European Energy Market by following the framework of 3.3.3, while the second
one is stress-test to the Greek Energy Market by introducing a copula-based tool, following
the mathematical framework of section 3.5. This chapter is based on these publications:

Efstratiadis, A. and Sakki, G.-K.: Driving energy systems with synthetic electricity prices, EGU
General Assembly 2024, Vienna, Austria, 14-19 Apr 2024, EGU24-3165,
https://doi.org/10.5194/egusphere-egu24-3165, 2024.

4.1 Simulation of the European Energy market

Before employing the proposed electricity price generator to the water-energy systems under
study, this is stress-test to six European countries, i.e., Switzerland, France, Greece, Italy,
Portugal, Netherlands. These are chosen due to several reasons. Specifically, most of them are
interconnected, as depicted in Figure 4.1, while their energy mix is radically different, as
demonstrated in Table 2. For instance, the Switzerland’s electricity mix is based on
hydropower (more than 50%), while France’s is dependent on nuclear power. Other criteria
are originated by their economic and climate conditions, fiscal compliance, and financial
sector development. In this vein, two groups can be discriminated, i.e., the southern and
northern. Particularly, the southern European countries favours the renewables investments,
and their economic development was static for several years, due to the financial crisis of
2007-2008.

All data are extracted from the official database of the European Network of Transmission
System Operators for Electricity (ENTSOE-E) and refer to the daily scale for years 2016-2022,
as demonstrated in Figure 4.2. In case of the Italian energy market, the corresponding data
begin from 2006. We remark that this period includes two periods of interest, namely the low
prices during 2016-2020 and the spikes of 2021-2022. As already mentioned, the
methodological framework and eventually the simulation of both periods is a key challenge of
this research.

Table 2: Electricity mix of European countries (%). The raw data are provided by Eurostat.

Country RES Bio Solar Wind Hydro  Nuclear Gas Coal oil
Switz. 0.0 0.2 43 0.1 54.8 37.0 0.0 0.0 3.6
France 0.1 21 43 8.2 9.8 63.3 9.2 0.9 21
Greece 0.0 1.0 12.6 20.7 9.0 0.0 373 104 9.0

Italy 2.0 6.6 9.9 7.1 10.7 0.0 50.7 7.6 5.3
Port. 0.4 8.5 6.5 28.3 16.2 0.0 37.0 0.1 3.1
Neth. 0.0 8.0 13.9 17.9 0.0 3.4 39.6 12.1 5.0
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Figure 4.1: Interconnections of European electricity markets. (source: Ember)

4.2 Results

The proposed generator, as described in 3.3.3, is employed to simulate a 1000-year dataset
of daily electricity prices for the six countries, i.e., Switzerland, France, Greece, Italy, Portugal,
Netherlands. For all countries the 3-parameter Gamma distribution function (Pearson3) is
fitted and the ACF of eq. (3.12) is applied with the scale and shape parameters as
demonstratedin Table 3. The demonstration of fitting the theoretical autocorrelationis given
in Appendix, Figure 10.1, while from Figure 10.2 to Figure 10.7 the estimation of the marginal
distribution for each country are given.

For all countries, we compare the observed and simulated daily mean, standard deviation,
skewness coefficient and lag-1 autocorrelation, which are given at Table 4. As already
mentioned, the electricity price’s process is characterized by seasonality at the monthly scale.
In this respect, a generator should account for this characteristicandreproduce the process’
regime at both scales, daily and monthly. In Figure 4.3 and Figure 4.4, the monthly-based
mean and standard deviation values of electricity prices compared with the simulated
timeseries are demonstrated. In addition, Figure 4.5 presents the five-number summary,
through boxplots, i.e., the minimum, first quartile, median, third quartile, and maximum of
the historical and the simulated electricity prices for the six energy markets under study. As
expected, the simulated time series take advantage of the available statistical informationto
expand the data, since it covers a period of 1000 years against the small sample of the
observed (6 years).
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Table 3: Shape parameters of target autocorrelation functions for Switzerland, Netherlands,
France, Greece, Portugal, and Italy.

Country K B

Switzerland 0.013 5.12
France 0.021 6.02
Greece 0.010 5.75
Netherlands 0.019 5.46
Portugal 0.073 22.82
Italy 0.012 6.15

Further to this statistical analysis, for each country a selected time-window of the simulated
timeseries is contrasted against the historical data (Figure 4.6). The key question of
representing accurately not only the statistical characteristics of the observed data per se, but
also the persistence of low and high electricity prices is addressed herein. Specifically, as
demonstrated in Figure 4.3 and Figure 4.4 and Table 4, the proposed generator is able to
reproduce the statistical regime of the observed data at the daily and the monthly scales. In
addition, itis capable to move beyond the statistical characteristics, by representing precisely
the season-to-season volatilities, the daily spikes and the low-frequency events inthe long run
(Figure 4.6). Finally, this analysis indicated that this generatoris genericand easily adjustable
to different energy markets, by adopting appropriate assumptions in the model setup, i.e.,
selection of marginal distribution and selection of shape parameters for the theoretical
autocorrelation function, x and .

Switzerland Netherlands France

700 700 700
)
B 600 600
=
w
¥ 500 500 500 -
@
.Q
5 400 400 400
2
O 300 300 300
=
3
2 200 200 200
>
% 100 100 100
[a}

00,0 A A A @D 1D 2 D2 D v 010,01 A Q2@ 2210 @ D OO0 A A D@D 3102 D o 0 o
(L\\'L\'l« o \f»\ws\m“\\f»“\ﬂ?\\'ﬁ\\@\@x\w O \'»W\mm\m% s 0\@ PR w\'v eSS oS ”P@W\'»“W'@W S &\ww\mq{fﬁ\w% o Sss w\\m\\m R RO % q’ \'I«W\’L&’L’L
B I P PR R A T IO VA A AN VR Lo %%u%mu%rbu%w\x%'é POV
Greece Portugal Italy
700 v —— v 700 —— —r— T 700 ——r T —

[}
=3
S

600 600 -
500 500 |
400 400
300 300

200 200 |

100 100

Daily electricity price (€/MWh)
B
o
o

\h 2 45 K\ (\ Q’ 2 (b SN (3 rﬁbrﬁbrp rL rp fL W (V 655 (b (b L& D \ (b (b 4b 4% (3 N 2 q9 q9 q> fﬁ\rp rp 2 iL Qb K3 Kﬁ 2 \% Qb SN fb a2 ’§)‘L 6» 6L iL ﬁ}gﬁb
&Lé}%l§b§l%}§bébﬁL§L§}$}§}g}$¥§béb$b§Léqu &}g}&}§bé¥$}§b%¥$}§lg}d}Q@él%b&bébﬁ)§bé}$l §L§L$}§l%¢$}§bg¥$®§Léb$¥§bébé}§bé}$}§bélqﬁ

Figure 4.2: Historical daily electricity prices for Switzerland, Netherlands, France, Greece,
Portugal, Italy.
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Table 4: Comparison of daily statistical characteristics for all modelled variables.

Mean St.deviation Lag-1

Country Skewness

(€/MWh) (€/MWh) Autocorrelation

Switzerland Historical 84.9 92.1 2.75 0.984
Simulated 85.0 83.6 2.3 0.984
France Historical 81.9 92.5 2.93 0.971
Simulated 92.9 101.4 3.00 0.979
Greece Historical 89.4 86.1 2.61 0.976
Simulated 90.1 81.4 2.54 0.988
Netherlands  Historical 75.9 79.9 2.97 0.969
Simulated 79.3 74.5 2.64 0.981
Portugal Historical 70.2 55.6 2.44 0.969
Simulated 73.9 61.3 2.35 0.951
Italy Historical 78.7 71.8 4.30 0.977
Simulated 82.1 75.5 3.56 0.988
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Figure 4.3: Monthly-based comparison of historical monthly mean values with the simulated
ones for Switzerland, Netherlands, France, Greece, Portugal, Italy.
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Figure 4.4: Monthly-based comparison of historical standard deviation values with the
simulated ones for Switzerland, Netherlands, France, Greece, Portugal, Italy.
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Figure 4.5: Monthly-based boxplots that compare the historical with the simulated
electricity price for Switzerland, Netherlands, France, Greece, Portugal, Italy.
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4.3  Forecasting of electricity prices across scales via copulas

The second application across electricity markets refers to the forecasting of electricity prices
across multiple scales of interest, i.e., daily, weekly, monthly, quarterly. As already mentioned
in section 3.3.1, the energy market comprises different structures, one of them being the day-
ahead scheduling. Inthis respect, the day-to-day variations are crucial for the operation of all
energy-related projects (e.g., wind and photovoltaic parks, small and large hydropower
plants). On the other hand, the coarser timescales serve medianand long-term management
policies, mainly regarding the human-controlling projects, e.g., large hydropower plants. In
general, considering multiple time scales for forecasting electricity prices allows for a more
comprehensive understanding of the market dynamics and helps stakeholders make better-
informed decisions. In particular, numerous target groups of stakeholders in the electricity
sector, such as power generators, distributors, and consumers, have different planning
horizons and decision-making processes. By providing forecasts at various time scales,
analysts can cater to the needs of these stakeholders, enabling them to make informed
decisions about production, procurement, pricing, and consumption. In addition, energy
trading and investment decisions involve managing various types of risks, including price risk.
By forecasting electricity prices at different time scales, market participants can better assess
and manage their exposure to short-term volatility as well as longer-term trends.

In this respect, we are taking advantage of the Greek Energy Market data to forecast the
electricity prices for the aforementioned timescales. The data are separated intotraining and
testing, that correspond to 80% and 20% of the sample, respectively. For the construction of
copulas, we follow the mathematical framework, as described in section 3.5.2. In brief, we
first assign to each random variable, e.g., electricity price of the day and the day-ahead, the
marginal distributions. Next, we select a well-suitable joint distribution for these variables,
thus for each quantile an estimation of electricity price results, given the “current” (daily,
weekly, monthly) price. We remark that these only incorporate the information of the past
energy market dynamics, ignoring weather and demands forecasting. In this respect, these
tools are able to provide macroscopic insights of how the market is moving, regardless of
other forecasts. This happens because copula methods are only based on the relationships
and dependence structures between the variables of interest. This allows them to provide
insight into market analysis and dynamics, regardless of the accuracy or instability of other
forecasts. Thus, even if this approach is not entirely accurate, it provides significant
understanding of the structure and dynamics of the electricity market.
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Figure 4.7: Histogram and copula-based tool for prediction of electricity price at the daily
scale.
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Figure 4.9: Histogram and copula-based tools for prediction of electricity prices at the
monthly scale.

These simple, yet accurate, copula-based tools for predicting the electricity prices are
demonstratedin Figure 4.7 (refers to the daily scale-BB1 copula is fitted), Figure 4.8 (refers to
the weekly scale-BB1 copula is fitted), and Figure 4.9 (refers to the monthly scale-Frank copula
is fitted). It is clear that we can group two areas of interest, i.e., low (< 200€/MWh) and high
(= 200 €/MWh) electricity prices. Specifically, for the first group the level of prediction is
quite narrow, while for the second one the predictive uncertainty is wider. This is more
obvious in the forecasting tool at the monthly scale, whereas the uncertainty is high due to
inherent and non-inherent reasons. For instance, given an average monthly electricity price
of 300 €/MWh, the prediction ranges from 190 to 500 €/MWh. The inherent reasons refer to
the scale of interest per se, the day- to day prediction is less uncertain. Oppositely, the non-
inherent ones regard to the uncertain policymaking of all participants, government
regulations and interventions for the next month.
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4.4 Combination

An interesting approach arises from the combination of the two aforementioned tools.
Specifically, the generation of long synthetic data, allows for capturing a wide “window” of
data. In addition, the copula-based tool for forecasting offers the range of the predictive
uncertainty given the value of the current electricity price. In this respect, the coupling of
these tools allow the stakeholders to simulate their system with various scenarios of
forecasting to policy-making in the mid-term scale.

Let consider a forecasting horizon of N days for which we aim to provide m equally probable
scenarios to drive the short-term scheduling of an energy-related system. The first step
regards to the generation of m X N ensembles of daily electricity prices by employing the
methodology as described in section 3.3.3. The second step includes the estimation of the
copula-based tool for prediction as presented in section 4.3. Then, we extract only a part of
the m X N ensembles, as indicated by the uncertainty bounds of copulas.

Herein, we are taking advantage of the Greek Energy Market to employ this procedure. In this
respect, 200 scenarios of 5 years (1825 days) are generated, while the copula tool refersto a
mid-scale forecasting. In particular for the forecasting through copulas, the known variable is
the average electricity price for the period January-March and the predictive variable refers
to the rest of the year, i.e., April to December (Figure 4.11). We remark that the sample of
historical data is too small, only 7 years, thus the copula is constructed, by using synthetic
data. Inthis respect, we are taking advantage of the stochastic regime of the historical data in
order to generate long synthetic data and eventually estimate the appropriate copula scheme.
Figure 4.11 presents the copula scheme that was selected, i.e., BB7, compared with the
historical data (red color). In addition, Figure 4.10 presents the mean electricity price for the
period April to December for each scenario, which varies from 20 to 400 €/MWh.

In this respect, stakeholders are able to simulate and optimize their mid-term system’s
operation, for an horizon of nine months by selecting the most suitable scenarios. For
instance, if the mean electricity price of the first three months is 200 €/MWh, the prediction
of the mean electricity price for the next nine months corresponds to 97 to 310 €/MWh. Thus,
the suitable scenarios for this state of the system are selected, accounting for the mean
electricity price of the period April to December. Eventually, these scenarios are only 65,
comparedto theinitial sample of 200. These scenarios are the most appropriate of the energy
market’s conditions, thus allowing the energy system’s operator to decision-making
conditioning their external environment.
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Figure 4.11: Copula-based tool for prediction of electricity price at a mid-term scale.

4.5 Conclusions

To end with, this chapter encloses the energy-market uncertainty within two operational
approaches. The first one includes the simulation of daily electricity prices in the long-run, by
using the proposed electricity price generator, as described in section 3.3.3. The second
approach refers to the forecasting of electricity prices across several timescales , i.e., daily,
weekly, monthly, taking advantage of the copula theory as formalizedin section 3.5. The first
approachis implemented for six European Energy Markets, with varying energy mix, while the
second is established to the Greek Energy Market.

Both case studies have a significant footprints for the scheduling, operation and long-term
management of water-energy systems and energy-related projects. The simulation of
electricity prices offers the ability to stakeholders and investors to design or assess existing
projects, accounting for the energy market uncertainty of the host state. Onthe other hand,
the proposed simple forecasting scheme has a scheduling and mid-operation character.
Specifically, these copula-based tools offer a macroscopic prediction, under the expected
uncertainty levels, of the energy market dynamics, considering the past information and
describing the dependencies. This has a major advantage arises due tois independent of other
forecasted variables, e.g., weather conditions and demands. In addition, the combination of
both tools offers the significant advantage tothe stakeholders to make informative decisions,
by quantifying a priori the evolution of their system under uncertainty, depending on the
forecasting of the electricity prices.
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5 Uncertainty-wise design and assessment of
renewable projects

Preamble

This chapter is dedicated to the renewables under uncertainty; from the description of each
source, the general simulation scheme to a valuable toolbox for stakeholders. Specifically, key
objective is to formalize the endogenous and exogenous uncertainties across the input
processes and model hypotheses, and eventually represent them under a novel uncertainty
quantification framework, by coupling the methodological triptych of statistics, stochastics
and copulas. Besides this, we set the methodology of representing the operation of
renewables by means of random processes, thus allows to incorporate their uncertainties in
stochastic terms. Following to this, we offer simple, yet generic toolboxes for policymakers,
to facilitate the design and assessment procedure for renewable-based investments. As a
proof of concept for the effectiveness and generality of the proposed framework, we analyze
two different cases. The first involves the design of a run-of-river small hydropower plant,
while the second one refers to the to the long-term economic assessment of a wind power
plant. Most of the material here was prepared originally for the thesis, albeit a small part of it
is also covered on our publications:

G.-K. Sakki, I. Tsoukalas, P. Kossieris, C. Makropoulos, and A. Efstratiadis, Stochastic
simulation-optimisation framework for the design and assessment of renewable energy
systems under uncertainty, Renewable and Sustainable Energy Reviews, 168, 112886,
doi:10.1016/j.rser.2022.112886, 2022.

G.-K. Sakki, |. Tsoukalas, and A. Efstratiadis, A reverse engineering approach across small
hydropower plants: a hidden treasure of hydrological data?, Hydrological Sciences Journal, 67
(1), 94-106, doi:10.1080/02626667.2021.2000992, 2022.

K.-K. Drakaki, G.-K. Sakki, |. Tsoukalas, P. Kossieris, and A. Efstratiadis, Day-ahead energy
production in small hydropower plants: uncertainty-aware forecasts through effective
coupling of knowledge and data, Advances in Geosciences, 56, 155-162, doi:10.5194/adgeo-
56-155-2022, 2022.

5.1 Setting the scene

All European strategies (e.g., Green Deal, REpowerEU etc.) focused on the increasing
share of renewables in the energy mix, promoting innovation and technological
advancements in renewable energy technologies, enhancing energy efficiency, and fostering
the transitiontowards a more sustainable andresilient energy system. As mentioned, the EU
has set a target of at least a 45% share of renewable energy in the final energy consumption
by 2030. Yet today, energy production and consumption based on fossil fuels still represent
more than 75% of the EU’s greenhouse gas emissions, thus boosting EU members towards
clean energy solutions. However, the systematically increasing penetration of renewable
energy introduces further complexities to the global energy scene, due to multiple and
interacting uncertainties (Alqurashietal., 2016; Oree et al., 2017). This issue affects the entire
life-cycle of renewable energy systems (RES), i.e., planning, design, policy management and
operation (Rauner & Budzinski, 2017; Saxe et al., 2020).

As shown in Figure 2.1, multiple sources of uncertainty exist, from the input “fuel” to its
conversion to electricity production, and eventually the energy market. Following the
rationale of section 2.4, their disentangling requires to separate them into exogenous
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(external) and endogenous (internal). The former category mainly refers to the inherent
uncertainty of the system’s drivers, i.e. hydrometeorological processes, also involving highly-
complex and unpredictable socioeconomic and environmental factors, as well as conflicts
within the broader energy-society nexus, e.g., land development (Sargentis et al., 2021). On
the other hand, internal uncertainties refer to conversion processes and underlying modelling
assumptions.

The fact that renewable energy production is highly varying, intermittent and unpredictable
across all scales, induces significant challenges to researchers and practitioners, in terms of
successfully planning, scheduling, utilizing and controlling RES (Koutsoyiannis et al., 2009;
Nakata et al., 2005). Nevertheless, it is recognized that the associated tasks, generally
configured as optimization problems, can be effectively handled if uncertainties, probabilities,
and fluctuating behaviors of renewable energy systems are properly represented (Zakaria et
al., 2020).

This research highlights the importance of addressing the major facets of uncertainty, external
and internal in combination, for two crucial life-cycle phases of RES, namely the technical
design and the economic assessment. This problem is introduced in a generic simulation-
optimization context, and then specified across the most popular types of RES, namely wind,
photovoltaic and hydroelectric. The key objective is to formalize the endogenous and
exogenous uncertainties across the input processes and model hypotheses, and eventually
represent them under a novel uncertainty quantification framework, by coupling the
methodological triptych of statistics, stochastics and copulas.

As a proof of concept for the effectiveness and generality of the proposed framework, we
analyze two different cases. The first involves the design of a run-of-river small hydropower
plant (SHPPs) in Pamisos River basin, Western Greece, and particularly the estimation of the
optimal mixing of its turbines. The underlying optimization problem aims to maximize the
anticipated revenues from the long-term operation of the power plant, contrasted to the
investment costs of the electromechanical equipment and the overall technical efficiency of
the project, expressed in terms of capacity factor. The second case study refers to the long-
term economic assessment of a planned wind power plant in the island of Ikaria (Greece).
Both cases are handled through a modular scenario-based scheme, starting from the
benchmark scenario, i.e., the conventional deterministic practice, and redounding to an
integrated stochastic-probabilistic approach. This allows for capturing the key exogenous and
endogenous uncertainties, and simultaneously providing decision support tools for the
design, strategic management, and evaluation of RES.

5.2 Generic simulation-optimization framework for RES

5.2.1  Simulation procedure

In contrast to power systems using fossil fuels, where energy production is predictable and
controllable, in the case of RES the production follows the variability of the inflow source
(wind, solar radiation, water). This variability can be mathematically described on the basis of
statistical or stochastic terms, assuming a simulation context to link the power production, p,

with the hydrometeorological input, x, which are both handled as random (better referred to
as stochastic) processes.
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The transformation of the randomly varying input process, x, to the output power, p, is a
nonlinear function which is generally expressed as:

0 X < Xmin
— 77(3_5) Po (Z) Xmin = X < Xmax
p (5.31)
= I Xmax =X < Xg
0 X =X

where p, (g) is the theoretical power, I is the power capacity (also referred to as nominal
power), and n()_c) is the total efficiency, which are both driven by the stochastic process x.
The limits x,,;, and x,,,4, are characteristics of the specific RES, while x ¢ represents a cut-out
value, above which the machine stops for safety reasons.

The theoretical power depends on the location, layout and particular technical characteristics
of the RES. In this respect, the theoretical wind power is given by:

1
po(v) = g pe mD?¥? (5.32)

where p,, is the air density, D is the diameter of the wind turbine and v is the wind velocity.
Typical values of Vi, Vmax @and vg are 3.0, 12.0 and 25.0 m/s, respectively.

For the common type of solar energy systems, namely the photovoltaic (PV) ones, the
theoretical power is given by:

po(r) = Sr (5.33)

where S is the net area of photovoltaic panels and r is the incoming solar radiation. The
operation of PVs is simpler than other RES, since their nominal power is by definition achieved
at 1,0, = 1000 W/m2.

Finally, the theoretical output power by a hydroelectric system is expressed in terms of
hydrodynamic power:

Po (h, @) = pghar (5.34)

where p is the water density, g is the gravity acceleration, h is the gross head, i.e., the
elevation difference between the upstream water level and the outlet of the power station,
and gy is the flow passing through the turbines. Regarding the limits qr min, 47.max andqr,

these depend on the turbine characteristics, as further discussed in the first proof-of-concept
study (section 4).

We underline that, in contrast to wind velocity and solar radiation, the turbine flow is not a
purely natural process, but a spatiotemporal transformation (regulation) of the runoff
produced over a catchment through a system of hydraulic works, employing diversion,
storage, water transfer, etc. Inthis respect, the representation of the regulated process, qr,
implies the use of an operation model of the associated water resource system, e.g,
hydroelectric reservoir (Efstratiadis et al., 2021a). This model, symbolized, q; = @(q), gets as

input the “primary” stochastic process, by means of streamflow g, and accounts for the

constraints and decisions induced by the system’s characteristics (e.g., reservoir and penstock
capacity, storage-elevation relationship) and assigned management practices, respectively.
Similarly, the gross head h derives from the operation model, since its variability is mainly
dictated by the variability of the upstream reservoir level.

On the other hand, the total efficiency, n(a_c), is the product of individual efficiency values that
refer to different components of the power transformation system, to express the associated
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energy losses. This involves the mechanical and mass losses in turbines, as well as the power
losses in the generator and the transformer. Ingeneral, these are subject to complex physical
laws that make hard to establish accurate analytical expressions (Gottschall & Peinke, 2008).
Inthis respect, each power machine has its own efficiency function, expressed by nomographs
thatare provided by the manufacturer, on the basis of laboratory results. Particularly for the
case of hydropower, the hydraulic losses across the water conveyance system (penstock)
augment the uncertainty, since they are calculated based on quite uncertain technical
components (e.g., roughness, Reynolds number etc.). Specifically, the hydraulic losses are the
sum of friction and minor losses across the conveyance system. The friction losses across a
pipe of length and diameter L and D, respectively (both expressed in m), are estimated
through the Darcy-Weisbach formula:

hy=f——=f—— (5.35)

where V is the velocity (m/s) and f is a dimensionless friction factor. For turbulent flow
conditions, the friction factor is estimated through the Colebrook-White formula:

ke/D 2.51)

1
ﬁ = —2.0 log <3.71 +—Re\/]7

where k is the equivalent roughness (typical design values 0.5-2.0 mm), and Re the Reynolds
number:

(5.36)

VL

Re = (5.37)

v

where v is the kinematic viscosity of the fluid (m?2/s); for water under typical temperature and
pressure conditions (i.e., T = 16 oC, P = 1.0 atm), we get v =1.1 X 10®m?2/s.

In addition, the losses are generally expressed as a fraction of kinetic energy:
h =k — (5.38)
L zg

where V is the larger velocity value across the transition and k is a dimensionless factor,
depending on the geometricaland hydraulic characteristics of the transition. The value of k is
strongly affected by the shape of the transition. Well-rounded transitions ensure minimal local
losses (which is an issue of good design and good construction, as well).

5.2.2 Insight to efficiency

As already mentioned, the ability of the “fuel” to become energy depends on the efficiency of
the system, 17(5). This element is associated with the internal operation of the system, but it
strongly depends on the externaldriver, i.e., “fuel”. For renewable energy projects, the driver
is the streamflow, the wind and the solar radiation. The efficiency of each convertor (i.e,
hydroturbines, wind turbines, and solar panels) is typically estimated by employing
experiments. However, the real-world operation differs from the experimental tests.

Characteristic examples of efficiency curves for wind and hydro-turbines, as function of the
associatedinput process, x, are demonstratedin Figure 5.1. Itis interesting toremark thatin
all cases, the function n(a_c) is not monotonic. Nevertheless, the estimation of efficiency is
subject to three key sources of uncertainty. The firstis due to deviations between the actual
performance of the power machine in the field and its prototype (Yan et al.,, 2019). A
characteristic example is the control of the pitch angle of wind turbines, which may
significantly affect their real performance (Astolfi, 2019). The second source of uncertainty
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originates from the drop of efficiency due to deterioration, damage and ageing of equipment
over time (Hamilton et al., 2020; Rahman et al., 2023). The last feature, which introduces
further complexity and thus uncertainty, is the dependence of efficiency not only on the input,
x, but also on additional stochastic processes, such as the sediment transport causing erosion
to hydro-turbines (Felix et al., 2016) or the temperature and other meteorological processes
that affect the actual efficiency of PV panels (Elbreki et al., 2016). For instance, in eq. 5.39
denotes that the rate of PV efficiency decrease for every unit increase of temperature above
25°C, i.e.:

Nactual = Mnom — AT 'max(T - 25:0) (5.39)

where a; is a power temperature coefficient (%/°C).
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Figure 5.1: Examples of efficiency functions for a Pelton-type turbine (up) and a wind turbine
(down).

To describe the efficiency as function of the input process, x, we introduce an analytical

formula, symbolized n(g, 9), for the associated machine, where @ is a set of parameters that

describe the shape of the curve. Since the efficiency is lower and upper bounded, we can

presented by assigning a distribution with these characteristics. Herein, we are taking
advantage of Kumaraswamy's double bounded distribution, which the cumulative distribution

function is:
F(x;a;p) =1 —(1—x%)P (5.40)
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where a and b are shape parameters. In this vein, this analytical formula is fitted to the
commercial curve, and a set of parameters, i.e., a and b are extracted.

To account for all possible fluctuations of the real world operation against the standard
commercial curve, we represent the set of parametersasrandom variables, thus this is written
as 8. By assigning anappropriate distribution functions to 8, i.e., a and b and then employing
random sampling of these, we able to describe different possible curves around the
commercial one.

5.2.3  The design optimization context

Herein we formalize the design optimization problem in multicriteria terms, involving the
estimation of a key characteristic of the RES, namely the determination of the total power
capacity and its sharing to its individual components. In this respect, we consider a given
layout of the system, such as a wind park, a solar park or a hydroelectric station, where the
siting of all supporting infrastructures, by means of civil works (e.g., power station house, road
network), are already specified. We remark that the design of most of civil-related
infrastructures is strongly related the power capacity of the overall systemand its individual
components. In this vein, the design variables to optimize are expressed as a vector
I =]1,,I,,..,Iyg], where NS is the number of the system’s components.

The standard technoeconomic optimization problem is formalized as the maximization of
financial quantities, such as the net present value (NPV). According to this concept, the
discounted value of future net cashflows should exceedthe investment cost, so as to ensure
a sustainable investment (Yildiz & Vrugt, 2019). In our case, the cash flows derive from the
production of electrical energy during the entire life-cycle of the system, while the investment
cost, involving the electromechanical (E/M) equipment and the civil works, is directly or
indirectly associated with the power capacity.

Following this, by considering a financial period of n years with a specific interest rate i, the
equivalent annual cost of the investment is given by:
i(1+ )"

where C is the totalinvestment cost, whichis the sum of individual costs, C;. We remark that
the interest rate is also considered as a random variable, since it depends on various
socioeconomic criteria, namely inflation, risk aversion of the investor etc. All these costs are
subject to the key principle of economy of scale, thus expressed as:

Ci=fUd (5.42)
where A < 1is a shape parameter, expressing the reduction of unit cost with respect to power
capacity.

In order to implement the aforementioned cash-flow method in a risk-aware context, the
expression of future revenues should be determined in terms of mean annual energy
production, E, = E [B] T, (where T, denotes the annual duration), multiplied by a unit price,

u. The estimation of power production requires running a simulation model, thus E is actually
a stochastic variable. In addition, the unit price u can also generally be considered as a
stochastic process (Borovkova & Schmeck, 2017), since it varies in the context of free
electricity market trade and supply. Under this premise, the objective function of the design
optimization problem is expressed in annual profit terms as:

F(Lp) = uE,(Lp)— A(D) (5.43)
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This function is strongly nonlinear and contains two conflicting components, namely the mean
annual energy production, E,(I,p), to maximize, and the equivalent annual cost, A(I), to

minimize.
To ensure robust solutions, in the multicriteria optimization problem we also embed a third
component, which is the resulting capacity factor, CF, of the system under study. According

to its common definition, CF is expressed as the ratio of the mean annual electrical energy
output to the maximum possible one (Mamassis et al., 2021), i.e.:

Eq (I
cF (Lp) = %{ﬁ (5.44)

where T, is the annual duration.

Although CF seems being a rather technical quantity, it is actually a fundamental performance
metric of power systems, thus its interpretation plays key role in the evaluation of the viability
of aRES. In particular, a low CF is not necessarilyassociated with poor performance in terms
of energy production, but may also be due to the application of a too large installed capacity
that is activated a small portion of time.

Since the other two criteria are given in monetary terms, the incorporation of CF within the
generic optimization problem is made by assigning a penalty term, toachieve CF values over
or closeto a desirable threshold, CF*. The latter is site-specificand varies across different RES
types (Miller & Keith, 2018). Under this premise, the proposed multi-objective function to
maximize is written as:

F'(Lp)=F(Lp)- max|0, CF (rp)- CF*|w (5.45)

where w is a suitable weighting coefficient.

5.2.4  The triptych of statistics, stochastics and copulas in practice

As shown in Figure 5.2, the proposed modelling framework under uncertainty follows the
Monte Carlo paradigm, which makes use of three tools from the broader probability theory,
i.e., stochastics, statistics, and copulas. The first two aim at capturing the major aspects of
uncertainty that originate from the inherently random input processes and the model
hypotheses, while copulas are used for expressing the socioeconomic uncertainty and in the
post analysis phase, as well.

The Monte Carloapproachis applied to the simulation model, which involves most of practical
issues of renewable energy (planning, design, long-term assessment, short-term control, etc.).
This is configured by means of equally probable simulation scenarios that correspond to m
different system’s statesand input processes. Each hypothetical state runs for N years, which
equals the economic life of the project of interest. The state is expressed through three key

characteristic properties, namely the efficiency function n (?_C, 1,0) the unit price, u, and the

interestrate, i. Thefirstis associated with the internal operation of the RES per se, while the
other two derive from the uncertain socioeconomic environment. As mentioned in section
5.2.2, the formulation of efficiency under uncertainty presupposes to introduce an analytical

formula, symbolized n ()_C, 1/)), for the associated machine, where ¥ is a set of parameters that

describe the shape of the curve. These are also represented as random variables, in order to
capture all possible fluctuations from the standard commercial curve. This issue is further
discussed in the two case studies, providing probabilistic parametric formulas for the power
conversion curves of hydro and wind turbines, respectively.
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Under this premise, the Monte Carlo scenarios are configured by assigning appropriate
distribution functions to ¥, u and i and then employing random sampling to define the m

potential states of the system. Furthermore, in order to express the external uncertainties
induced by the local hydrometeorological regime, each scenariois driven with long synthetic
data of length N for the corresponding input processes x. In this respect, a stochastic model
is applied to generate m X N years of synthetic data, and this sample is then splitinto m sub-
sets, also referred to as ensembles. The temporal resolution of the data depends on the
specific process (e.g., hourly for wind velocity and solar radiation, daily for streamflow).

Consequently, outcomes of the simulation scenarios are m ensembles of output processes
(e.g., power production) and associated design components (e.g., optimized power capacity)
and performance assessment metrics (e.g., mean annual revenues, capacity factor). In this
vein, all outputs are represented in stochastic terms, which also allows for quantifying their
uncertainty through statistical analyses of the corresponding simulated data. For instance, we
can fit suitable probability density functions (pdfs) to individual design and performance
assessment metrics. Further insight can be provided by accounting for the joint uncertainty
induced by cross-dependencies between the derived design variables and performance
metrics. The underlying methodology is based on the work of Tsoukalas (2018), and relies on
the use of (Gaussian) copulas to establishthe conditional distribution of two (non-Gaussian)
random variables. A summary of the employed method is provided in the Appendix A.

The generic algorithmic procedure for the design case, which also contains the assessment
problem, is depicted in Figure 5.3. The application of the aforementioned framework is
demonstrated by means of two case studies, where a modular approach is adopted, thus
adding progressively more sources of uncertainty within simulation and optimization.
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Figure 5.2: Schematic layout of the proposed framework.
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Summary of algorithmic procedure for the design of RES under uncertainty

Step 1: Generation of m X N years of synthetic driving data (e.g., streamflow, wind velocity, solar
radiation) at the appropriate temporal resolution (N: project lifetime).

Step 2: Generation of i equally probable system states (e.g,, power curves, energy price)

Step 3: Formulation of m Monte Carlo simulation scenarios by splitting synthetic drivers intom
ensembles of N-year length and by sampling random system states from the corresponding set

Step 4: Set up of the optimization procedure (design variables: power capacity values of system’s
components, objective function as formalized in eq. 5.36)

Step 5: Extraction of m optimized design variables and associated performance metrics
Step 6: Statistical processing of simulation-optimization outcomes:

. Marginal analysis by fitting probability density functions
. Dependence analysis through copulas

Step 7: Selection of final design quantities accounting for their uncertainty

Figure 5.3: Logical flow of the proposed framework regarding the design optimization
problem.

5.3 Optimal Design of run-off-river hydroelectric plant under
uncertainty

5.3.1 Key principles of hydropower system operation

The uncertainty-aware framework, in the design context, is stressed for a run-off-river (RoR)
small hydropower plant, which is a quite complex and promising renewable source. This type
of hydroelectric system diverts part of the streamflow arriving to an intake structure, located
in the riverbed, to a forebay tanks and then to the power station, which is generally located
far from the intake, to create a significant elevation difference. In Figure 5.4, a part of the
holistic representation of the water-energy nexus (Figure 1.1) is presented.
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Energy
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Figure 5.4: Schematic layout of an in-stream hydropower plant. This is a part of Figure 1.1
(the holistic water-energy nexus) that will be discussed herein.
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For a givenlayout, the design problem lies in the selection of an optimal mixing of turbines, in
order to capture as much as possible of the streamflow variability. Let consider a RoR plant
comprising two turbines of power capacity, I; and I,, operating within flow ranges
(91 min'91,max) @and (42 min» 42, max), respectively. The range of operation of each turbine is
determined by its power capacity. In particular, the maximum discharge is given by:

I;
Pg ni,max hn

where 7); 1,4, is the total efficiency of the electromechanical equipment, and h,, is the net
head, i.e., the difference between the gross head and the hydraulic losses across the water
conveyance system. These losses can be analytically estimated, on the basis of discharge,
diameter and other properties. On the other hand, the minimum operational discharge is
simply expressed as portion of the maximum one, i.e., q; min = 0 q; max, Where 6 depends on
the turbine type.

(5.46)

9imax =

The mixed scheme operates from the minimum flow between g, ,,;, and g i, and the sum
q1,max T 92,max- A typical operation policy implies the use of the large turbine in priority,
while the small one receives the surplus flow, up to its capacity (Anagnostopoulos &
Papantonis, 2007). Insome cases, a safetylimit, g, is alsoimposed, tointerrupt the operation
of turbines during significant flood events (Hanggi & Weingartner, 2012). Finally, the turbine
efficiency can be expressed through the following parametric formula, by adapting eq. 5.40:

* a b
n=ng,,+ (1 - <1 - (ql — :) ) )(nmax — Npin) (5.47)

where q* = q1/qQmax 1S the rated flow, n,,;, and n,,,, are the upper and lower efficiency
values, and a and b are shape parameters depending on the turbine type. The total E/M
efficiency is obtained by multiplying with an adjusting factor, with typical value 0.95.

5.3.1 Rainfall-runoff model

The estimation of the generated runoff over the upstream catchment is an essential part of
this framework, instead of using the historical inflows. Even if the employment of a rainfall-
runoff model increases uncertainty, it is “necessary evil” since the historical inflow data are
significantly smaller than rainfall’s one. In addition, by employing a rainfall-runoff model, we
can incorporate the initial source of uncertainty, i.e., climate.

4.3.1.1 Simulation procedure

To estimate the runoff generated over the upstream catchment, a flexible, parsimonious, and
easily adjustable model should be selected. This must combine the ability to run long-term
simulations in daily time intervals with minimal computational burden. In our case, we are
taking advantage of the lumped scheme proposed by Efstratiadis et al. (2015), which is
applicable for long-term simulations accepting stationarity of input processes and both
steady-state and changing basin properties. To calibrate the model and extract the optimal
set of parameters (totally eight), the use of the multi-objective performance measure is
necessary, since it aggregates three typical goodness-of-fitting metrics (NSE, KGE, bias). The
outcome of this model, i.e., the daily runoff, will next feed the simulation model of the run-
off-river hydroelectric. The conceptual scheme of the hydrological model is depicted in Figure
5.5.

105



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

Input data to the simulation procedure are the time series of precipitation, P, and potential
evapotranspiration, PET. The storage terms are expressed in units of equivalent water depth
(mm), while flows are givenin units of water depth per unit time, At. In the description of the
equations, the time step index (in this case, day) is omitted, for simplicity.

At the beginning of each time step, the storage of the three reservoirs is known, from the
solution of the previous step, i.e. the temporary water retention at the soil surface, I, (upper
reservoir), the moisture storage in the unsaturated zone, S, (intermediate soil moisture
reservoir) and the groundwater storage, W (lower reservoir storage).

Direct evapotranspiration, ETp,
'y

Rainfall,P

Direct runoff, Qp
Temporal
storage

Infiltration,INF .
niftration Saturation runoff, Q,

h 4

Capacity, K >
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Baseflow, Qp —— rate, 0
Groundwater storage, W »
Y
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generation, G v
Losses, L Recession
rate,
Recession

rate, o

Figure 5.5: Conceptual illustration of hydrological model processes and parameters.

The precipitationis temporarily retained in the upper tank, with a capacity of 1,,,,,. According
to the approach of the Soil Conservation Service (USDA, 2004), this capacityis estimated as a
percentage, §, of the maximum potential retention, i.e., the amount of water that the
unsaturated zone can hold. This quantity is generally equal to K — S, while at the beginning
of the time step S = S, applies. Therefore, the surface retention capacity is given by :

Iy =B(K—35p) (5.48)

Ifthe precipitation value exceeds the available storage of the surface retentiontank (temporal
storage) i.e. if P> I, — I, then direct (surface) runoff is produced, through the
relationship:

Qp =V (P —Ipax + 1) (5.49)

The amount (percentage) v is not constant but also depends on the current soil moisture
conditions, and is estimated based onthe relationship of the Soil Conservation Service (USDA,
2004), namely:

P—1L,. +1

- 5.50
Ve Pl t1,+K—S, (5.50)
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This zone is represented by the intermediate reservoir, whose capacity is equal to K, while its
storage is equal to S (in this case it is set equal to the known storage, S, at the end of the
previous time step). It is pointed out that the capacity K is a parameter of the model, while
the quantity S is a state variable of the model. Inthe calculations, S is takento be the moisture
storage at the end of the previous time step. Conversely, if P < [,,,,, — [y, then no surface
runoff is produced.

In any case, the available amount of water retained on the ground and by the vegetation is
available for the production of direct evapotranspiration, through the relationship:

ET, = min(PET, I, + P — Qp) (5.51)

The amount of waterthat cannot be retained on the surface s filtered, through the soil, into
the intermediate reservoir (soil moisture reservoir), through the relationship:

INF = max (0,/o+ P —Qp —ETp — Inayx) (5.52)

Therefore, at the end of the step, the soil moisture retention is:
I=1,+P—Qp—ET, —INF (5.53)

Also, the moisture available at the beginning of the time step is:
S = So+INF (5.54)

Subsequently, three types of outflows from the intermediate reservoir take place, namely soil
evapotranspiration, infiltration to the lower reservoir, and overflow due to soil saturation. In
particular, the losses due to soil evapotranspiration depend on the filling rate of the tank and
are estimated by:

T — S (2 —%) tanh (—PETI; ETD) (5.55)
T (1) e (LT |

where S/K is the tank filling ratio, and ET — ET, refers to the remaining demand for
evapotranspiration production. Obviously, if the “demand” from precipitation on the ground
has been met, then no further evapotranspirationis required to be produced through the
unsaturated zone. The above relationship is semi-empirical, and is based on Turc-Budyko's
theoretical nomograms, which link actual evapotranspiration to water and energy availability,
as defined by precipitation and potential evapotranspiration, respectively (Andréassian &
Perrin, 2012).

Finally, the total losses due to evapotranspiration are:
ET = ET, + ET (5.56)

The amount of water infiltrating to the lower tank is estimated as a percentage of the stored
moisture:

PERC=A1S (5.57)
where A refers to the recession rate, which is a parameter of the model.
The excess quantity that overflows, namely:
Qs =max (0, S —K) (5.58)

referredto as runoff due to saturation, and together with direct runoff constitute the surface
runoff, which passes through the hydrographic network of the basin, and finally reaches its
outlet with a time lag and smoothing. The particularly complex process of surface runoff
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routing, the modeling of which will be further described, is symbolized through the
transformation function:

Qr = f(Qp +Qs) (5.59)
The final balance of the soil moisture reservoir is written:
AS = INF —ETs — PERC — Qg (5.60)

The infiltration from the upper reservoir feeds the lower reservoir is increased its initial
reservoir to:

W= W, + PERC (5.61)

In this tank, which has no capacity limit, the processes of the aquifer are realized (saturated
zone). In particular, two outflows take place, one horizontal and one vertical. The first
represents the source (base) runoff, in the form of outflow from a horizontal hole, through
the relationship:

@ = max[0,u (W — ()]

where G is the water height (threshold) for the production of underground runoff and u is the
recession rate, which is a parameter of the model. The above expression allows or not the
production of base flow, thus the possibility of representing intermittent flow basins,
depending on the range of variation of the groundwater reservoir. For this purpose, a special
control parameter is introduced in the model.

The second (vertical) outflow represents deep infiltration, which is not discharged into the
basinbut is routed into downstream aquifers, constituting, in essence, losses from the system.
These losses are estimated by the relation:

L=aW
where «a refers to the recession rate, which is a parameter of the model.
The final balance of the groundwater reservoir is written:
AW =PERC—Qg — L

Making the above assumptions, the runoff that ends up at the outlet of the basin is the sum
of the diverted surface runoff and the base flow, that is:

Q= Qr+0Qp
It should be pointed out that if the hydrological simulationis done on a longer time scale (e.g.
monthly), then it can be considered that the surface runoff component, i.e. the quantity Qp +
Qs reaches the outlet of the basin as it is, i.e. without requiring its transformation due to
routing processes. However, on the daily scale, the concept of tolling is particularlyimportant,
and for this purpose an additional computational procedure was developed, as explained
below.

The routing processes are described through a two-stage combinatorial scheme, which allows
for the smoothing and time-shifting of the produced surface runoff. Specifically, in a first stage
a smoothing transformationis applied through a linear reservoir, and then a linear smoothing-
displacement filter based on unit hydrograph theory is applied.

The operation of the linear reservoir is based on the consideration of a reservoir of unlimited
capacity, fed by a varying input i(t), while the output y(t)is a linear function of the storage
x(t), ie:

108

(5.62)

(5.63)

(5.64)

(5.65)



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

dx 1
=== (5.66)
y(t) Pl O,

where k parameter, with dimensions of time, controls the outflow rate. In this case, the
surface runoff is considered as input, i.e. the sum, Qr + Qg, and the routed runoff as output,
given by the equivalent relationship (in discretized form):

Qri= 0X (5.67)

and 8 is the recession rate (dimensionless, since both outflow and storage are expressed in
units of water equivalent height), which is a parameter of the model. The smaller the value of
8, the more smoothing is achieved. If X is the storage at the beginning of the time step, then
to it is added the surface runoff produced by the model, through the corresponding relations
so the routed runoff is:

Qr1= 0 (Xo +Qp +0Qs) (5.68)
at the end of each time step, the storage is replenished to:
X=Xo+0Qp+0Qs—CQr1 (5.69)

In the second routing stage, a linear filter is applied given by the relation:
N

Qr2: = Zaj Qr1,t—j (5.70)

j=0
where Qgq ;—; are the values of the surface runoff routed through the linear reservoir, for lag
from Oto Ntime steps (days), and a; refer to the weight factors, which satisfy the relationship:

Z @ =1 (5.71)

j=0
With the above procedure, the finally produced surface runoff, Qg,, is expressed as a linear
combination of the routed runoff of the current and N previous time steps.

For the estimation of the weight coefficients a; we assume that the above transformation
follows the form of the unit hydrograph (UH) of the basin. Inthis case, the standard synthetic
hydrograph developed by NRCS (2007), called Standard PRF 484 (PRF stands for peak rate
factor), and which has been widely applied in flood studies (among others, was applied
generally in the hydrological analyzes of Directive 2007/60/EC). The components are given in
non-dimensionalized form (time t to rise time tp and flow g to peak flow qp), based on the
following table (Table 5).

Table 5: Components of the Standard PRF 484.
t/t, aq/qy t/ty, aq/qy t/t, q/qp
0.0 0.000 0.9 0.970 2.0 0.320
0.1 0.015 1.0 1.000 2.2 0.240
0.2 0.075 11 0.980 2.4 0.180
0.3 0.160 1.2 0.920 2.6 0.130
0.4 0.280 1.3 0.840 2.8 0.098
0.5 0.430 1.4 0.750 3.5 0.036
0.6 0.600 1.5 0.650 4.0 0.018
0.7 0.770 1.6 0.570 4.5 0.009
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0.8 0.890 1.8 0.430 5.0 0.004

4.3.1.2 Routing procedure

A key element of the UH is the lag time, t;, defined as the distance of the center of gravity of
the UH, duration D (practicallyidentical tothe peak time, t,,) from the center of gravity of the
precipitation, which corresponds to the time instant t = D/ 2. According to common
hydrological practice, the lag time can be estimated as a constant percentage of the
concentration time t, ie:

t,=06¢, (5.72)

On the assumption that the center of gravity of the UH coincides in time with the peak, the
rise time t,, is estimated as a function of the rain duration D and the concentration time ¢,
through the relation:

D D
_ _ 5.73
tp=t +5 =06t +- (5.73)

By its conceptualization, the Standard PRF 484 has a base time t;, =5 tp while in the
estimation of the rise time two quantities are introduced, namely the rain duration, D, and
the concentration time, t. In the present modelling, 12 hours (i.e. half of the time step) is
conventionally considered as the rainfall duration, while the concentration time is estimated
by the well-known Giandotti relation, namely:

- 44/A+15L (5.74)
0.84z

where t .is the concentration time (h), A the area of the basin (km?), L the length of the longest
water path in the basin (km) and 4z the altitudinal difference of the average elevation of the
basin from the elevation of its outlet node (m). Given the time quantities t,, and t;, the UH of
the basin is obtained, in which its ordinates (provisions) are given in undistributed form. Then,
the UH is reformulated in a discretized form, i.e. in a daily time step, so correspondingly the
non-statistical benefits are reported on a daily scale. These values, divided by the total non-
dimensional zed runoff, correspond to the weighting factors, «;, applied by the linear pass
filter.

4.3.1.2 Calibration of the model
Eventually for the calibration of this model, we need to define the eight parameters, i.e.,

(@) The recession rate 3, referred to in the literature as the initial loss percentage

(b) the capacity of the soil moisture tank, K, expressing the storage capacity of the
unsaturated zone of the soil

(c) the recession rate for infiltration production, A, expressing the percentage of water
moving from the soil moisture tank to the groundwater tank, i.e., the water flowing
from the unsaturated to the saturated zone of the soil (infiltration)-

(d) the recession rate for baseflow production, u, expressing the percentage of stored
groundwater above the threshold G, which is discharged through point or
distributed sources into the river

(e) the baseflow production threshold, G, expressing the quantity of groundwater that
must be stored in order to produce baseflow

(f) the recession rate, &, determining the minimum groundwater level during the dry
period, and consequently controlling whether the flow can become intermittent or
not
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(g) the recession rate, for deep infiltration and/or underground escapes, @, expressing

the percentage of groundwater diverted to deeper layers and ultimately discharged
outside the basin

(h) the recession rate, 8, of the routing shape through the linear reservoir, controlling
the smoothing of surface runoff during its transfer through the soil surface to the
basin outlet.

A critical aspect of the modelling procedure of evaluating the predictive ability of the model
is the formulation of a performance measure, which evaluates the fitting of the simulated
discharges to the observed, and the generally good hydrological behavior of the model. This
measure, which is alsoused as an objective function during the calibration process, includes
three terms.

The first term s the efficiency measure, known in hydrological literature as the Nash-Sutcliffe
efficiency index, given by the equation:

th\lz 1 (Qobs,t - Qsim,t)z

1tV=1(Qobs,t - l’lobs)z

NSE = 1-

where Q,ps¢is the observed value at time step (day) t, Qg;m: the corresponding value
estimated by the simulation model, i ,,sis the mean value of observations, and N is the length
of the control horizon. The value of NSE ranges from -o= to 1, where 1 indicates perfect fit. A
characteristic value of NSE = 0 indicates a model with predictive ability equal to the mean
value of observations, ., wWhile negative values indicate models with even more limited
predictive ability. For representing basin outflow, efficiency values in the range of 0.80-0.90
are considered very satisfactory, while values around 0.30 are considered marginal for
characterizing a model as representative of the physical system ( Efstratiadis & Koutsoyiannis,
2010).

The second term s the Kling-Gupta efficiency index, KGE, given by the equation (Gupta et al,,
2009):

Usim z Osim z
KGE=1- [(p—1)?+(—-1) +(—-1
obs Oobs

where p is the correlation coefficient between observed and simulated runoff values, pgim
and p,psare the mean values of simulated and observed runoff, respectively, and a;,, and
0,ps are the standard deviations of simulated and observed runoff, respectively. In recent
years, this measure, which has become popular in hydrology, gradually replacing the more
classical NSE index, is used to ensure that the statistical characteristics of the simulated runoff
are maintained compared to the observed runoff.

The third term is a transformation of the NSE index, given by the equation:

Zévzl(ln(Qobs,t) - ln(Qsim,t))z
évz1(ln(Qobs,t) —1In (Qmean))z

logNSE = 1 —

This index, which implements a logarithmic transformation of flows, is introduced toensure a
better fit of the model to low flows, the accurate reproduction of which is particularly critical
in the design of small hydropower plants. Similar to NSE, the theoretically maximum values of
the KGE and logNSE indices are unity, indicating a perfect fit, while there is no lower limit
regarding the minimum value.
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In this research, as a performance measure and thus as the objective function for the
calibration problem, the average of the three aforementioned indices is taken, considering
them equally essential and focusing on different aspects of model fitting:

F = (NSE + KGE + logNSE)/3

5.3.2  Study area, data and design assumptions

The hydropower plant under design is established in a sub-catchment of Pamisos River in
Thessaly, Greece, taking advantageof a gross head of 45 m. The penstock length and diameter
are 500 m and 1.5 m, respectively. The available historical data comprises daily rainfall and
runoff records for 39 years, with mean annual values of 950 mm and 630 mm, respectively.
Following the Greek legislation, we apply an environmental flow to be released downstream
of the intake, which equals to 0.20 m3/s.

Regarding the calibration of the rainfall-runoff model, the parameters are given in Table 6,
while the performance metrics are NSE = 0.486, KGE = 0.658, and logNSE = 0.714.

Table 6: Parameters of rainfall-runoff model.

Parameter Value Parameter Value
B 0.10 G 100.0
K 293.6 & 0.951
A 0.399 a 0
U 0.0363 0 0.50

The key design objective involves the setting of two Francis-type turbines. Their efficiency is
approximated by eq. (11), where n,,;;;, = 0.30, 4, = 0.93, a = 0.80and b = 3.75. For the
estimation of hydraulic losses across the penstock, we consider a roughness coefficient up to
1.0 mm.

5.3.3 Deterministic optimization context

Since the configuration of the major system components (intake and power station sites,
layout of diversion, penstock diameter) are already specified, their investment costs are fixed.
Inthis respect, the annual profit component (eq. 5) includes the cost of E/M equipment, which
implies a high percentage (30-40%) of the total budget of a typical small hydropower plant
(Ogayar & Vidal, 2009). In the literature, this cost is linked with the power capacity, I, and the
gross head, h, through empirical relationships. In the present study we apply the following
formula, proposed by Aggidis et al. (Aggidis et al., 2010):

C=Cyl*h¥ (5.79)
where Cy =14 400€, a = 0.56and § = —0.112.

The rest assumptions for the configuration of the objective function (eq. 9) involve the
assignment of selling price of electrical energy and the capacity factor threshold, which are
set equal tou =0.087 €/kWh and CF* = 0.25, respectively. We remark that, although this
price should, in general, be handled as a random variable, here we employ a fixed value,
according to the Greek legislation for small hydroelectric plants that are not yet entered the
energy market model. On the other hand, the selection of CF* is based on engineering
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evidence, and prohibits the derivation of oversized turbines, in order to exploit large yet low-
frequency streamflows.

To insight to the optimization problem, we repeat the design procedure for a large number of
turbine capacity combinations, driven by the historical streamflow data. We highlight that
since the formulation of the problem is deterministic, it leads to a unique solution, i.e., the
global optimum of the profit function. Interestingly, as shown in Figure 5.6, the response
surface comprises two regions of attraction, and thus two optimal mixings, with quite close
performance. These reveal two alternative operation policies, one by setting in high priority
the large turbine (global optimum) and the other the small one (local optimum).
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Figure 5.6:: Response surface of the profit function, highlighting the two optima points that
indicate alternative turbine mixings.

5.3.4  Building the design procedure under uncertainty

In order to better reveal the potentials of the stochastic design framework over the
conventional, deterministic one, we demonstrate a modular scheme to disentangle the key
sources of uncertainty, aleatory and epistemic, exogenous and endogenous. In particular, we
establish five settings of the optimization problem, herein symbolized A, B, C, D and E, with
respect to the each source of uncertainty.

4.4.4.1 First setting: Generation of synthetic rainfall timeseries

The first setting aim to represent the aleatory uncertainty (exogenous) originating from the
natural variability of rainfall. In this respect, we provide of m ensembles of synthetic
precipitation time series (the primary climatic drivers of all hydropower systems) throughthe
hydrometeorological process generator, as proposedin section 3.1.3. Awindow of generated
rainfall timeseries compared with the observed is demonstrated in Figure 5.7. Next, these
rainfall timeseries are used as inputs to the rainfall-runoff model, as describedinsection5.3.1,
by considering the set of optimized model parameters, thus providing m ensembles of
simulated inflows.
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Figure 5.7: A window of generated rainfall timeseries compared with the observed ones.

4.4.4.2 Second setting: Generation of synthetic inflow timeseries

The second setting aim to represent the epistemic uncertainty (endogenous) originating from
the lack of knowledge of the modelling of rainfall-runoff models. In this respect, we employ
the methodology as described in section 3.4.2 In our case, all monthly-resolved error
processes follow the Generalized Gamma distribution. An example of this fitting is given in
Figure 5.8, while the rest of them are presented in the Appendix (section 10.2). In this
addition, Table 7 presents the target autocorrelation structurefor the errors. The comparison
of the statistical properties (mean, standard deviationand skewness) between observed and
simulated errors are given in Table 8. As before, an ensemble of m X N years of synthetic
runoff timeseries are generated. In Figure 5.9, a window of the generated runoff timeseries,
by means of quantiles, is compared to the observed runoff. As expected, the error is decreased
for the low flow part of the data, while it exhibits large fluctuations for the peak flows.

Table 7: Shape parameters of the target autocorrelation structure for the errors w'; .

Month K B

January 0.60 4.40
February 0.21 0.01
March 0.21 0.01
April 0.12 0.01
May 0.17 0.09
June 0.18 0.01
July 0.15 0.01
August 0.11 0.01
September 0.10 5.00
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Figure 5.8: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the April data.
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Table 8: Statistical properties of errors (observed and simulated).

Month error Mean Star_id?rd Skewness
deviation
Observed -0.033 0.466 0.062
January
Simulated -0.033 0.461 0.065
Observed 0.022 0.462 -0.923
February
Simulated 0.018 0.463 -0.932
Observed 0.449 0.506 -0.215
March
Simulated 0.454 0.504 -0.198
Observed 0.851 0.609 0.697
April
Simulated 0.846 0.604 0.719
Observed 0.919 0.485 -0.155
May
Simulated 0.904 0.483 -0.149
Observed 0.294 0.656 1.208
June
Simulated 0.296 0.670 1.223
Observed -0.100 0.591 0.339
July
Simulated -0.103 0.592 0.321
Observed -0.200 0.873 -0.193
August
Simulated -0.218 0.855 -0.190
Observed -0.058 1.249 0.197
September
Simulated 0.030 1.260 0.202
Observed 0.389 1.562 0.080
October
Simulated 0.405 1.581 0.081
Observed 0.310 1.393 1.275
November
Simulated 0.312 1.410 1.257
Observed -0.009 0.618 0.395
December
Simulated -0.024 0.608 0.414

4.4.4.3 Third setting: Generation of synthetic efficiency curves

The third setting also aim to represent the epistemic uncertainty (endogenous) originating
from the lack of knowledge of the modelling of turbine efficiency. In this vein, we repeat the
m optimization scenarios, driven with equally probable efficiency formulas (Figure 5.10).
Following the rationale of section 3.4.1and5.3.1, we consider the four parameters of eq. 5.47
as random variables, thus we sample the efficiency bounds 7,,i, and 7,,,, from a Beta
distribution, and the shape parameters a and b from a Normal one. This ensures that the
derived curves are asymmetrically spread around the standard one, toaccount for the effects
of systematic drop of efficiency due to ageing.
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Figure 5.10: Equally probable efficiency curves asymmetrically spread around the standard
(empirical) one to emphasize ageing effects.

4.4.4.4 Fourth setting: Generation of synthetic interest rates

The fourth setting aim to represent the economic uncertainty, originating from the broader
socioeconomic environment. In particular, this aspect of uncertainty is expressed by means of
theinterest rate ortheinternal rate of return of the investment, i. This component is a highly
connected to the inflation (Figure 5.11), since when the inflation rate is high, interest rates
tend to rise too — so although it costs you more to borrow and spend, you could also earn
more on the money you save. When the inflation rateis low, interest rates usually go down.
In this respect, to comply with this facet of uncertainty we generate m ensembles of interest
rate to run the optimization procedure. Taking advantage of the copula-based theory, we
estimate this element by employing the joint distribution of the inflation and the interest rate.
The theoretical background to build copulas is given in section 3.5. In brief, we first select the
appropriate marginal distribution for each variable, i.e., inflation and interest rate and the
“best-fitted” copula from a range of family. In our case, the Generalized Gamma distribution
is selected, while the Gaussian copula is the most appropriate.

Next, we generate m inflation values from its marginal distribution and make a random
sampling of m quantiles. Eventually, for each set of inflation value and random quantile, the
interest rate is extracted, thus providing m equally probable interest rates (Figure 5.12).
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Figure 5.11: Scatterplot of the observed inflation (%) with interest rate (%) for renewable
projects (source: Federal Reserve Bank of Cleveland).
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4.4.4.5 Fifth setting: Combination of the first fourth settings

The fifth and final setting refers to the combination of above settings, providing a holistic
optimization context, since all aforementioned uncertainties are incorporated. In particular,
m X N years of synthetic rainfall timeseries are generated. Then the rainfall-runoff model
runs and anensemble of generated inflows are provided. Next, m X N errors are assigned to
the runoff ensemble, thus incorporating the first aspect of epistemic uncertainty. Finally, the
simulation-optimization scheme runs by taking as inputs the above inflows, the uncertain
efficiency curves of the turbines (refer to 4.4.4.3) and the m interest rates.

5.3.1 Results

Each optimization setting results to scenarios of 200 equally probable optimized sets of power
capacity values and associated performance metrics. As shownin Figure 5.13, the uncertainty-
aware design procedure leads to two characteristic patterns across the two regions of
attraction, already revealed from the deterministic optimization approach. The lower right
pattern, which implies the use of the larger turbine as primary, is well-approximated by a
linear relationship, while the upper left one formulates an oval scheme. We highlight that as
the description of uncertainty becomes more detailed, the spread of these patterns increases,
and, furthermore, their distribution is the objective space changes significantly. As shown in
Table 9, the incorporation of uncertainty leads to a wide range of optimal values across all key
guantities of the design procedure (total capacity, energy production, etc.). As expected, these
differ across the alternative settings.

In Figure 5.14, we demonstrate the histogram of the optimized total capacity values (for
setting E, accounting for both external and internal uncertainties) and contrast it with the
single value provided by the deterministic approach. Furthermore, in Figure 5.15, we apply
the copula theory, in order to quantify the predictive uncertainty of the anticipated profits
against the total power capacity. In a real-world practice, the user canfirst refer to Figure 5.14
for turbine sizing, by selecting an appropriate quantile (which represents the risk of the design
policy), and next take advantage of Figure5.15, in order to quantify the predictive uncertainty
of the investment.
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Figure 5.13: Optimized sets of turbine mixing for the three problem settings.
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Figure 5.14: Histogram of the set of optimized total capacity values (setting E).
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Figure 5.15: Fitting of Gaussian copula to total power capacity and mean annual profit

(setting E).

Table 9: Summary of results from the alternative design approaches (the ranges refer to the
minimum and maximum values of 200 scenarios).

Design approach

Deterministic Setting A Setting B Setting C Setting D Setting E

Total capacity (MW)
Mean annual energy (GWh)
Capacity factor

3.35 1.84-3.832.93-3.79 3.16-3.383.05-3.81 1.53-4.02
9.05 4.1-11.7 8.22-10.0 8.9-9.3 9.02-9.22 4.02-12.4
0.31 0.25-0.370.24-0.27 0.30-0.33 0.28-0.34 0.25-0.30
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5.4 From uncertainty assessment to an effective guide for
preliminary design of SHHPs

Further to the optimization context, an effort is made to provide simple and generic tools for
the estimation of the key components is the investment of small-hydropower plants. We
remark that by taking advantage of 200 Monte Carlo scenarios as guide for the design of
SHPPs, we employ a hypothetical design with perturbated characteristics (inflows, efficiency,
curves, costs).Inorder to further augment this information we employ the above optimization
procedure in two additional positions for small hydropower plants, in Achelous and Evinos
basins. To conclude to a generic formula, for the estimation of optimal total capacity, we
account for the hydrometeorological regime and the head, H, of the potential position.
Specifically, for the first component, we apply two characteristic values, i.e., the inflows that
correspond to 10% and 90% quantiles. Thus, the formula is:

P=aH’ Qo ng (5.80)

To estimate the parameters a, b, c and d, we employ a fitting by optimizing the NSE metric
to the Achelous case. Then to stress-test this formula, we use the other two cases (Pamisos
and Evinos) as validation. The fitting of the above formula is given in Figure 5.16, while the
values of parameters are givenin Table 10. In addition, the NSE for calibration and validation
are 0.985 and 0.976, respectively.
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Figure 5.16: Fitting of a generic equation for the estimation of the optimal power capacity.

Further to this simple formula for the estimation of the optimal capacity, we offer two generic
yet effective tools for the estimation of the total power capacity and the optimal mix of
turbines, by means of nomographs. The first nomographis presentedin Figure 5.17, while the
second one in Figure 5.18. The data presented in nomographs, extracted by employing the
uncertainty-aware design context of setting E, for various potential positions in Greece and
for various heads.
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Table 10: Parameter values for the estimation of optimal power capacity.

Parameter| a ‘ b | c | d

Value

P/H

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Power capacity of the second turbine (MW)

|0.05|1.28|0.772|0.087

y = 0.0476In(x) + 0.042
R*=0.9054

y = 0.0609In(x) + 0.0215
R? = 0.9045

y = 0.0513In(x) + 0.0318
R? = 0.9349

y = 0.0455In(x) + 0.031
R? = 0.9416

y = 0.0375In(x) + 0.0299
R?=0.9546

y = 0.0259In(x) + 0.0263
R*=0.9656
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Figure 5.17: Nomograph for estimating the optimal installed capacity.
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Figure 5.18: Nomograph for estimating the optimal mix of two turbines.
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These are designed to be implemented in a sequel procedure. Firstly, the stakeholder needs
to know the average inflow in the potential position of the intake, as well as the estimated
head. By using the appropriate group (by head), the estimation of the P/H is made via the
nomograph of Figure 5.17. As the total capacityis known, the key question is the optimal mix
of the turbines. The answer is given through the nomograph of Figure 5.18, whereas
depending on the estimated head the and the total capacity, the stakeholder is able to choose
an optimal mix. For convenience a numerical example follows. Let consider an average inflow
of 2 m3/s and an estimated head of 200 m. Regarding the nomograph of Figure 5.17, the
ratio P/H is about 0.06, thus leading to a total capacity of 12 MW. Step into the second
nomograph of Figure 5.18, the optimal mix of the two turbines is 13 and 2 MW.

5.5 Proof of concept B: Long-term assessment of a wind turbine
system performance

The second case study seeks for the long-term assessment of a wind power park, by
accounting for its main internal and external uncertainties. This is established in a small
Aegeanisland (lkaria, Greece), and consists of two turbines with different power capacities,
i.e., 1.0 MW and 2.3 MW, different hub heights, i.e., 59 and 85 m, respectively, and thus
different power curves. These curves are also expressed by the parametric formula of the eq.
(11), where the streamflow is replaced by wind velocity and thus v* = vy /v, is the rated
wind velocity, n,,;, and n,,,, are the upper and lower efficiency values, and a and b are the
shape parameters. The two curves are demonstrated in Figure 5.19.

The turbines are establishedin-line and aligned with the prevailing wind direction. Since the
large turbine is upstream, for the energy production we account for the interaction (e.g., due
to turbulence effects) between them, by decreasing the wind velocity to the second turbine
as follows (Vasel-Be-Hagh & Archer, 2017):

v="v (1 - 2a ) (13)
0 (1+2kL/Dy)?

where v, is the freestream wind velocity at the hub height level, k is the decay coefficient,
and a is the induction factor. Here, for the decay coefficient and the induction factor we are
applying the values proposed by Vasel-Be-Hagh and Archer (2017), i.e., k = 0.038 and a =
0.10. Following this, L is the distance between the two wind turbines and D; is the diameter
of the large turbine, which are equal to 400 m and 71 m, respectively.
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Figure 5.19:: Fitting of power curves to the original prototype for the two wind turbines and
associated uncertainty bounds.
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The assessment procedure follows in general the same practice with the design proof of
concept, thus expressing the internal and external uncertainties settings. However, we adopt
a slightly different approach of the modular scheme. Herein, three setting are established, i.e.,
the first two aim at representing the external uncertainty, by providing 100 ensembles of
synthetic hourly wind velocity with 25 years length (i.e., the lifetime of the project). The
difference between these settings is that the first setting ignores the dependencies across
scales and the effects of seasonality, while the second setting reproduces the full regime of
the observed wind velocities, as demonstrated in Figure 5.20. The first setting offers the
simplicity against the second one, which is a more advanced method, since it accounts for
seasonality across twoscales, i.e., monthlyand hourly. The last setting combines the internal
and external uncertainties, by enhancing the second setting with a more detailed approach
for the turbine power curve. Specifically, 100 equally probable power curves for the two wind
turbines are formulated, in order to express the uncertainty that reveals in their real
operation. As shown in Figure 5.19, the uncertainty bounds are negative asymmetrically
spread, in order to reflect the observed deviation between the manufacturer’s power curve
and the output power at the site (Veena et al., 2020). For all settings, the economic
performance of the wind power plantis expressedinstochastic terms, by applying a randomly
varying energy price, which reproduces the statistical characteristics of the historical
timeseries for a 5-year period (2015-2020). As made with the wind velocity process, 100
ensembles of hourly price timeseries for the 25-year period of simulation are generated, via
the electricity price generator described in 3.3.3. The timeseries of the actual price data and
one out of 100 synthetic samples are illustrated in Figure 5.21.

Each simulation results to 100 scenarios of characteristic quantities of interest for assessing
the vitality of the RES, e.g., mean annual energy, expected profit, etc. A summary of the key
outcomes is demonstrated in Table 9. In order to quantify the predictive uncertainty of the
mean annual income, a copula model if fitted with respect to mean annual energy, as
demonstrated in Figure 5.22. The practical use of this graph is discussed in next section.
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Figure 5.20: Stochastic and observed wind velocity data (randomly selected window of one
year length).
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Figure 5.21: Stochastic and observed price data derived by Greek energy market (randomly
selected window of one year length).
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Figure 5.22: Fitting of Gaussian copula to mean annual energy generation and mean annual
income (setting C).

Table 11: Summary of results from the alternative assessment approaches.

Assessment approach Deterministic Setting A Setting B Setting C
Mean annual energy (GWh) 8.97 9.19 9.13 9.19
Minimum annual energy (GWh) - 9.13 6.96 7.02
Maximum annual energy (GWh) - 9.25 11.11 11.40
Mean annual income (10° €) 0.36 0.38-0.53 0.18-0.630.37-0.66
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5.6 Discussion: Implication for energy planners, managers and
stakeholders

Our analyses indicated that the proper representation of uncertainty is not just a “game for
statisticians”, but has a significant operational relevance. Besides the pure technical sector,
the proposed uncertainty-aware framework involves multiple groups of interest, from energy
planners and managers to policy-makers and stakeholders.

From a technical point-of-view, it provides a holistic route to the design and economic
assessment of RES, by representing their potential real-world operation through Monte Carlo
scenarios. This is a major step forward the running paradigm, hypothesizing a unique future
state of the system, under known internal and external conditions (i.e., forcing processes and
characteristic properties). The resulting shift from the unique deterministic solution to the
ensemble of possible options allows for interpreting the outputs of simulation and
optimization in probabilistic terms. Overall, this approach can be the means to estimate the
combined risks derived from the multiple sources of uncertainty and thus assist in the decision
level. For instance, in the design of small hydroelectric plants, the coupling of Figure 5.14 and
Figure 5.15 offers a decision tool for selecting the optimal turbine mixing and quantifying the
full range of uncertainty with respect to anticipated performance of the system. Also, in a
preliminary study of the associated investment, a stakeholder is able to estimate the optimal
capacity and the mix of turbines, as well, by using proposed nomographs of Figure 5.17 and
Figure 5.18. These offer a key insight to the policy-maker, since it is a quick yet accurate
estimation of the investment scale and the associated incomes.

The embedding of uncertainties can also be incorporated in the evaluation of renewable
energysystems at a more macroscopic level. This approach has a twofold value a) for planned
projects, it reveals a prioritheir vitality, and b) for existing systemes, it highlights their potential
weaknesses. For instance, the graph shown in Figure 5.22 can be used as a strategic
management tool for both potential and existing projects. Specifically, in the case of existing
projects with already known performance, in terms of mean energy production, we can
estimate the anticipated range of associated profits, and thus recognizing whether the system
is effective or not. In addition, in the planning context regarding the deployment of potential
RES, the stochastic simulation procedure offers a priori the valuable information about not
only the mean annual energy per se but also the expected revenues from their long-term
operation.

The abstract information and knowledge gained from the aforementioned procedure can be
eventually served as a communication channel with investors, stakeholders and local
communities, which are the actual beneficiaries from a proper design and effective operation
and management of RES.

5.7 Conclusions

An accurate representation of uncertainties is crucial across all aspects of renewable energy.
This research presents and discusses the principles of a holistic simulation-optimization
approach for such systems, by first recognizing the key sources of uncertainty, external and
internal, and by setting them within a probabilistic framework. In this respect, the
representation of uncertainties is made through the probabilistic triptych: (a) statistics,
accounting for marginal properties of independent variables, (b) stochastics, also accounting
for dependencies of hydrometeorological drivers, and (c) copulas, for quantifying the joint
uncertainty of simulated outcomes. As the three most widespread RES (wind, solar,
hydroelectric) have fundamental similarities, a generic procedure for the related design and
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long-term performance assessment problems is established, which is a significant novelty of
this work.

In the proposed framework, all uncertain components within the design and the long-term
assessment of RES are expressed in probabilistic terms, either as stochastic processes or
randomly varying quantities (i.e., model parameters). Particularly, the representation of
internal uncertainties across the energy conversion phases is simply made by introducing
parametric analytical formulas for the system’s efficiency and sample their parameters from
suitable distribution models. This is a key methodological novelty, which also avoids the
application of detailed physical models for capturing complex uncertainties at the microscale.
The combined effects of internal and external uncertainties are finally mapped to the outputs
of interest, namely the optimized design variables (i.e., power capacity values) and the key
performance assessment metrics (i.e., investment costs, expected energy production and
revenues, capacity factor). In the context of their post-analyses, we have also developed
probabilistic tools, also based on copulas, for quantifying individual and joint uncertainties.

The modular application of the uncertainty-aware framework to the design of small
hydroelectric plants as well as to the assessment of a planned wind power park, revealed
significant benefits of the proposed approach over conventional deterministic practices.

As a conclusive remark, also derived from the discussion of section 5.6, is that the coupling of
uncertaintyin the assessment of RES, either existing or planned, also has a practical footprint.
In fact, it is crucial for the evaluation of the system’s performance under alternative states
(hydroclimatic and economic drivers, as well as operational conditions) and the quantification
of associated risks. The explicit incorporation of the concept of risk within RES design and
planning, which has been the overall outcome of this research, allows decision makers and
stakeholders to assess, a priori, whether the investment is effective and sustainable.
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6 Water supply systems under the concept of
water-energy-society nexus

Preamble

This chapter focuses on mitigating the emerging paradigm in the modelling of water supply
systems, under the water-energy nexus perspective. In this vein, we set the specifications for
an adjustable framework that couples four modelling subsystems, i.e., physical, technical,
economic, and social. Considering as case study the water supply system of Athens, Greece,
we reveal the multiple methodological and computational challenges of this implementation
in practice. This consists of: (a) a simplified simulation of water-energy processes and
associatedinfrastructures (reservoirs, aqueducts, pumps, etc.), in order to fulfill given water
demands, under already optimized operational rules for the long run; (b) a water price model
that accounts for simulated energy consumption, electricity prices, and net present fixed
costs, and (c) anagent-based context thatrepresents water consumer groups, whose behavior
is influenced by water bills, water-saving campaigns, and their social network. The water bills
are associated with the varying electricity price and the operational policy of the water utility,
while the campaigns are triggered by the reservoir storage conditions. Since the external
drivers of the water-energy-society nexus (hydrometeorological processes and energy price)
are expressed in stochastic terms, the water supply is sketched as a sociotechnical system
under uncertainty.

This chapter is based on these publications:

Sakki, G. K. and Efstratiadis, A.: Water supply systems under the sociotechnical context driven
by the energy market, Urban Water Journal, 2024 (under review).

G.-K. Sakki, A. Efstratiadis, and C. Makropoulos, Stress-testing for water-energy systems by
coupling agent-based models, Proceedings of 7th IAHR Europe Congress "Innovative Water
Management in a Changing Climate”, Athens, 402—-403, International Association for Hydro-
Environment Engineering and Research (IAHR), 2022.

A. Efstratiadis, and G.-K. Sakki, Revisiting the management of water-energy systems under the
umbrella of resilience optimization, Environ. Sci. Proc. 2022, 21, 72
https://doi.org/10.3390/environsciproc2022021072

6.1 Setting the scene

Sustainability has been a highly promoted principle in the last decades and significant efforts
have been put to embed it into several aspects of natural resources management and
environment protection, with focus to urban systems. While the global economy is driven by
the energy and water sector, it is expected that during the 21st century, water will be what
oil was in the 20th one. This makes essential to revise the conventional, monomeric, planning
and management of water supply systems, which is employed so far from a “water-centric”
perspective. Infact, such systems embed multiple energy consumption components across all
their processes of interest, i.e., water abstraction, conveyance, distribution, treatment and
reuse. They may also facilitate renewable energy production, by means of small hydro power
plants that are installed across water conveyance and distribution systems (Sitzenfrei et al,,
2014), solar panels installed over aqueducts (McKuin et al., 2021) and biogas retrieve units in
wastewater treatment plants (Plevri et al., 2021).
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However, the reliability, resilience, economic effectiveness, and, overall, sustainability of both
pillars of water supply systems, i.e., water and energy, are also subject to complex social
processes. In particular, the human decisions made by citizens and the water utility has a
footprint to the naturalsystem, while the natural system responds to these decisions directly
by means of freshwater availability (M. Giuliani et al., 2016). The incorporation of the
anthropogenic behavior and its multiple interactions and feedbacks within the water-energy
nexus, can be considered as a turning point for handling the assessment of technical systems
under the crucial social dimension (Molajou et al., 2021). In this vein, water supply systems
should be considered as a promising area of investigating synergies and feedbacks across the
water-energy-society nexus (Figure 6.1).

Thus, this research aims at providing a tailored made methodology for the assessment of
urban water supply systems, by incorporating water, energy, society and the energy market
(in terms of electricity prices), as a nexus of synergetic fluxes, and under the prism of uncertain
(better referred to as stochastic) sociotechnical systems (Efstratiadis and Sakki, 2024). The
generic specifications of this approach, involving the interconnection of four modelling
building blocks (physical, technical, economic and social), is provided in section 2. As a proof
of concept, we analyze the complex and highly extended raw water supply system of Athens,
Greece, toassess its long-term management under different disturbances that arise from the
hydroclimatic conditions and the socio-economic environment. For the social factor, we are
taking advantage of agent-based models to simulate the water demand behavior, driven by
external influences and pressures (water and energy prices, public awareness campaigns).
Finally, to overcome the issue of uncertainty we use stochastic models in order to provide
synthetically-generated time series for the hydrometeorological inputs and the electricity
price, which is embedded within the water cost and price. Before providing the holistic
methodology, a proof of concept is described, by revisiting the long-term management under
the umbrella of resilience optimization. The resilience of the system is stress-tested under
various scenarios, originated from climatic, technical and socioeconomic drivers.

Water price

Domestic s u \ A m=]=s]

energy

demand L A o) I 'i.

Energy fluxes o
gY »
m 7 Domestic
Social fluxes ER g ks | ] water
demand
| Agricultural

Water fluxes

energy

availability demand
[ . ‘o
Renewable é d\ Il i 7

energy Hydropower 7 SN Ly, Water supply \ |

| L) Ef‘!

Operation policy

FA— N
Water \’ N2
l g

availability

Y
Sa ] Thermal 6@% m

4 energy : % =
. ' l l/l/ Energy for pumping C f-'é u@
— 4 £ A5
: E Water f o vl Energy
E — e o Power «a Agricultural water demand price

industry

z‘(b :(/ E:o;ystem services
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boxes corresponds to the fluxes (drivers) will be discussed.
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6.2 The Athens water supply system

6.2.1  Technical system

The Athens raw water supply system, operated by the Athens Water Supply and Sewerage
Company (Greek acronym, EYDAP S.A.), is highly extended and complex, since it lies over an
area of 4000 km?2 and comprises 350 km of aqueducts (Figure 6.2). Also, it includes four
reservoirs (Mornos, Evinos, and Marathon, as well as the natural lake Hylike), 15 pumping
stations, several dozens of boreholes and four water treatment plants (WTPs). The external
conveyance network is separated in two subsystems, namely the southern branch and the
northern one. The southern branch carries water via gravity from the interconnected
reservoirs Evinos and Mornos. On the other hand, the northern subsystem transfers water
from Hylike and several boreholes through pumping, with considerable cost.

In particular, water from Evinos reservoir is diverted through a tunnel to the neighboring
Mornos reservoir, since its inflows are the largest of the whole system, while its storage
capacity is quite small. Thus, the major role of Evinos is to support the major regulating
infrastructure, i.e., Mornos, by transferring almost the half amount of the Athens’ water
demand. On the other hand, key characteristic of Hylike lake is the significant leakages due to
its karstic underground, which may cause losing half of its storage in one year. We underline
that due to quite rich hydrological conditions and the reduction of consumption, until
recently, the water utility was not forced to pump remarkable water amounts from Hylike to
fulfill the water demand of Athens, thus the associated cost was minimal. Finally, Marathon s
the smallest and the oldest reservoir of the hydrosystem and is mainly used as a backup for
emergency situations and as a regulator of peak water demands during the summer season.

The overall storage capacity of the four reservoirs reaches 1400 hm3, while their accumulated
mean annual inflow is 825 hm3 (the groundwater resources, which are mainly activated in
case of emergency, can also contribute up to 90 hm3). While the key objective of the system
is to provide raw water to broader Athens Metropolitan area (up to 400 hm?3 per year, as
explained herein), it also serves several other uses. In particular, it provides water for
irrigation, water supply of nearby domestic and industrial areas, and also environmental
preservation downstream of the Evinos and Marathon dams. Furthermore, besides Hylike’s
losses due to leakages, there are also several other water losses across the aqueduct network
and the reservoirs (due to leakages, evaporation and spills).

Due toits complexity and its vital role of Athens, this system should be successful, robust and
resilient under externalinfluences and stresses. Inthis vein, the day-to-day operation and the
long-term management of the system are crucial for its reliability, and relies upon several
decisions, regarding the allocation of withdrawals to the different reservoirs and the
conveyance of water. We remark that the reliability of the system highly depends on the
inflows to the Evinos-Mornos complex, which may be too risky, in case of prolonged drought
periods. Thus, the optimization of its long-term management is subject to multiple and
conflicting objectives, aiming at balancing competitive uses, socioeconomic constraints, and
environmental requirements. Specifically, the optimization problem aims to ensure an
acceptable tradeoff between two key performance metrics of interest, i.e., the reliability, and
the cost/benefit ratio, in order to extract the associated set of operational rules. We highlight
that the desirable reliability for the water supply of Athens is set as high as 99% on annual
basis (indicating one failure per 100 years), while the minimum acceptable value is 97%.The
extraction of optimal operation rules for the water supply system of Athens and their long-
term effects have been subject to exhaustive analyses (Efstratiadis et al., 2004).
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Marathon

Figure 6.2. Configuration of Athens’ water supply system.

6.2.2 Economic System

We argue that cost reduction strategies are always a priority for water utilities. Regarding the
management of the Athens’ hydrosystem, this objective becomes crucial, particularly under
the recent energy crisis. Nevertheless, under stressful conditions, i.e., persistent droughts,
limited storages, malfunction of aqueducts etc., this low-cost intention cannot be achieved,
as result of increased pumping, which makes the system to be strongly depended on the
electricity market price. Figure 6.3 demonstrates the evolution of the energy market price in
Greece the last three years, when the price of electricity has almost trebled. However, this
trend doesn’t result one-to-one response to the water price, given that due to favorable
inflow and storage conditions, until recently the water utility was not forced to pump
significant amounts of water from Hylike and the boreholes.

The methodology for estimating the cost of raw water production across the Athens water
supply system has been subject of former research (Makropoulos et al., 2018). Generally, this
approach is based on the combination of the Capital Recovery Ratio (CRR), Capital
Accumulation Ratio (CRR)and Equivalent Cost (EC) methods. Essentially, what is sought is to
accumulate a certain amount of money at a given future point to cover all the costs of the
initial investment, opportunity costs and depreciation, making the capital available to fully
replace the depreciated fixed asset if necessary. The above methodology is in the same line
with the EU Water Framework Directive and the national law. Thus, the overall fixed cost for
the water supply system has been estimated to be approximately 58 M€ per year. On the
other hand, the cost of energy was estimated by considering alternative scenarios of the long -
term management of the system, since the lower is the acceptable risk of deficits the more
intensive should be the pumping from Hylike and the groundwater resources (Efstratiadis et
al., 2004). This approach made use of empirical relationships to link the operation of pumping
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stations with energy costs, retrieved from electricity bills of period 2008-2017. Under this

premise, the overall pumping cost was estimated to range from 1.8 to 2.8 M€ per year.
However, this expected to change due to high electricity prices.

400

€iVWh)

=300

M
=
=

Mean Electricity Price

100

2019 Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jal
Date

Figure 6.3. Daily evolution of electricity market price from January 2019 to January 2023.

6.2.3  Social System

As already mentioned, the main target of the hydrosystem in study is to provide drinking
water to the citizens of Athens (3,738,140 hydrants, according to EYDAP records). Actually,
the water consumption is subject to multiple factors, i.e., occupancy rate, family type,
householders’ age, income, occupational status, and educational level (Mazzoniet al., 2023).
For the case of Athens, some key socio-demographic determinants are demonstratedin Table
12. The distribution of water consumption follows the seasonal pattern of Figure 6.4. As
expected, during the summer season, this is increased.

Figure 6.5 also illustrates the evolution of population and water consumption during last 50
years. The most impressive feature is the substantial drop of water consumption in the early
90’s, by about 30% (from 367 hm3 in water year 1988-89 to 257 hm?3 in 1993-94), which is
further analyzed in next sub-sections. Regarding the recent evolution of Athens water
demand, over the last decade this did not exceed 400 hm3, while in the past the annual
consumption has reached 430 hm3. It is also quite interesting that even through the
population is increasing, the annual consumption exhibits a slight reduction. This
phenomenon is explained by the recent financial crisis (2008-2018), and also tothe reduction
of losses across the water distribution network.
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Table 12: Demographic data for Athens’ citizens (Hellenic Statistical Authority, after
processing).

Perc. of population (%) Income (€) Perc. of population (%) Family size
30 0-5000 11 1
28 5000 - 10 000 23 2
18 10000 - 15 000 25 3
14 15 000 - 20 000 29 4
9 >20000 8 >5
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Figure 6.4. Box plots of monthly distribution of water demands in Athens for years 2000 to
2022.
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Figure 6.5. The evolution of population and its water demand in Athens.
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6.3 Water supply management under the umbrella of resilience
optimization

Prior to the establishment of the holistic methodology of the water-energy-society-market
nexus under the coupling of different models, we employ a stress-test of the water supply
system of Athens under the resilience concept. This better reveals the necessity of holistic and
uncertainty aware approaches to the long-term management of critical infrastructures.

Inthe context of water-energy management, thisis usually expressed by means of operational
rules, which can be conventionally derived from an optimization procedure, that regards the
successfulinterplay of the water and energy components under a specific set of assumptions.
The two elements are highly interconnected and conflicting, since water is the critical
ingredient of energy production. On the other hand, energyis needed for the complete water
cycle, from water abstraction (through pumping) to water treatment, as well as for recycled
water collection and treatment. Following this, we agree that this optimization context is in
fact a multicriteria problem, thus leading to multiple rules that are equivalent, from the Pareto
optimality perspective (Efstratiadis & Koutsoyiannis, 2010). In this vein, the incorporation of
resilience as an overall performance metric may be the turning point for supporting decision-
making. In particular, this allows for mining the management rules that remain robust across
increasing pressures of the system, and finally detect the best compromise one.

6.3.1  Modelling framework for optimizing the system’s management
policy

The exploration of the management options and, eventually, the detection of the best-
compromise one, is employed through the use of Hydronomeas software, which is the cumber
stone of a broader decision support system for the supervision and the management of the
water resource system of Athens (Koutsoyiannis et al., 2003). The representation of the
physical system as a network model within the graphical interface of Hydronomeas is
demonstrated in Figure 6.6.

The methodological framework of the model is based on the triptych:

e Parameterization of the operational policy of the system;
e Stochastic simulation of the system’s dynamics;
e Optimization of the long-term performance of the system.

More specifically, the mathematical expression of the operation rules in an extension of the
rationale by Nalbantis and Koutsoyiannis (1997), and Koutsoyiannis and Economou (2003).
These determine the desirable allocation of abstractions from the system’s sources (reservoirs
and boreholes), according to its current state (storage, demand), by using only few control
variables. In addition, the simulation module comprises two components. The first aims at
representing the hydrological drivers of the system as stochastic processes, by means of
synthetically-generated time series that reproduce the probabilistic and stochastic regime
(auto- and cross-dependencies) of the parent historical data. The data synthesis is employed
through the hydrometeorological generator, as proposed in 3.1.3. For given inflows and
demands, the simulation of the system’s operation is formalized as a stepwise allocation of
the unknown water and energy fluxes, which are represented as control variables of a network
linear programming problem. This aims at minimizing the totaltransportation cost across the
hydrosystem, by preserving the pre-specified hierarchy of water uses and constraints
(Efstratiadis et al., 2004). Finally, the overall optimization of the system’s performance is
generally expressed as a multicriteria problem. Its components are probabilistic metrics, such
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as the failure probability (or its complementary metric, i.e., reliability), the mean annual
energy production or consumption, the water deficits and their costs, etc.
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Figure 6.6 Conceptual model of the water resource system of Athens as implemented in the
graphical environment of Hydronomeas software.

6.3.2  Resilience-based optimization of the system’s management

5.3.3.1. Baseline scenario setting

Based on the schematization of Figure 6.6, we seek for the strategic management policy of
the water resource system of Athens, for which we set a plethora of targets and operational
constraints, classified in three priority levels. The targets that are set in the highest priority
are the water supply of broader Athens. In particular, we consider a total annual demand of
400 hm3, i.e., close to the current consumption, which is split into five demand zones.
Furthermore, we assume all minor water supply uses across the aqueduct network, which are
merged as point demands at three nodes, and the two environmental flow demands
downstream of Evinos and Marathon dams. Inthe second hierarchy level, we set the minimum
and maximum storage constraints that are assigned to the four reservoirs, as the major
components of their operational rules. Finally, the lowest priority is assigned to the three
irrigation targets. The system is driven by monthly synthetic rainfall, runoff and evaporation
time series of 2000 years length.

Initially, we consider the aforementioned system’s state as the baseline scenario, for which
we extract the optimal operational rules of the four reservoirs. The optimization problem aims
at balancing the two key objectives of the water-energy nexus, namely the fulfillment of water
supply uses with very high reliability (preferably, 99% on mean annual basis), and the
minimization of pumping cost. In this respect, the performance measure is formalized as a
cost function, comprising two elements. The first expresses the mean annual deficit cost of all
consumptive water uses, for which we apply different unit penalties, namely 1.0 €/m3 for
water supply and 0.2 €/m3 for irrigation. The second element is the mean annual cost of
electrical energy, due to the use of pumps and boreholes. In order to estimate this cost, we
apply piecewise linear functions that are fitted to historical energy consumption and
associated cost data, as shown in the example of Figure 6.7.
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Figure 6.7: Fitting of piecewise linear functions to historical energy consumption and
associated cost data at the main pumping station of Lake Hylike.

5.3.3.2. Operation rules

The optimized operational rules for the baseline scenario areillustratedin Figure 6.8a. These
specify the desirable storage of each reservoir as function of the expected total storage
capacity of the system, which is estimated by accounting for the total storage at the end of
previous time step (month), the expectedinflows and the total water demand. The optimized
control variables that are embedded in these rules are two dimensionless parameters per
eachreservoir, as explained by Koutsoyiannis and Economou (2003), and the two operational
constraints, by means of minimum and maximum desirable storage. This ruleis contrastedto
a more conservative one (Figure 6.8b), which is adjusted in order to impose a more frequent
use of Hylike. As shown in Table 13, from the sustainability perception, both rules are in the
safe place, since they guarantee the desirable reliability level of 99%. However, the second
rule is sub-optimal, in terms of economy. The question arising is whether this more
conservative yet more expensive rule indicates a more resilient management policy. This
question is investigated by means of stress scenarios in next section.
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Figure 6.8: Graphical representation of operation rules: (a) optimized against the baseline
scenario; (b) optimal in terms of resilience.
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Table 13:. Key results for the baseline scenario by applying the two alternative management
policies. All water, energy and cost quantities are expressed on mean annual basis.

Baseline-optimal Resilient-optimal

Reliability of Athens’ water supply (%) 99.0 99.7
Abstraction from Mornos (hm3) 442.92 442.03
Abstraction from Hylike (hm3) 25.22 29.74
Abstraction from boreholes (hm?3) 10.21 7.26
Energy consumed in pumping stations (GWh) 24.18 30.04
Energy consumed in boreholes (GWh) 9.88 6.84
Total energy consumption (GWh) 34.06 36.88
Total energy cost (million €) 2.73 2.90
Water supply deficit (hm?3) 0.26 0.11
Irrigation deficit (hm3) 0.76 1.36

5.3.3.3. Stress scenarios

The water resource system of Athens is stressed against six scenarios that reflect different
aspects of potential disturbance (socioeconomic, hydroclimatic, technical). We remark that
these scenarios represent uncertainties that cannot be formalized in stochastic means, as
made with the external drivers (rainfall and inflow). Inthis respect, the system will be remain
resilient under futute uncertainties. A brief summary of them is given in Table 14, while in
Figure 6.9 we contrast the performance of the two operationalrules, in terms of meanannual
cost. We remind that this embeds the energy cost and the cost of water deficits.

Table 14: Summary of stress scenarios.

id Description Driver of change
1  Baseline scenario (cf. section 5.4.3.1)

2 Setting of irrigation targets in a higher priority level Social

3 50% decrease of available groundwater resources Hydroclimatic

4  20% increase of pumping cost Economic

5 Increase of leakage losses across aqueducts from 5 to 10% Technical

6 Increaseof Athens’s demandto430hm?3 (max. observedvalue) Socio-economic

Increase of Athens’s demand to 450 hm3? (long-term ) .
7 S Socio-economic
projection)

For the first three stress scenarios (humbered 2, 3 and 4), the optimal rule sofar, according to
the baseline state (scenario 1), is equivalent or slightly overperforms the conservative rule.
However, the other three scenarios highlight that the conventional definition of “optimality’
does not promise resilience against situations where the system is pushed beyond of its
standards. Using the concept of resilience proposed by Makropoulos et al. (Makropoulos et
al., 2018), the area below the two curves represents an overall cost metric. Herein, the smaller
is this area, the more resilient is the operational rule. Under this assumption, the second rule
should be preferred, as more robust. It is worth mentioning that the conventionally optimal

137



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

rule for the last scenario ensures an unacceptable low reliability, i.e., 91.3%, while the mean
annual energy cost is 4.33 million €. On the other hand, the resilient rule still achieves a
marginally acceptable reliability level (96.2%), with a relatively smallincrease of mean energy
cost (4.77 M€).
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Figure 6.9: Comparison of two operational rules against scenarios of varying stresses.

6.3.3 Conclusions

Triggered by the violent changes that span over all aspects of sociotechnical systemes, it is
essential to reconsider the far-reaching quest of optimality under the concept of resilience.
Taking as example the challenging water-energy system of Athens, we revisit its long-term
management policy, which has been conventionally handled as a typical optimization problem
under steady-state conditions. By stressing this under a number of plausible disturbances,
caused by social, economic, hydroclimatic and technical changes, we reveal the necessity for
adopting more conservative (in terms of reliability) although more expensive operation rules
than the ones optimized against the baseline scenario. Nevertheless, the stressors scenarios,
originating from the socioeconomic unstable environment are the most crucial. In this scene,
we manifest the need of stochastic sociotechnical system’s approach that incorporates the
climatic, social and energy market’s dynamic within long-term management of water supply.
This approach is next discussed.

6.4 The building blocks of the nexus: Setting the framework’s
specifications

The assessment of complex water supply systems under the water-energy-society-market
nexus requires the coupling of four individual modules and its interactions, alsoreferredto as
building blocks, to a unified tool (Figure 6.10). Key specifications of this approach, which will
be further analyzed throughthe real-world case study of the Athens water supply system, are:

Technical system: The representation of water supply systems requires a decision support
software tosimulate the water abstractions from different sources, their conveyance through
aqueducts and pumping stations, and their distribution across different types of users (e.g.,
water supply, irrigation, industry etc.), as well as all kinds of interactions with energy
(hydropower production, pumping, etc.).
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Physical system: Water supply systems are driven by randomly varying hydroclimatic
processes (e.g., rainfall, runoff, evaporation), which should be preferably described by
stochastic models. As mentioned, these have a long history in water resources and other
environmental sciences, as the means to generate long synthetic data that reproduce, in
statistical terms, the actual regime of the observed processes.

Social system: For the description of the social system and its interactions, we are taking
advantage of the proposed human factor model, as described in 3.2.3.

Economic system: Water supply systems are also driven by the electricity market and the
pricing policy of water utilities. Specifically, the financial cost of water is associated with fixed
costs, i.e., annual depreciation cost, cost of financing, expected return on equity and taxes,
which are reflected to the water price, in order to ensure sufficiency of revenue (Aggarwal et
al., 2013). However, water utilities are also forced to fulfill the expenditures that are
associated with the operation and maintenance of their systems. Following this, the operation
costis strongly related with electricity market and the fluctuations of energy price during each
day and across seasons. Similar to hydroclimatic processes, stochastic models can be applied
for generating synthetic economic data, e.g., by means of energy price, which can be further
translated into water price.
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Figure 6.10: Outline of modelling building blocks and their interactions.

The structural challenge of this customizationis the need of handling a very large number of
heterogenous inputs, control variables, constraints and objectives, due to the simultaneous
modelling of the four parallel systems and their interactions. Past research in this area has
only provided rather simplified and fragmented formulations that misrepresent important
systemic complexities and intersectoral interactions (Giudici et al., 2021). Apart from this
structural complexity, there is also a hidden challenge, since the link of sub-systems across
varying scales imposes coupling of different modelling philosophies, e.g., agent-based models
(for the social system), following a bottom-up approach, with top-down models for water-
energy simulations. Nevertheless, the final approach should be generic, flexible,
computationally efficient and accessible by different groups of interest, and overall able to
solve real-world problems.

6.5 Building the simulation procedure

The overall simulation procedure of the Athens hydrosysytem, under the water-energy-
society-market nexus, follows the generic modelling specifications that are outlined in section
6.4. For convenience, the physical, technical and economic building blocks are presented
together (section 6.5.1). On the other hand, the social element, which is formalized as an ad-
hoc built agent-based model, is described in more detail, in section 6.5.2.
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6.5.1  Water-energy modelling under a technical and economic context

For the representation of the water supply system of Athens and its interactions with energy
(technical, involving water-energy conversions, and economic, by means of cost of energyand
its footprint to water price), the conceptual structure of Hydronomeas is used. As already
mentioned, the underlying methodological framework follows a parameterization-simulation-
optimization scheme, allowing for: (a) network-type schematization of the water and energy
fluxes, in terms of nodes, corresponding to sources and sinks (i.e., demands), and links,
representing water transfers and exchanges; (b) formulation of operation rules, in terms of
parametric mathematical expressions, with regard to major control components, both
hydraulic (e.g., reservoirs, diversions) and power (hydropower stations, pumping stations,
pumped-storage stations); (c) step-by-step representation of the real-world system operation,
under multiple targets and constraints, through advanced simulation techniques; (d)
evaluation of the system’s performance under multiple criteria, including economy, efficiency,
reliability and resilience; (e) derivation of best-compromise planning and management
solutions, at both the short and long-term horizons, through robust optimization approaches.

However, Hydronomeas cannot represent dynamic inputs, i.e., water demands and energy
prices, since both elements are built upon the steady-state hypothesis. Under this premise,
the model only accepts constant or seasonally varying inputs for the two components, which
hides significant aspects of the perpetually changing socio-economic environment.

To overcome this constraint, we developed a surrogate model of Hydronomeas that is able to
account for the socioeconomic variability and is much more efficient computationally, since
the module of the optimization to extract the operational rules is not available. Thus, the
operational policy of the system is expressedin terms of the so-called “resilient-based” rules,
which are depicted is Figure 6.8b. The surrogate tool also implements a simplified
representation of the total power consumption. This relationship has been established by
compiling discharge and energy consumption data from the main pumping stations during last
15 years.

As mentioned, the technical system s driven by monthly rainfall, runoff and evaporation time
series, while the economic system is driven by the energy market price to extract the
associated water price. Since this system is a key asset for the sustainable development of the
capital city of Greece, its long-term assessment procedure should include multiple equally
probable scenarios for all key drivers, in order to reflect a wide number of potential states of
the hydrosystem (in terms of storages, inflows and demands). As implied by the specifications,
the randomly varying characteristics of hydroclimatic processes and energy costs are properly
represented through stochastic models. Thus, synthetic time series of 2000 years of monthly
rainfall, runoff and evaporation, as well as electricity prices (Figure 6.11), are generated, based
on associated historical data. The data synthesisis employed via the hydrometeorological and
electricity price generators, as described in sections 3.1.3 and 3.3.3, respectively.

Following this, the water price is function of the overall energy cost, which is in turn function
of the energy consumption across the hydrosystem, which is eventually associated with its
long-term management policy, expressed in terms of operational rules. In contrast with
energy price, which is an externalinformation to the water utility, the energy consumption is
highly dependent to the past, present and future operational policy by the water utility. For
the case of water supply system of Athens, we follow a low-cost policy and the resilience-
based operational rules, that set as priority the water abstraction from Evinos and Mornos.
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Figure 6.11: Time window of synthetic electricity prices contrasted to historical data.
6.5.2  The social system as an agent-based model

5.6.2.1 Model architecture

An agent-based model for Athens’ consumers is developed by using the Mesa framework, i.e.,
an Apache2 licensed agent-based modelling framework in Python (Kazil et al., 2020), in which
the household reflects the heterogeneous and adaptive nature of the water use behavior. All
households are spatially distributedin the urban boundary (which is configured as a grid), and
they can move by following a random uniform distribution in order to interact with their
immediate neighbors andinfluence each other's water consumption attitude. The conceptual
methodological framework is described in section 3.2.3.

5.6.2.2 Entities and state variables

As already mentioned in section 3.2.3, each household agent consists of three essential parts,
i.e., attributes, behavioral rules, and memory, which vary across households in the initial set
up of the model, and they change during the simulation, due to both external and internal
influences. Inthe model, we consider two entities, i.e., the Households and the Water Saving
Campaigns, the interactions of which are assumed independent, while their further taxonomy
is described below.

In particular, the Households are classified into five categories according to their income
(Hussien et al., 2016) and their environmental consciousness, in order to describe the range
of their water consumption. The consciousness is further distinguished into three sub-
categories, namely low, moderate, high. Thus, their behavior/adaptation is depended on all
these characteristics and their tendency to be influenced by their social network.

The five distinct Household categories are:
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Category 1: Their annual income is up to 5,000 € and their daily water consumption is in a
range of 100-120 L/capita, according to their environmental consciousness. These households
cover the 30% of the available grid;

Category 2: Their annual income ranges from 5,000 to 10,000 € and their daily water
consumption is inarange of 120-140 L/capita, according to their environmental consciousness
These households cover the 28% of the available grid;

Category 3: Their annual income ranges from 10,000 to 15,000 € and their daily water
consumption is ina range of 140-160 L/capita, according to their environmental consciousness
These households cover the 18% of the available grid;

Category 4: Their annual income ranges from 15,000 to 20,000 € and their daily water
consumption is inarange of 160-200 L/capita, according to their environmental consciousness
These households cover the 14% of the available grid;

Category 5: Their annual income exceeds 20,000 € and their daily water consumption is in a
range of 180-250 L/capita, according to their environmental consciousness. These households
cover the 9% of the available grid.

The Water Saving Campaigns are also distinguished in three categories, according to their
type, namely physical, media and social media based. The physical campaigns reflect the
messages on newspaper, leaflets, workshops in schools, universities, jobs etc. On the other
hand, media and social media campaigns represent the messageson TV and the Internet, and
on the platforms of social media (Borawska, 2017). Their distribution in the grid is 20%, 50%
and 30%, while their influence, by means of “intensity”, follows a uniform distribution in a
range 1-5 as below:

Physical campaigns: random sampling between 1-2;
Media campaigns: random sampling between 2-4;
Social media campaigns: random sampling between 2-5.

However, when the total reservoir storage is lower than a specific threshold (400 hm3,
corresponding to about 25% to their total capacity), the campaigns are potently activated.

5.6.2.3 Process overview

The modelling of the Athens’ society is based on the simultaneous interaction between the
Households and their external influences. The description of the process is presented in
section 3.2.3.

6.5.3  Model coupling

The modeling of a sociotechnical system presupposes the coupling of the four building blocks,
i.e., physical, technical, economic and social. The computational procedure is outlined in the
conceptual flowchart of Figure 6.12, while its description is as follows (in the parenthesis are
the associated fluxes):

For the representation of the physical system in stochastic means, we generate correlated
time series of rainfall, evaporation and runoff (1b) as inputs to the technical one (in particular,
we assign three input time series to each reservoir). Additionally, we consider a predefined
seasonal pattern of water consumption (1a), while the energy price is also handled as a
stochastic process (1c) that reproduces the probabilistic behavior and autocorrelation
structure of the historical data. Then, the model of the technical system runs, providing as
outputs the water price (2a) and the total system’s storage (2b). We remark that the water
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price is estimated by combining the energy price, the fixed cost and the energy consumption
across the water supply system.

Following this, the social system, i.e., the ABM runs by taking as inputs the simulated water
price data (3a, bills), and, indirectly, the accumulated storage data of the water supply system
(3b). Specifically, the information about the available water storage is depicted in the
frequency and intensity of the water saving campaigns. Eventually, the technical system re-
runs, by replacing the steady-state hypothesis of water demands with the dynamic demands
(4), as extracted from the ABM. The final output is a new, more realistic, allocation of all water
and energy fluxes, including the simulated storages (6).
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Figure 6.12:: Conceptual flowchart of the overall modelling framework. Fluxes (1a), (1b) and
(1c) are the inputs of the technical system, while its outputs are fluxes (2a) and (2b). Fluxes
(3a) and (3b) represent the essential inputs for ABM that results to path (4). Finally, the
technical system re-runs with inputs (1b), (1c) and (5), and its output is the revised water
balance (6).

6.1 Insights to the persistent drought of 1988-1994

During years 1988-1994, the water supply system of Athens has been substantially stressed
by a persistent drought, thus forcing the water utility to apply both structural and non-
structural measures (Karavitis, 1998). These included large scale improvements of the water
distribution network, on the one hand, and extended water saving awareness campaigns,
together with effective pricing policies, on the other.

Figure 6.133, illustrating the evolution of the total storage of Mornos and Hylike from 1981 to
1996, reveals the emergency of the system, which reached twice its dead volume. We remark
that during the aforementioned 15-year period, the water supply system of Athens system
comprised only these two main reservoirs, since the Evinos dam and the diversion tunnel were
constructed after 1996. Similarly, Figure 6.13b, shows the evolution of the average price of
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drinking water during the same time window. This has been approximately estimated on the
basis of the tariff data of Focusing on sub-period 1988-1996, we employed a correlation
analysis, by considering the water consumption as dependent variable, and using as predictors
the reservoir storage and the mean water price, for different time lags. We underline that
from the water utility perspective, the storage is a signal for launching water saving
campaigns, and mayalso utilized as an easily retrievable information for the stakeholders and
the media. We also highlight that the use of lags is necessary, since the water bills are
guarterly, while they allow to establish a reasonable period of response tothe campaigns that
are associated with the available storage. For both predictors, the optimal lag was found to
be three months.

In order to account for the combined response of the two variables, we established a simple
regression model of the form:

Dy =wjaVP;CEs (6.81)

where D, is the consumption, w; is an adjusting factor, which is periodic function of month j
(in order to describe the seasonal variation of demands), while VBt —3 and CEt-3 are the
reservoir storage and water price with a three-month lag. The above relationship was
calibrated exclusively for the dry period (1988-1994), exhibiting a Nash—Sutcliffe efficiency
(NSE) up to 36.5%. Yet, outside of this period, the model performance is rather unacceptable
(Figure 6.15). It is clear that such simple statistical tools that ignore the complexities and
uncertainties of the water-energy-society-market nexus are unable to represent properly the
water consumption for all potential system’s states. Inthis vein, we next demonstrate a more
sophisticated context, key element of which is an agent-based model (ABMs) that represents
the Athens’s consumers. The predictive capacity of the ABM component is evaluated by using
as benchmark the same historical period.

Table 15 summarizes the progressive pricing policy by the water utility. For convenience, at
the beginning of the period of interest (1/1/1981), we assumed an average price of 0.10€/m3.
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Figure 6.13 :(a) Observed storage capacity during years 1981-1996 (black line) compared
with the dead volume of the system (red line), and (b) average price of drinking water.

Focusing on sub-period 1988-1996, we employed a correlation analysis, by considering the
water consumption as dependent variable, and using as predictors the reservoir storage and
the mean water price, for different time lags. We underline that from the water utility
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perspective, the storage is a signal for launching water saving campaigns, and may also utilized
as aneasily retrievable information for the stakeholders and the media. We also highlight that
the use of lags is necessary, since the water bills are quarterly, while they allow to establisha
reasonable period of response to the campaigns that are associated with the available
storage. For both predictors, the optimal lag was found to be three months.

In order to account for the combined response of the two variables, we established a simple
regression model of the form:

Dt == W] thb_g th_3 (6.81)

where D, is the consumption, w; is an adjusting factor, which is periodic function of month j
(in order todescribe the seasonal variation of demands), while V;_; and C;_5 are the reservoir
storage and water price with a three-month lag. The above relationship was calibrated
exclusively for the dry period (1988-1994), exhibiting a Nash—Sutcliffe efficiency (NSE) up to
36.5%. Yet, outside of this period, the model performance is rather unacceptable (Figure 6.15).
It is clear that such simple statistical tools that ignore the complexities and uncertainties of
the water-energy-society-market nexus are unable to represent properly the water
consumption for all potential system’s states. In this vein, we next demonstrate a more
sophisticated context, key element of which is an agent-based model (ABMs) that represents
the Athens’s consumers. The predictive capacity of the ABM component is evaluated by using
as benchmark the same historical period.

Table 15: Percentage variation of water prices for different levels of consumption (m3).

DATE/CONSUMPTION | 10 15 20 30 40 50 60 81 105 200
01/07/1975 202 158 141 134 131 129 128 126 125 124
01/07/1982 133 148 197 234 251 261 268 277 282 291
01/07/1985 0 0 5 8 9 10 11 11 11 12
01/07/1986 24 22 13 7 5 4 3 2 2 1
01/07/1988 21 19 5 12 15 17 18 19 20 21
01/01/1990 -8 -11 -13 6 18 25 29 34 37 41
01/05/1990 159 176 184 202 237 265 281 298 309 323
01/01/1991 20 -20 -20 -8 -5 -3 -2 -2 -1 -1
01/01/1992 7 7 7 7 7 7 7 7 7 7
01/07/1992 100 100 100 100 100 100 100 100 100 100
01/12/1995 15 15 15 18 19 19 20 20 20 20
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Figure 6.14:. Scatterplots of historical water consumption, storage capacity, and water price

for the drought period (1988-1994).
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Figure 6.15:. Comparison of observed monthly consumption data with calibrated ones for

period 1981-1996.
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6.2 Applications: Learning from history to employ long-term
management policies

6.2.1  Representation of historical consumptions (1981-1996)

As mentioned, we initially use as benchmark the period 1981-1996 that also includes the
persistent drought of years 1988-1994, which pushed the water supply system beyond of its
standards. Inthis case, we only consider the ABM component, which is driven with historical
storage and water price data.

In order to obtain safe conclusions, anessential taskis to provide a realistic representation of
the Athens’s consumers during the 80’s and early 90’s. In this context, we adjusted the ABM
to the corresponding social characteristics, when the consumers were about 3.05 million,
substantially less environmental aware than today, while the price of water was very low with
respect tothe average purchasing force. Also, four decades ago, the information means were
very limited, with respect to the current expansion of social media. Thus, in the current
analysis, the coverage of the consumers categories inthe gridis changed, and the social media
campaigns are ignored. Specifically, categories 1to5 cover the 15%, 30%, 25%, 20% and 10%,
accordingly.

Figure 6.16 demonstrates the comparison of the simulated water consumption, through the
ABM, and the historical one. We remark that, on an annual basis, the maximum observed
reduction of the water consumption was 23.6%, while the simulated one is 23.3%. For the full
time period (1981-1996), the NSE is 0.350, while for the dry sub-period (1988-1994) rises to
0.501.
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Figure 6.16: Comparison the historical water consumption data against the ABM approach.
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6.2.2 Long-term simulation scenarios

After validating the predictive capacity of the ABM component against historical data, we
reveal the advantages of the full modelling framework in a stochastic simulation context,
where the water demands and electricity costs are dynamic elements, that are interacting
with the technical and the social system. In this vein, three ABM settings are adopted:

ABM setting A: Baseline setting, in which we consider that the agents are influenced by their
network and the public awareness campaigns.

ABM setting B: The households are only affected only by their network, while the
aforementioned campaigns don’t exist.

ABMsetting C: The households are further motivated by the external environment (including
campaigns and social network), considering a 10% increase with respect to setting A.

A key question of such analysis is the effect of influencing tactics in water consumption and
eventually in the reservoirs’ storage under different conditions in the long term. In Figure 6.17
we compare the constant annual demand, imposed by the steady-state hypothesis, with the
dynamic demands obtained by the ABMs (extremes settings B and C), for the first 40 years of
simulation. These are also contrasted tothe simulated storage data, derived from the steady-
state model. As expected, under the steady-state hypothesis the modelling procedure ignores
the impacts of persistent droughts to the society’s response, in terms of consumption, thus
the demand remains constant although the system’s storage is systematically dropping. On
the other hand, when the influencing tactics are adopted, throughthe ABMs, the unified, i.e.,
sociotechnical system, is well-responding to such unfavorable hydroclimatic conditions
because of the household’s adaptation. Koop et al. (2019) concluded that a combination of
price incentives, water use restrictions and knowledge transfer is claimed to lead to roughly
10-25% savings, in particular during drought periods and predominantly in lawns and gardens.
This outcome is reasonable, due to the anelasticity of domestic water demand. Itis alsoin line
with our experience with regard to the water supply system of Athens during the persistent
drought from 1988 to 1994, where the overall drop of water consumption due awareness
campaigns and pricing policies reached about 23% (Figure 6.3). This key historical feature is
well represented by the proposed modelling framework, in which the decrease of water
consumption during a similar period is about 18-23%.

The difference of the two approaches in terms of simulated storages for the 40-year period
are demonstratedin Figure 6.18. Under the ABM approach, the reservoirs usually retain larger
amounts of water, thus they are able to respond more effectively during persistent droughts,
thus generating smaller water deficits. For, during this period, these are 4.25% less than the
steady-state scenario.

A clearer picture is obtained by plotting the cumulative storage data by the steady-state
hypothesis and the ABM setting C. At the end of 40-year period, the two lines differ by 32,774
hm3, that equals to 65.5 hm3 per month (Figure 6.19). Actually, this difference is not only due
to the water consumption per se but is the aftereffect of multiple and complex processes.
Interestingly, a systematic reduction of water demands leads to larger reservoir storages and,
eventually, water levels, which in turn may result to increased water losses due to leakage
and spills. On the other hand, since smaller amounts are released tothe conveyance network,
the water losses across the aqueducts are decreasing.
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Figure 6.17: Comparison of steady-state (thus constant) annual demand against the two
extreme ABM settings, where demands are evolving on the basis of simulated social
behaviors. The simulated storage under the steady-state context is shown in the

background.
1500
L i I\|l Iy
n |]I||] ] Il|ll]
:||l L L URTRRIN
L R I [ - |1|1Il|l||
1 I ! LR Uyl
’ AR B T B [ LA 1
n, Ay 1 TRLERNTH] 1
' Ty Il: ,'l:lhl Wl AT : i
— I | .
S 1000 ‘I ARIT NS 'I|' ‘|],I II'II '-I :\ 1! lljl . !
= IIllll‘\"lll [N} ]"\ | I]fla || 1
— 1y I]| _||I| I 1"
& Ly w 1 ! g i \
Z { ) v 1] y o ! 1
2 1,1 ! 1 1
= 1 i y
- L] h 1
w 1y 1
£ “l'lllllI | 1
@« 1,1 1
= | 1,1 1
© 500 s ‘|]|]. 1 b
73] "\I 1 ' I"
o
gl |
'l||'|
y'n
0
0 100 200 300 400 500
Manth
Steady state approach = = Configuration A

Figure 6.18: Comparison of steady-state hypothesis against ABM setting A in the resulting
evolution of total reservoir storage.
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6.3 Conclusions

The rapidly increasing water demand and the recognition of the vital role of water resources
to sustainable development impose a new view to the so far practices of integrated water
resources management. According to its widespread definition, this concept promotes the
coordinated development and management of water, land and related resources to maximize
economic and social welfare in an equitable manner, without compromising the sustainability
of vital ecosystems (Agarwal et al., 2000). While the above declaration makes indirect
reference to energy (“related resources”) and society (by highlighting the overall objective of
social welfare), it fails to reflect the complex and multidimensional interactions between
water, energyandsociety, and alsoignores the key role of energy market, as an overall driver
of water costs, prices and demands.

This research attempts to provide a tailored-made methodology for evaluating water supply
systems by representing them under the prism of the water-energy-society-market nexus and
under the uncertain conditions. While the individual representation of these four elements is
a challenging task per se, it becomes even more demanding if they are accounted for as a
dynamically changing nexus. In this vein, we initially set the specifications for a macroscopic,
unified and easily adjustable stochastic simulation framework. The adaptability is key
question, particularly when dealing with large-scale systems, since these are followed by
computational burden and large amount of data. Other issues that have been addressed are:
(a) the definition of the boundaries of the socio-technical system, (b) the description of
interactions between the technical and social components, and (c) the unified representation
of four building blocks, in terms of natural, technical and economic processes, and their
feedbacks to the social behavior as well.

A first essential step tothis objective was to level up from geographyto anthropogeography,
in order to expand the spatial boundaries of water supply systems, thus incorporating the
structural limits of society. The conventional determination of such systems is dictated by the
extent of associated infrastructures, which link water resources with water demand nodes,
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under steady-state approaches for the representation of the social footprint. On the other
hand, the nexus-based approach seeks for substituting the oversimplified and static concept
of the entire urban area as a “node” by a dynamic social sub-system, whichinteracts with the
technical one, and reflects the behavioral rules of society. For the swift from the steady-state
hypothesis to a dynamic social subsystem, we took advantage of agent-based models, which
is the sole approach that explicitly accounts for internal interactions across the social network,
in order to represent the household’s behavior with respect to water consumption.

Another significant contribution of the proposed framework is the indirect incorporation of
the energy market (which is the cornerstone of our era) and its uncertainty, within the water
supply system. As indicated by the literature review, the building block of energy is simply
handled in terms of power generationand consumption (namely, as a flux). Here, apart from
the energy fluxes, we also consider the energy price as a stochastic component, driven by the
energy market, which is linked with the full water-energy-society cycle, i.e., the water price,
the associated social response, the water consumption, and, eventually, the water
management.

As a demo study, we built and evaluate our framework upon the water supply system of
Athens. Due toits complexity and scale, and the experience of the persistent drought that has
substantial impacts to the consumer’s behavior, this system is ideal for revealing the
importance of the nexus approach, as well as the multiple modelling challenges. We underline
that in this case, the water price is strongly associated with the running energy prices and the
long-term management policy (intense use of pumps in case of unfavorable hydroclimatic
conditions), while the water saving campaigns are mainly driven by low reservoir storages.
Our long-term simulations indicated that after influencing tactics, including changes to water
price and public awareness campaigns, the households can adapt their consumption.
Specifically, this practice reduced the deficits by 4.5% along with a water saving of 65.5 hm3
per month (about 15% of the annual consumption of Athens for the projection scenario).
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7 Dealing with the conflicts of the water-energy
nexus: the case of multipurpose reservoirs

Preamble

This chapter deals with the ongoing debate about hydropower in the energy transition, which
is strongly associated with its sustainable character, social and environmental footprint, and
potential benefits. Since their operation and management policies are subject to inherently
uncertain processes, we contribute an uncertainty-aware optimization methodology that
supports operators in accounting for the cascade effects of three main uncertain drivers, i.e.,
rainfall, water demands, and energy scheduling. To describe climatic and energy-market
uncertainties, we follow the generators described in Chapter 3. In addition, for the human-
oriented procedures, i.e., water and energy targets, we employ statistical analyses of
historical abstractions to fit copula-based relationships, in which the desirable releases for
energy production depend on day-ahead electricity prices, as described in Chapter 3 and 4.
Eventually, we establish a toolbox that offers insights for decision-making regarding the
estimated profits, their expected changes and the associated risk due to climate or market-
oriented shifts. Qur approachis demonstratedina multipurpose reservoir in Greece, Plastiras,
which is affected by highly increasing socioeconomic conflicts. This chapter is based on:

Sakki, G. K., Castelletti, A., Makropoulos, C., and Efstratiadis, A.: Unwrapping the triptych of
climatic, social and energy-market uncertainties across multipurpose hydropower reservoirs,
Journal of Hydrology, 628, 2025, 10.1016/j.jhydrol.2024.132416

Sakki, G. K., Castelletti, A., Makropoulos, C., and Efstratiadis, A.: Trade-offs in hydropower
reservoir operation under the chain of uncertainty, EGU General Assembly 2024, Vienna,
Austria, 14-19 Apr 2024, EGU24-3487, https://doi.org/10.5194/egusphere-egu24-3487,
2024.

7.1 Setting the scene

Hydropower reservoirs are keys to both water and energy security at the national level. As
water elements, they serve multiple consumptive and environmental uses, while as energy
elements, they determine the stability and reliability of interconnected grids (Llamosas &
Sovacool, 2021). In this context, their planning and management should consider water
resources protection, energy transition concerns, economic growth, environmental
improvement, and social prosperity.

Since hydropower systems, as a typical water-energy nexus paradigm, are driven by inherently
uncertain hydroclimatic processes and multiple human-induced procedures (e.g., legal
regulations, strategic management policies, real-time controls, market rules), their operation
is highly exposed to emerging climatic (e.g., Wasti et al., 2022), social (Bazzana et al., 2020;
Hurford et al., 2020) and energy-market pressures (e.g., Luo et al., 2019). For instance,
Sovacool and Walter (2019) investigated the ongoing debate about the future role of
hydropower in the energy transition, highlighting the main policy issues. Recent studies reveal
that the shifts of energy policies and the social pressures are eventually more impactful than
climate change itself (Anghileri et al., 2018). Nevertheless, this triptych of stresses requires
revisiting and adapting conventional planning and management practices to ensure
adaptability against future risks and potential violent changes. The redefinition of its
management is becoming even more urgent in the aftermath of the energy crisis, whethera
dilemma arises between security and transition (Joita et al., 2023).
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The optimal design of reservoir operation accounting for time varying demands and other
sources of uncertainty has beenlargely addressed by multi-objective optimization approaches
(cf. recent state-of-the-art review by Giuliani et al., 2021). Focusing to hydropower reservoirs,
Wyrwoll and Grafton (2022) propose a resilience framework to reform hydropower
governance and support the design of multipurpose operations under water and energy risks.
On the other hand, Yazdiand Moridi (2018) manifest for a synergetic perspective across the
water and the energy sector by applying operational rules to overcome the conflicts and
balance the trade-offs to a wider set of stakeholders whose interest lies in the water supply
and energy production. Nevertheless, the optimal water allocation among users (energy and
water demands) relies on the proper economic representation of the effects of alternative
allocations. This option is also offered by hydro-economic models, which can be the basis for
water decision-making (Arjoon et al., 2014; Harou et al., 2009). These are based on the
concept of opportunity cost, where the objective is to maximize the profits from power sold
to the day-ahead market and the profits from water supply and irrigation while minimizing
the penalties of non-fulfilling the water and energy demands.

Nevertheless, from their early steps of systems analysis approaches in reservoir modelling,
the steady-state hypothesis is adopted, where water and energy demands are considered
time constants (or following seasonally varying patterns). In this respect, more advanced
methods should be established to account for the joint fluctuations of the market price, the
uncertain human factor, and the hydroclimatic variability as well.

According to the uncertainty’s architecture, as described in section 2.1, two kinds can be
discriminated, i.e., the aleatory, whichis caused by random phenomena that can be described
in probabilistic means, and epistemic, which is mainly caused by a lack of knowledge or data
(Kiureghian & Ditlevsen, 2009). In the modelling procedure of complex engineering systems,
this discrimination and a proper representationare crucial since the epistemic uncertainty is
theoretically reducible, while the aleatoryis intrinsically not (Caputoet al., 2023). This chapter
is focused on hydropower systems that are driven by both kinds. In particular, the aleatory
uncertainty refers to climatic, energy-market, and social processes, while the epistemic one
regards all steps of the modelling procedure (from the overall configuration to the estimation
of its parameters).

In the literature, the hydrological and the social uncertainty has been widely studied within
hydropower systems and its applications, as described in section 2.4. In contrast, the
uncertainty of the energy market is not broadly explored since this is the aftereffect of the
recent deregulationand liberalization. Specifically, its variation is the indirect effect of social
uncertainty since the electricity price process now enables the determination of competitive
prices according to supply and demand market forces. The research onthis uncertainty mainly
focuses onforecasting (Kostrzewski & Kostrzewska, 2019) and market structures (Papavasiliou
et al., 2015). However, an effort for stochastic reproduction of electricity price processes has
been made, but the representation of its critical characteristics, i.e., double seasonality and
abnormal, yet persistent, changes are ignored (Borovkova & Schmeck, 2017; Houet al., 2017).

Even if a scientific effort has been made to investigate the uncertainty and its effects on the
operation of multipurpose reservoirs, there are still open questions about a holisticapproach.
In particular, the exploration, representation, and eventually the simultaneous incorporation
of multiple sources of uncertainty, i.e., epistemic, hydroclimatic, social, and energy markets
in the management of reservoirs, are unexplored. Gaudard et al. (2016) and Anghileri et al.
(Anghileri et al., 2018) studied the combination of climate change scenarios and the variability
of electricity prices within the assessment of hydropower systems . Along the same line, Ray
et al. (2018) examined climate change scenarios under financial risks to stress-test
hydropower resilience. Further to long-term assessment studies, the incorporation of
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uncertainty within the optimization of hydropower production has also been investigated by
means of climatic projections and social uncertainties that refer to land use projection and
operation policies (Y. Guo et al., 2021).
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Figure 7.1:The water-energy-society nexus from the multipurpose hydropower perspective,
the grey boxes corresponds to the fluxes (drivers) will be discussed.

All these approaches investigated individual or limited sources of uncertainty. Our approach
is called to fill this gap by adapting the already introduced uncertainty-aware simulation-
optimization framework, tailored for multipurpose hydropower reservoirs. This sets the
specifications for handling the different facets of uncertainty and then formalizes them into
robust and generic tools. Specifically, stochastic models are employed with different
structures adapted to each process to represent climatic and electricity price uncertainty. For
the direct social uncertainty, i.e., the social response, we use statistics to express the water
demands as dependent random variables against climatic processes and the reservoir state.
For the indirect social uncertainty, namely, the operation policy of the hydropower station,
copula-based tools are developed that predict the energy target according to day-ahead
energy prices and the operator’s willingness. Finally, for the epistemic uncertainty, the
emphasis is given to the inference of rainfall-runoff model parameters through calibration. To
reveal the advantages of this framework, a modular procedure is employed, initially for
assessing the current operation policy of the water-energy system and next for optimizing its
operational rules under all examined aspects of uncertainty. This is stress-tested in a
multipurpose reservoirin Greece, Plastiras, that fulfils energy (covers 5% of the hydropower
production in Greece), water supply, and irrigation uses.
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7.2 Uncertainty-aware framework for hydropower reservoirs

7.2.1  Holistic description of hydropower reservoir system

Let us consider a hydropower reservoir that fulfils water supply and irrigation demands. This
is driven by hydrometeorological processes (precipitation, temperature, etc.), energy market
fluctuations, and human-induced procedures (water demands, management policies). All
these are inherently interconnected, thus forming complementarities and conflicts. In this
respect, modelling the holistic water-energy system as a unified tool that accounts for all
uncertainties is demanding. To untangle this, and following the generic principles discussed
so far for water-energy systems, a specific framework is developed that includes several
models, io order toincorporate both epistemic and aleatory (i.e., climatic, social, and energy-
market processes) uncertainties within the optimization of hydropower reservoir
management.
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Figure 7.2: Schematic layout of models (light grey filled) and their interlinkages (blue lines).

Specifically, there is a need of the combination of six highly interlinked models, as represented
in Figure 7.2. In particular, the two first models represent the overall drivers of the system,
i.e., rainfall and electricity prices, as random processes. Their outcomes are synthetic time
series, accounting for the stochastic regime of the observed processes across seasons and
three scales of interest (daily, monthly, and annual). The rainfall time series (output of the first
model) is input to the second one, i.e., rainfall-runoff, and is also used by the irrigation
demand generator. Specifically, to account for the variability of irrigation uses, this model is
also fed by the water-energy system operation model by means of water availability. In this
respect, the water abstractions, which are in fact social pressures to the operator’s system,
are dependent on the actual climatic conditions (i.e., precipitation) and the actual system’s
state (i.e., reservoir storage). In addition, the electricity price time series (outcome of the first
model) also has a twofold role since it is used to determine the hydropower production policy
and the system’s economic performance. Following this, all aforementioned models (rainfall
and electricity price generator, rainfall-runoff, irrigation demand generator, hydropower
policy model) feed the water-energy system operation model with three dynamic inputs, i.e.,
reservoir inflow, target energy, andirrigation demand. Eventually, a post-process assessment
is employed that summarizes the system’s performance in terms of economy and reliability,
as well.
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7.2.2 Handling uncertainties

The conventional practices for designing and managing multipurpose reservoirs ignore or
misuse the combination of all facets of uncertainty. The aforementioned models can be easily
adjustable inorder toaccount for the uncertainty of their processes, i.e., inflow, energy target,
and irrigation demand, which are also the key inputs to the operation model of the water-
energy system. In this respect, three different approaches are adopted for each component
to represent them as dynamic variables. Specifically, for the generation of inflows, the
emphasis is given to the configuration of both climatic and epistemic uncertainty by
employing stochastic generation of synthetic rainfall and randomly-varying parameters of a
rainfall-runoff model (Figure 7.3). As explained in section 5.3.1, this model is essential, since
it offers a large sample of data and account for the changing hydroclimatic conditions.
Furthermore, the estimation of the energy target includes the incorporation of the energy
market and social uncertainty that refer to the generation of electricity price time series
through a stochastic model and the operation policy as an operator’s decision, respectively
(Figure 7.3). Finally, the irrigation demand is driven by climatic and social uncertainties since
it depends on the hydrometeorological conditions and human perception (Figure 7.3). The
proposed implementation of the individual procedures, also associated with their
uncertainties, is further described.
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Figure 7.3:: Incorporation of different facets of uncertainty in the three input processes.

For the generation of inflows:

Epistemic uncertainty: Extraction of m parameter sets by calibrating the rainfall-runoff model
across different windows of historical data, and by simultaneously applying randomly varying
weights to the multi-objective performance measure, as described in section 3.4.3. The
outcomes of this procedure are m ensembles of reproduced past inflows that are considered
equifinal. We remind that the conventional calibration approach that ignores uncertainty
implies extracting a unique set of parameters by assigning the full set of historicaldataand a
specific formulation of the objective function. Hereafter, this will be referred to as the
“original” parameter set.

Climatic uncertainty: Generation of m ensembles of synthetic precipitation time series (the
primary climatic drivers of all hydropower systems)through the stochastic model, presented
in section 3.1.3. Next, these are used as inputs to the rainfall-runoff model by considering the
“original” set of optimized model parameters, thus providing m ensembles of simulated
inflows.

Combination of climatic and epistemic uncertainty: Combination the m ensembles of synthetic
precipitation data with the m sets of equifinal model parameters toaccount for both kinds of
uncertainty.
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For the estimation of the energy target and the generation of electricity prices:

Energy market uncertainty: Generationm ensembles of synthetic electricity price time series
through the associated stochastic model.

Social uncertainty: Estimation of the actual target energy, according to the operators
desirable policy, by using as explanatory variables the m ensembles of synthetic day-ahead
electricity prices.

For the generation of synthetic irrigation demands:

Social uncertainty: Generation of m ensembles of dynamically changing irrigation demands,
which are inherently driven by the actual precipitation, yet they may also depend on the
system state, i.e., the reservoir storage. We highlight that the farmers and other stakeholders
often force the operators to release more water under high water availability conditions,
which is yet an irrational and sub-optimal practice, in contrast to the main role of reservoirs
as regulators in the long term. Eventually, this allows for embedding social uncertainty into
the reservoir operation.

Following the above, different settings are built around the operation model of the water-
energy system through a modular assessment procedure to quantify all aforementioned
aspects of uncertainty:

Setting 1: Combination of historical inflows with the m ensembles of synthetic electricity
prices to account for the energy market uncertainty per se.

Setting 2: The rainfall-runoff model is driven with historical precipitation data and m equifinal
parameter sets to derive m ensembles of simulated inflows, which are next combined with
m ensembles of synthetic electricity prices to account for both the epistemic and energy
market uncertainty.

Setting 3: The rainfall-runoff model is driven with m ensembles of synthetic precipitation data
and the original parameter set to derive m ensembles of simulated inflows, which are next
combined with m ensembles of synthetic electricity prices to account for both the climatic
and energy market uncertainty.

Setting 4: The rainfall-runoff model is driven with m ensembles of synthetic precipitation data
and the m equifinal parameter sets to derive m ensembles of simulated inflows, which are
next combined with m ensembles of synthetic electricity prices, to account for climatic,
epistemic and energy market uncertainties.

Setting 5: Similar to setting 4, by alsoassigning dynamic irrigation demands, thus accounting
for the climatic, epistemic, energy market and social uncertainties under a common context.

These settings are next applied to two practical problems, namely the assessment of existing
reservoir policies and their optimization.

7.2.3  Modelling specifications

This section describes the proposed framework's modelling challenges and associated
assumptions and objectives. An overall assumption involves the time step of the simulation.
In particular, allmodels are built upon the daily scale since, from a hydrological point-of-view,
this ensures very good accuracy with respect to the long-term operation of the water-energy
system, while from the energy market perspective, it is the minimum acceptable resolution
for representing the hydropower scheduling (Shen et al., 2020).
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6.2.3.1 Rainfall and electricity price generators

Both models are based on stochastic theory, thus providing the ability to account for the
uncertainty in modelling physical (e.g., precipitation) or non-physical processes (electricity
price, driven by the energy market uncertainty). However, different approaches should be
followed for the two processes since their probabilistic properties and dependence structure
exhibit significant differences across all temporal scales of interest. The methodological
frameworks of the rainfall and electricity price generators are described in section 3.1.3and
3.3.3, respectively.

6.2.3.2 Rainfall-runoff model

To estimate the runoff generated over the upstream catchment, a flexible, parsimonious, and
easily adjustable model should be selected. This must combine the ability to run long-term
simulations daily with minimal computational burden. Inour case, we are taking advantage of
the lumped scheme as describedinsection 5.3.1, which is applicable for long-term simulations
accepting stationarity of input processes and both steady-state and changing basin properties.
To calibrate the model and extract the optimal set of parameters (totally eight), the use of the
multi-objective performance measure is necessary, since it aggregates three typical goodness-
of-fitting metrics (NSE, KGE, bias). The outcome of this model, i.e., the daily runoff, will next
feed the water energy system operation model.

6.2.3.3 Hydropower policy model

The participation of a hydropower plant in the daily energy mix is a demanding task since it
depends on the available reservoir storage, the possibility of spilling, and the energy market’s
trend. In particular, under flooding conditions, hydropower is set as the higher priority in the
mix to produce energy, while it is also used in peak hours to reduce the energy price and
maintain the stability of the electricity system. However, under normal operation conditions,
the estimation of its participation is doubtful and uncertain.

The conventional practice for the operation of multipurpose reservoirs, and consequently, the
estimation of the energy scheduling, are mainly based on steady-state methods. Specifically,
it is considered a-priori, a constant or seasonally constant target energy production in order
to achieve a desirable capacity factor for the power plant (Cordova et al., 2014; Ghimire &
Reddy, 2013). This research aims to move forward with this simplified approach by using state-
of-the-art probabilistic tools to predict the participation of hydropower plants in the energy
mix. These refer to copula models that are able to describe dependent random variables. In
hydropower reservoirs, these could be the observed day-ahead energy prices and operational
data with respect to hydropower scheduling, e.g., the participation of the power plant in the
energy mix, the frequency of activation of the power station, etc.

Here, we use copulas to develop conditional quantile functions of the response variable, i.e.,
hydropower sharing, with respect to a vector of regressors, namely potential day-ahead
energy prices. Thus, each quantile function represents an operation policy since the
hydropower plant follows a consistent approach regarding energy production within a range
of electricity prices. In order to incorporate the social uncertainty with respect to the
operation policy, three quantiles of interest are denoted that correspond to conservative,
median, and energy-centric management policies.

6.2.3.4 Water consumption uses

A multipurpose hydropower reservoir is usually called also to fulfil consumptive water uses,
i.e., water supply and irrigation. For estimating the energy demand, the methodology of
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section 6.2.3.3 will be used, while for the water uses, a statistical analysis should be employed
to embed the hydrometeorological drivers. This research aims at estimating the monthly
water demand as a dynamic input for the water-energy system operation model that accounts
for the monthly precipitation. This allows to follow a rational management policy, in which
the released water for water-related uses corresponds with the hydroclimatic conditions of
the area of interest. This model will be further expanded toaccount for the climatic and social
uncertainty by means of rainfall variability and irrational practices in the irrigation demands,
respectively. Inour case, the focus is givento theirrigation demand, since contrasting to water
supply demands, these are large amounts of water and fluctuate across seasons.

6.2.3.5 Water-energy system operation model

To assess and optimize the management policy of the reservoir, the daily operation of the
water-energy system should be represented by means of a simulation model implementing
the reservoir mass balance as well as the technical characteristics of the entire system
(regulatorytank, penstocks, water inlet, etc.). As already mentioned, this model is fed by the
outcomes of all other modelling components. Specifically, the outcome of the rainfall-runoff
model is the inflow tothe reservoir, while the energytarget estimation model determines the
long-term policy of the operator regarding a desirable trade-off between water and energy
demands, i.e., conservative, median, and energy-centric.

Next, todefine the operational rules of the multipurpose reservoir, an optimization procedure
is employed in the long run. The rationale is to maximize the benefits of the water-energy
system without substantially changing the existing water allocations. In this vein, the
optimization problem lies in the maximization of profits derived from water and energy
delivery, simultaneously ensuring a high reliability level for the two consumptive uses (water
supply and irrigation). The model should describe the strategic management policy of the
reservoirin a systematic matter, e.g., using hedging rules (You & Cai, 2008), that will next be
control variables (parameters) to optimize.

Inour case, andin order to ensure a parsimonious formulation of the optimization procedure,
these rules are denoted through two characteristic reservoir levels, z;,;; and zg;er g, below
which the releases for irrigation and energy production, respectively, are prohibited.

7.3 Case study

7.3.1 Layout

The proposed uncertainty-aware simulation-optimization framework for hydropower
reservoirs is employed in the case study of Plastiras, which was constructed at the end of the
1950s. Plastiras dam and the associated engineering works, as demonstrated in Figure 7.4,
belong to the first hydroelectric projects in Greece. Itis a diversion dam, located in Tavropos,
a tributary of river Acheloos. The reservoir has a useful capacity of 286.3 hm3, while its level
ranges from +776.0 (intake level) to+792.0 m (spill level). The total drainage areais 161.3 km?,
where 24.7 km? is the maximum area captured by the lake. Based on hydrometeorological
during the years 198010 2020, the mean annual precipitation over the watershedis 1609 mm,
and the mean potential evapotranspirationis estimatedto be up to 838 mm, thus resulting in
967 mm of runoff (corresponds to a mean annual inflow of 155.9 hm3).

The electric power station has an installed capacity of 129.9 MW (3 Pelton turbines of 43.3
MW), representing 4.3% of the total capacity of the large hydropower projects in Greece. The
station is located on the west side of the Thessaly plain, 577 m lower than the abstraction
level (+776 m), thus framing an ideal system for hydroelectric production. After passing
through the turbines, the outflows are conveyed to a regulating tank, downstream of which
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they are distributed for irrigation and water supply of human settlements in the plain. The
regulating tank has a capacity of 600,000 m3, while the irrigation channels and the drainage
system cover 887 km and 823 km, respectively. The water abstraction project includes a
tunnel of 2,625 m in length with a diameter of 3.5 m. The capacity of the penstock is 33.5
m3/s, while the water intake capacity is 26.4 m3/s. Its layout is depicted in Figure 7.5.
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Figure 7.5: The layout of the dam and the associated works.

7.3.2  Operational history

This hydropower reservoir was chosen due to its historical evolution and associated conflicts.
Inparticular, the initial design was dedicated to energy production, but this has been changed,
and for along time, hydropower production has been dictated by irrigationand water supply
needs. Specifically, the shift from the energy-centric operation policy occurred in the mid-
1980s, as demonstrated in Figure 7.6, when the irrigation needs were increased. On top of
that, additional operational pressure for reservoir management wasraised due to the touristic
development. Specifically, the natural scenery attracted visitors, and numerous resorts were
created. As a result, the lake's landscape strongly affects the area's economic development,
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and thus, the reservoir’s level should be maintained high. These conflicting objectives of the
different groups of interest, i.e., farmers, energy stakeholders, and hotel owners, further
stress the successful management of this reservoir. For these reasons, several studies have
been implemented to achieve a satisfactory trade-off between these conflicting targets (e.g.,
Christofides et al., 2005; Efstratiadis & Hadjibiros, 2011).
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Figure 7.6: Historical evolution of monthly releases.

7.3.3  Modelling assumptions and estimation of the system’s drivers

The implementation of the proposed framework requires the representation of the main
system’s drivers, i.e., precipitation, runoff, water and energy demands, as well as electricity
prices, in stochastic-probabilistic means. In particular, the hydrometeorological inputs are the
historical data of precipitation, evapotranspiration, and runoff from 1980-2021. Next, for the
energy market processes, the historical data are used on electricity prices and participation of
hydropower at the hourly scale in Greece. Also, the water releases for irrigation and water
supply are used for the social-associated processes. Inorder to provide alarge sample for the
uncertainty-aware procedure, we employ the individual settings of the framework for 1000
scenarios (ensembles) of precipitation, inflow, and electricity prices, considering a time
horizon of 20 years (7305 days, in total).

7.3.4  Operational policies — Target energy

Taking advantage of a probabilistic tool, i.e., the copula model, we can predict the hours of
operation of a hydropower plant based on the day-ahead energy price. To formulate this
model, the energy market data are usedfor a period of sevenyears, i.e., 2015-2022, regarding
the share of hydropower andthe day-ahead energy price in Greece (only this short period can
be considered representative of the current status of the Greek electricity system). As
demonstrated in Figure 7.7 and Figure 7.8, the energy price and the participation of
hydropower are highly correlated. Particularly, in 2022 the incorporation of hydropower in
the energy mix is identifiably increased, mainly due tothe energy crisis. This tactic contributes
to decrease the energy price, if possible, or to maintain the energy prices low.

Our statistical analysis is employed after applying a classification to the dataset since no
correlation was detected in low and median range values due to the inherent complexity of
multipurpose reservoirs. For instance, the operation of a hydropower plant may be dictated
by reasons different from the energy price (e.g., to avoid spills). Figure 7.9 shows the scatter
plot of the day-ahead energy price and the participation of hydropower plants in the Greek
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energy mix, in terms of power production. This analysis regards the electricity prices above
200 €/MWHh, and the coefficient of correlation of the two variables is 0.392.

100
90 W Hydropower
80 H Energy price
70
60

50

. I‘II ‘||H|“||II||
OII“.l.Illllll .lllIIIIIIll II

1 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24
Hour

B
o

Frequency of occurrence

w
(=]

)
o

Figure 7.7: Frequency of occurrence of the maximum participation of hydropower in the mix
and the energy price per hour, for year 2021.
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Figure 7.8: Mean values of hydropower sharing in the mix and energy prices per hour, for
years 2015 and 2022.

To predict the daily participation of hydropower in the energy mix, a copula model is fitted
with respect to day-ahead energy prices, as demonstrated in Figure 7.10. A Gaussian copula
is constructed as the most suitable due to the small data sample and its structure. The
modelling procedure of copulas is given in section 3.5. To account for the uncertainty in the
operation of the hydropower plant induced by socioeconomic and other factors, three
quantiles are selected, i.e., 95%, 50%, and 5%, that represent the operation policy of the
stakeholder. Specifically, these refer to conservative, median, and energy-centric operation
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policies. This operation policy’s discrimination will further allow us to build the assessment
and optimization analysis and, eventually, the post-process to support decisions.
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[
- . e ow . . -
. o o esees e . o
°.
e o coccc e . ” .

Desirable operation

colour
== 5% Quantile
== 95% Quantile
== Observed

200 400 600 800
Energy price (Euro/MWh)
Figure 7.10: Fitting of Gaussian copula in the percentage of participation of hydropower
plants in energy mix across Greece.

7.3.5 Estimation of water demands

Plastiras reservoir is a multipurpose system that fulfils water supply, irrigation, and
hydroelectricity uses. As indicated by the analysis of historical data, the pivotal factor
associated with water demands is irrigation. However, this amount is implemented in high
priority and the desirable reliability should be around 97%. The available historical data for
the water supply covers a period of 2003-2021 and it is in a monthly scale (Figure 7.11). The
average monthly demand is 2.0 hm3, while the minimum and the maximum observed values
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are1.5and 2.8 hm3. On a meanannual basis, water supply uses are a small percentageoftotal
releases, also exhibiting relatively small seasonal and overannual fluctuations, and thus, a
constant monthly pattern is applied.

In contrast, the irrigation uses, taking place from April to September, are crucial for the
operation of the reservoir. For the estimation of the associated demands, two approaches are
followed, namely the rational one, which uses the monthly precipitation as an explanatory
variable, and the irrational one, which also accounts for the available reservoir storage. The
second approach describes the social uncertainty that usually forces the reservoir operator to
violate the established management rules. In Figure 7.12, the rational practice is depicted, in
which the monthly demand for irrigation is a function of the actual precipitation. It is worth
mentioning that the water demands are not correlated with precipitation for the months of
May and September. Thus, we apply the average observed values for the simulation, i.e., 9.9
and 2.1 hm3, respectively.

The rational practice in this case study is rather than an ideal condition for the system. Inthis
vein, we embed the uncertainty induced by the social factor within the assessment and
optimization procedures, thus introducing the irrational practices. These consider the
irrigation demand as a dependent variable of the reservoir storage, thus resulting in a dynamic
modelling procedure. Inthis respect, a cross-correlationanalysis is deployed for the irrigation
season (MaytoAugust), revealing a satisfactory correlation between the reservoir level at the
beginning of each month and the water released for irrigation (Figure 7.13). The functions of
Figure 7.13 will be followed to re-estimate the irrigation demands in the modular analysis, i.e.,
in setting 5 and in the uncertainty-aware optimization of the reservoir’s management.
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Figure 7.11: Historical data of water supply during 2003-2
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Figure 7.12: Estimation of irrigation demand as a function of monthly precipitation (rational
practice) for a) June, b) July, and c) August.
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7.3.6  Uncertainty-aware assessment: inside the modular building process

As mentioned, the assessment of the current reservoir management under uncertainty is built
in two steps. Initially, a conventional practice is followed, by optimizing the operational policy
of the reservoir by means of the two levels of interest, z;,;; and Zgpe gy, ON the basis of the
historical data for precipitation, runoff, water supply, and energy price. The energytarget and
the irrigation demand are estimated as dynamic variables. In particular, for the energytarget,
three policies are adopted, i.e., conservative, median, and energy-centric, that refer to 95%,
50%, and 5% quantiles of Figure 7.10. On the other hand, the irrigation demand is estimated
as a function of precipitation (rational approach; Figure 7.12). The optimal parameters for the
three operational policies and associated performance metrics (profits and reliability) are
givenin Table 16.

Next, the assessment framework is employed for each operational policy by following the
modular procedure, interms of settings 1to5, each one resulting in 1000 ensembles of output
variables, namely profits, energy production, and reliability indices. The model results are
grouped in this respect, as shownin Figure 7.14. Combining the three aforementioned graphs,
a reasonable choice for the best-compromise operational policy will be the median one.
Specifically, in terms of profits, the energy-centric and the median are similar, while from a
reliability perspective, the uncertainty range of this policy is wider, thus making it
unacceptable for some scenarios. In this respect, the uncertainty-aware optimization
frameworkis next implemented for the median operational policy and the last setting (holistic
approach, accounting for all investigated sources of uncertainty).

Table 16: Optimal reservoir levels and performance metrics for the three operational policies
of the power plant, driven by historical data (conventional approach).

Level/metric Conservative | Median Energy-centric
Zenergy (M) 776.7 778.2 778.2
Zirrig (M) 777.1 782.1 791.3
Profits (M€) 17.05 19.64 19.69
Water supply reliability | 1.000 1.000 0.997
Irrigation reliability 1.000 0.856 0.783
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Figure 7.14: Box plots of (a) profits, (b) water supply reliability, and (c) irrigation reliability
resulting from the uncertainty-aware assessment analysis.

7.3.7 Uncertainty-aware optimization

6.3.7.1 Rationale

The proper representation of uncertainty andits incorporation within a strategic management
policy of water-energy systems has a significant operationalinterest. The assessment study so
far revealed the necessity for more sophisticated approaches with respect to optimizing this
policy by single-using historical data, thus ignoring aleatory and epistemic uncertainties.

Inthis respect, the uncertainty-aware optimizationis developedin order to assist stakeholders
via intuitive management tools. Specifically, taking advantage of the holistic approach (setting
5, embedding climatic, epistemic, energy market, and social uncertainty), we seek a globally
optimized parameter set, 2;,,;; and Zener gy by running each one of the 1000 ensembles and

maximizing the average profit. The resulting optimized variables are Zlf‘m-g = 776.7 and
Zenergy = 777.1.

The advantages of optimizing the operational policy under uncertainty instead of employing
conventional, i.e., deterministic, practices are highlighted by introducing, for each scenario,
the so-called unit benefit of the system, e*, expressed as the ratio of the mean annual profit
to the mean annual energy production (€/MWh). This can be contrastedtothe corresponding
mean electricity price, while their difference denotes the additional unit benefit from the
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multipurpose character of the reservoir, i.e., passing water through the turbines to produce
electricity and next fulfilling two other consumptive uses. This unit benefit e* is increased
under the uncertainty-aware optimization procedure, thus revealing the necessity of
incorporating all facets of uncertainty within the real-world operation of the system (Figure
7.15).
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Figure 7.15: Comparison of the two optimization procedures regarding the additional
benefit e* gained with uncertainty-aware approach with respect to the conventional one.

7.4  Clarifying uncertainty for stakeholders

We argue that such sophisticated approaches are hardly to be employed by the stakeholders.
In this respect, a challenge is hidden to “unwrap” the driver’s uncertainty to provide simple
decision-making and insights tools. Considering that the primary uncertain factors originate
from the climate and the energy market, the focus is given to the correlation patterns of the
expected profits with respect to the electricity price and precipitation, respectively (Figure
7.16). The first tool is a simple regression model for estimating the expected annual profits,
as functions of annual precipitation, p, and mean daily electricity price, e. By analysing the
optimized outcomes of the 1000 stochastic scenarios, two areas of interest are distinguished
according to an electricity price threshold, e, = 80 €/MWHh, as follows:

129.2 p%57 €955 ¢ < 80 €/MWh
3.41p%87 066 ¢ > 80 €/MWh

By using this empirical formula, the operator of the system can predict with good accuracy
the expected annual profits (M€) for different conditions of its external environment by means
of climate and energy market, i.e., under combinations of wet/dry years with high/low
electricity prices.

Profit = { (1)
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Figure 7.16: Estimation of profits correlated with electricity price and precipitation for the
two areas of electricity price. a) and b) refer to the area below threshold e, , while c) and d)
to the area above e,

Under changing conditions, this feature can be further improved by accounting for elasticity
metrics. The concept of elasticity is widely explored in finance (Loderer et al., 1991),
engineering (Westergaard, 1952), and hydrology (Andréassian et al., 2016), as well. To all
these applications, this metric describes the sensitivity of the changes in a variable relatedto
changes inits driver. Inthis respect, the system s studied under the elasticity metric of profits,
i.e., therate of change of profits through the partial derivatives of precipitation and electricity
price. Thus, a second decision support tool is introduced. Specifically, for the two areas of
electricity prices, i.e., below and above e, the rate of change of profits due to the uncertain
precipitation and electricity price is calculated. Thus, a manager can estimate the expected
change in profits and the associated risk due to climate or market-oriented shifts using the
copula-basedtools in Figure 7.17. Specifically, copulas (a) and (c) depict the partial derivatives
of precipitation, while (b) and (d) are the partial derivatives of electricity prices for the two
areas of interest. An interesting outcome of this stochastic analysis is that under high
electricity prices, a change inthe average precipitationis not crucial for the associated profits,
while small changes in the electricity price dramatically affect the expected outcomes. This
denotes that the expected profits are highly uncertainand unstable inthe high electricity price
era. In contrast, as shownin Figures a) and c), under relatively low electricity prices, the joint
distribution of the two variables follows Gaussian copulas, thus underlying a “normal”
response of the system with respect to changes in its external drivers.
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Figure 7.17: Copula-based tools for the estimation of the rate of change of profits by
changing the precipitation and the electricity price for the two areas of electricity price. a)
and b) refer to the area below threshold e, , while c) and d) to the area above e,,.

7.5 Conclusions

The objective of this chapter is the assessment and optimization of the operation policy of
hydropower plants under multiple facets of uncertainty. In this respect, the proposed
framework has been adapted for supporting stakeholders and operators in managing
multipurpose hydropower reservoirs in a changing world. Its aim is to represent and
incorporate both aleatory and epistemic uncertainty into a robust and generic modelling
framework, which comprises six highly interconnected models. These are rainfall and
electricity price generators, rainfall-runoff model, irrigation demand generator, hydropower
policy and water-energy system operation model. All aforementioned models are flexible to
account for all uncertain factors. In the context of the case study, the aleatory uncertainty
refers to climatic, social and energy-market processes, while the epistemic uncertainty to the
calibration parameters of the rainfall-runoff model.

First, the principles and modelling specifications are set of handling the uncertainty across
multipurpose reservoirs. Regarding the representation of climatic and energy-market
uncertainty, we consider their underlying processes as random variables, and use stochastic
models for the generation of synthetic rainfall and electricity price data. Next, for the
description of the human-induced procedures, these are discriminated into direct and
indirect, corresponding to the water demands and the operation policy, respectively. For the
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direct component, i.e., the social response, a statistical analysis is employed to express the
water demands as dependent random variables against rainfall and the reservoir state. For
the indirect one, involving the operation policy of the hydropower plant, a copula-based tool
is developed that estimates the desirable energy target according to day-ahead electricity
prices and the operator’s willingness. At the end, three quantiles of interest are denoted that
correspond to conservative, median, and energy-centric management policies of the system.

The proposed framework is applied to Plastiras reservoir in Central Greece, which represents
5% of hydropower production of the country and is subject to multiple and increasing conflicts
and trade-offs between stakeholders and the operator, as well. To reveal the benefits of the
proposed methodology over more conventional, deterministic approaches, a modular scheme
is demonstrated to disentangle the key sources of uncertainty, aleatory and epistemic. Our
results indicate that a better understanding of uncertainty can lead to more efficient
operation policies (as shown in the optimization problem). For instance, in terms of profits,
the energy-centricand median scenarios may be similar, while from a reliability perspective,
their uncertainty range is quite different and for some scenarios unacceptable.

Supporting real-world applications of the proposed methodology is a key aim of the overall
research. To this effect, we offer a toolbox that unwraps the driver’s uncertainty, facilitating
decision-making and providing valuable insights, including the estimation of expected profits
and their elasticity. Using the toolbox, an operator can predict with good accuracy the
expected annual profits for a wide ensemble of future conditions, considering both climatic
and energy market changes. They canalso estimate the expected change in the overall system
performance and the associated level of risk.

In conclusion, this case study not only demonstrates a novel, integrated approach to
hydropower reservoir management under uncertainty but also provides a practical, adaptable
toolbox, paving the way for more resilient and efficient hydropower systems in an era of
significant environmental and market variability.
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8 Conclusions and Discussion

8.1 Summary of thesis key research novelties

This thesis, entitled ‘Uncertainty-aware simulation-optimization framework for water-energy
systems”, addresses key facets of uncertainty within the water-energy nexus across different
scales of interest. These spans from the designand the operation of standalone works to the
long-term management and operation of complex water-energy systems, offering a wide
range of valuable tools for policy-making.

In particular, the general key novelties are:

We combined three probabilistic theories, by introducing the so-called triptych of: (a)
statistics, (b) stochastics and (c) copulas. Each theory is formalized to serve several
modelling approaches, i.e., statistics for accounting for the marginal properties of
independent variables, stochastics also for accounting for dependencies across scales, and
copulas for describing correlations among variables and also quantifying the joint
uncertainty of simulated outcomes.

We explored and described all key drivers, internal processes and their feedbacks across
the water-energy nexus, originated from the climate, the technical system, the society
and the energy market, in an uncertainty-wise way. This contributes towards the
necessitated paradigm shift in the design, long-term management and assessment of
water-energy systems, since our research provides the methodological architecture of
handling hydroclimatic, social, technical and energy market components under an
uncertainty context.

By integrating these multidimensional factors, varying from climate to the socioeconomic
environment, our research sets the specifications and provides a robust modelling
framework capable of accounting for the multifaceted uncertainties within the water-
energy nexus. Thus, we introduce a generic uncertainty-aware simulation-optimization
framework for the water-energy nexus that, eventually, offers valuable tools for
policymakers, planners, and stakeholders to make informed decisions and formulate
robust strategies for managing water and energy resources in an uncertain future.

Taking advantage of real-world case studies, our frameworkis tailored for stakeholders to
unwrap the driver’s uncertainty, providing valuable insights, including the estimation of
expected profits and their elasticity. Specifically, by using all proposed decision-support
tools the system’s operator is well-informed to predict with good accuracythe expected
annual profits and the level of risk for a wide ensemble of future conditions, considering
climatic, social and energy market changes.

In addition, the specific key innovations are:

We introduced a generic formula to describe the fuel-energy conversions under
uncertainty. This comprises six parameters, the first four refers to the technical
characteristics of the power plant, while the last two denote as random variables and
define the shape of the efficiency curve.

We formulated a generic procedure for simulating the renewable energy sources,
expressing its key components as random variables. In this respect, all related engineering
problems, i.e., design, long-term performance assessment, scheduling are effortlessly
expressed in probabilistic terms.
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e Focusing on the social uncertainty, we substitute the oversimplified and static concept of
the entire urban area as a “node” by a dynamic social sub-system, which interacts with
the technical one, and reflects the behavioral rules of society. On top of that, we
embedded the indirect incorporation of the energy market (and its uncertainty, within a
water supply system, by considering the energy price as a stochastic component, thus
leading to a stochastic water price.

e Focusing on the energy market uncertainty, we provided a stochastic modelling
framework for reproducing the electricity price in stochastic terms and offered a copula-
basedtool for predicting the electricity price across different temporal scales of interest.

In Table 17, we provide a “checkbox” that includes the water-energy case studies, starting
from a standalone case (i.e., energy market, renewable project) ending with a water-energy-
society nexus (i.e., hydropower reservoir), as explored in this research, with the associated
uncertainties.

Table 17: Overview of water-energy cases (chapter titles) and investigated uncertainties.

Energy

Case Climatic  Social Epistemic
market
From long-run simulation to forecasting X
of EU electricity market
Uncertainty-wise design and assessment
. X X X
of renewable projects
Water supply systems under the concept X X X
of water-energy society-nexus
Dealing with the conflicts of the water-
energy nexus: the case of multipurpose X X X X

reservoirs

8.2  Future research questions

The future research paths follow a question-based pyramid. In particular, these are:

What if we expand this framework to incorporate additional facets of uncertainty?

The proposed framework is easily adjustable to incorporate more facets of uncertainty, since
its architecture follows a “lego” technic, by building each source of uncertainty block by block
within the simulation-optimization. By considering an even wider range of uncertainties, we
can create a more robust and adaptable system that reflects the complexities of real-world
scenarios. This could involve accounting for facets of uncertainty derived by technological
progress, operational disruptions, geopolitical risks, and more socio-economic factors (i.e.,
operator’s decisions etc.). In particular, this framework can be easily adjusted in order to
consider technologicalimprovement of the equipment, and/or disruption due to maintenance
within the lifecycle of the project. In addition, we can incorporate harmful events for the
project under study, e.g., cyber-physical attacks. Overall, the expansion of this framework to
incorporate more facets of uncertainty could enhance its effectiveness and applicability.
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How can we couple large-scale water-energy systems, such as those at the country level, and
describe them in terms of the proposed framework?

The embedding of large-scale systems within the proposed framework requires to consider
several key aspects. Firstly, we must account for the interconnectedness and conflicts
between water and energy systems, recognizing that changes in one can significantly impact
the other at the large-scale. This involves understanding the complex dynamics of water
availability, energy production, and consumption patterns within the context of broader
environmental and socioeconomic factors. In this respect, the framework should be expand
to allow for the modeling of large-scale feedback loops and dependencies across the water-
energy nexus. For instance, at the basin scale the hydropower reservoirs serve as water
sources and flood regulators, while at the national grid scale these are the major power
sources to offer the desirable stability. However, extreme events, i.e., an extended drought,
affects both the country’s hydropower generation (national scale) and the water supply (basin
scale). In addition, we remark the need of the integration of various sources of uncertainty
that affect both water and energy systems. This could include factors such as large-scale
hydroclimatic variability, under a multivariate stochastic context, anthropogeography
estimations, technological advancements, policy changes, and geopolitical tensions. Overall,
integrating large-scale water-energy systems into the proposed framework requires a
comprehensive understanding of their complexities and uncertainties. By capturing them, we
can better understand the potential cascading effects of disruptions within the system and
identify strategies to enhance resilience.

What if we develop a decision-support system that incorporates the proposed framework?

Building on the suggested architecture, a decision-support system (DSS) could greatly improve
our capacity to make well-informed choices for large-scale water-energy systems. In
particular, by leveraging data analytics, modeling techniques, and scenario analys es within the
framework, the decision-support system may offer valuable perspectives on the possible
effects of various approaches and interventions on the water-energy nexus being examined.
Moreover, a decision-support system could facilitate stakeholder engagement and
collaboration by providing a platform for sharing information, conducting simulations, and
exploring alternative scenarios. This cooperative strategy canstrengthen agreement, improve
decision-making processes, and enhance the resilience of water-energy systems to future
uncertainties and shocks. In addition, this would enable involved parties to evaluate trade-
offs, prioritize actions, and develop robust plans that account for uncertainties and
complexities inherent in these systems.

How can we provide more tools to policy makers, that incorporate simultaneously long-term
and operational information?

Policy-makers need to be ensured against long-term objectives and immediate operational
strategies. In this respect, an enhancement of the proposed framework that dynamically
evaluate policies and interventions over time within two horizons, short and long-term is
needed. Specifically, this should involve monitoring the effectiveness of policies, adjusting
strategies as needed, andincorporating new information to ensure alignment with long-term
goals while addressing short-term challenges. Undoubtedly, this is in line with the decision
support system, that incorporates all uncertainty-aware scenarios and interventions.
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10 Appendix

10.1 Supplementary material for chapter 4
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Figure 10.1: Fitting of the theoretical autocorrelation function to the historical electricity
prices for Switzerland, Netherlands, France, Greece, Portugal, Italy.
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Figure 10.2: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of Switzerland.
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Figure 10.3: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of Netherlands.
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Figure 10.4: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of France.
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Figure 10.5: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of Greece.

Portugal
Prob. of Exceedance Prob. of Occurence Prob. of Occurence
100, Theoritical Simulated
0.0254
10"
0.0201
1021 0.010
< colour . —0.0151
& 3] = QObserved {f il
a 10 = Simulated ? X
) 0.005 0.0101
107
) 0.0051
] ( M
0.000 0.0004
10%0%%0"0"*10%10* %10’ 0 250 500 750 0 200 400
X X X

Figure 10.6: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of Portugal.
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Figure 10.7: Fitting of three-parameter Gamma distribution function to the historical and
simulated electricity price data of Italy.
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Table 18: Monthly-based comparison of historical and synthetic mean values for the daily
electricity price (Switzerland, France, Greece, Netherlands, Portugal, Italy).

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Switz. Hist 829 743 813 673 59.6 66.7 87.1 97.0 98.5 89.1 90.5 106.9
Sim 82.1 76.1 86.2 685 60.6 67.0 90.3 99.5 100.5 87.6 89.2 108.2
France Hist 76.2 684 766 66.8 580 664 89.6 97.3 97.0 82.5 85.0 100.9
Sim 839 76.8 915 776 659 770 1085 120.8 114.1 889 921 116.4
Greece Hist 819 723 779 721 724 76.8 94.5 107.4 108.3 955 96.9 108.5
Sim 814 725 774 718 725 765 93.4 107.4 108.7 95.6 96.1 107.9
Neth. Hist 68.8 63.6 71.2 614 581 652 78.1 92.7 923 75.2 76.0 0916
Sim 714 66.0 756 63.1 60.6 665 83.1 1058 99.4 77.7 784 100.9

Port. Hist 72.0 60.2 703 594 617 664 668 68.5 743 79.8 759 82.2
Sim 759 625 798 63.2 653 69.0 689 71.3 77.2 835 787 86.9
Italy Hist 77.0 704 786 69.2 627 71.2 982 106.7 106.1 889 84.1 963

Sim 775 732 775 70.0 657 709 89.6 93.6 95.8 84.8 88.1 99.8

Table 19: Monthly-based comparison of historical and synthetic standard deviation values for
the daily electricity price (Switzerland, France, Greece, Netherlands, Portugal, Italy).

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
switz.  Hist 61.5 56.2 90.3 67.7 555 721 111.0 142.1 1200 67.4 71.1 111.2

sim 57.8 556 869 648 537 689 102.6 121.6 1060 62.4 66.4 104.4
France  Hist 60.9 527 873 709 557 709 119.7 1451 1184 63.7 66.1 113.8
sim 683 589 989 811 645 79.9 1343 1547 1280 682 702 1245
Greece Hist 588 514 765 672 588 638 971 1269 1248 77.4 752 93.4
sim 562 503 748 658 564 605 922 119.0 1195 775 72.0 893
Neth.  Hist 53.9 47.1 767 557 506 581 873 131.1 102.6 585 60.0 102.6
sim 528 473 745 533 501 562 831 1230 971 553 582 982

Port.  Hist 521 522 87.1 553 503 435 343 394 456 558 495 71.9
sim 582 57.6 97.5 612 580 49.9 387 440 518 626 548 802
Italy Hist 597 549 89.8 717 59.5 752 1273 1552 1265 71.2 643 1026

sim 469 392 694 528 46.1 571 9.8 1184 973 64.0 652 939
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Table 20: Monthly-based comparison of historical and synthetic skewness values for the daily
electricity price (Switzerland, France, Greece, Netherlands, Portugal, Italy).

Switz.

France

Greece

Neth.

Port.

Italy

Hist
Sim
Hist
Sim
Hist
Sim
Hist
Sim
Hist
Sim
Hist

Sim

Jan
1.620

1.640
1.779

2.098
2.290

2.066
1.901

1.966
2.085

1.912
1.970

2.880

Feb
1.638

1.831
1.578

1.845
2.364

2.142
1.697

2.162
2.254

2.187
1.814

2.708

Mar
2.560

1.917
2.461

2.207
2.515

2.305
2.567

2.044
2.835

2.101
2.633

2.837

Apr
2.139

1.891
2.803

2.741
2.321

2.054
2.112

1.906
2.351

2.021
2.510

2.962

May
1.856

1.772
1.919

2.458
2.152

1.768
2.139

2.102
1.865

2.298
2.044

3.079
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Jun
2.483

2.162
2.521

2.342
2.436

1.799
2.330

2.304
2.069

2.209
2.454

3.036

Jul
2.399

2.198
2.585

2.879
2.332

1.945
2.499

2.189
1.453

2.039
2.471

3.108

Aug
2.717

2.040
2.736

2.519
2.490

2.091
2.841

2.195
1.482

2.082
2.572

2.873

Sept
2.572

2.083
2.599

2.225
2.371

2.034
2.437

2.223
1.307

2.349
2.364

2.906

Oct
1.621

1.932
1.866

2.054
1.651

2.211
1.866

1.841
1.669

2.024
1.732

3.125

Nov
1.593

1.841
1.700

2.019
1.391

2.040
1.802

2.024
1.806

1.900
1.834

2.863

Dec
1.820

1.769
1.869

2.275
1.558

2.074
1.964

2.107
2.246

1.848
2.070

2.865



National Technical University of Athens
Dept. of Water Resources and Environmental Engineering
Uncertainty-aware simulation-optimization framework for water-energy systems

10.2 Supplementary material for section 5.3.4
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Figure 10.8: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the January’s data.
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Figure 10.9: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the February’s data.
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Figure 10.10: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the March data.
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Figure 10.11: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the April data.
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Figure 10.12: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the June data.
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Figure 10.13: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the July data.
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Empirical and theoretical dens. Q-Q plot
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Fitting of marginal distribution of the monthly-based error processes, w',
regarding the August data.
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Figure 10.15: Fitting of marginal distribution of the monthly-based error processes, w',

Empirical and theoretical dens.

Q-Q plot

regarding the September data.
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Empirical and theoretical dens. Q-Q plot
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Figure 10.16: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the October data.
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Figure 10.17: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the November data.
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Figure 10.18: Fitting of marginal distribution of the monthly-based error processes, w',
regarding the December data.
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