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Abstract

» In the presence of long-range dependence, several difficulties emerge in stochastic
methods, especially in intermittent and highly-skewed processes, such as precipitation,
which cannot be fully supported by the established models in the literature.

» Here, we analyze a large set of rainfall data in Greece comprising ground records as
well as non-conventional data from reanalyses and satellite, and we identify cluster
periods of droughts and wet-years in both extreme tails, raising the challenge for their
stochastic description.

» In this light, and after statistical analysis of the whole dataset, we apply the latest
version of a genuine stochastic method (i.e., direct use of the process of interest
without any transformation, and with a focus on the long-range dependence under
various stochastic behaviours [1], and we discuss on the implications of the results for
future hydrological design scenarios.




1. Introduction

* In the framework of the implementation of the European Union Flood Directive [2], and for the construction of
the ombrian curves (rainfall intensity—-timescale-return period relationships, or ese intensity—duration—frequency
curves) for the entire Greek territory, we we analyze a large set of rainfall data in Greece comprising ground
records as well as non-conventional data from reanalyses and satellite, and we identify cluster periods of
droughts and wet-years in both extreme tails, raising the challenge for their stochastic description.

* The data consist 940 hydrometeorological stations, among which 783 stations were found to fulfil criteria of
reliability, with some had sufficient length (of about 60 years or more) to allow the investigation of climatic
variation and identification of possible climatic events. [3]

* Many methodologies for stochastic analysis exist in the literature, such as linear, non-linear —e.g., bivariate,
multivariate copula—, decalcomania, swap, disaggregation, stationary-nonstationary; however, in the presence of
long-range dependence [4,5], several difficulties emerge in stochastic methods, especially in intermittent and
highly-skewed processes, such as precipitation, which cannot be fully supported by the established models in the
literature.

* The proposed genuine stochastic method (i.e., direct use of the process of interest without any transformation, and
with a focus on the long-range dependence) has the advantages/limitations of:

v' Separate estimation of the dependence structure and the marginal distribution.

v' Explicit simulation of both (no use of non-linear transformations).

v' Exact representation of the correlation structure.

v’ Approximation of the marginal distribution through the preservation of moments.
v' Simulation of certain aspects of the intermittent behaviour.




2. Genuine stochastic framework

The synthesis is accomplished using the implicit generation scheme presented in [1] for arbitrary marginal
distribution and dependence structure trough the Symmetric-Moving-Average algorithm Here, is an example

with the preservation of the first four moments [6].
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where the process x is expressed through the sum of
products of coefficients (not parameters) 4; and
white noise terms v, where [ theoretically equals
infinity but a finite number can be used for
preserving the dependence structure up to lag I.

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06




3. Precipitation Dataset

Additionally, non-conventional data were also
examined, such as reanalysis and satellite data,
which had to be re-calibrated with ground data,
and along with the monthly data of the Global
Historical Climatology Network (GHCN) from
neighbouring countries a set of 128 stations was

finally created.
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Figure 1. Number of stations with long maximum daily rainfall time series and with complete annual
average daily time series in the entire Greek territory in the period 1940-2022. Before 1940, there were
two stations, Athens and Thessaloniki.
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Figure 2. Map of geographical distribution of average daily precipitation produced by the BSSE
method combining ground data at 128 stations (red diamonds) in Greece and neighbouring countries
with IMERG satellite data. The black lines shown are the divides of the water districts of Greece. The
colour divisions (classes) are based on quantile classification so that each class contains equal number
of grid points. The lower class, 0.6—1.0 mm, is seen only in the sea (not on land).




4. Precipitation trends in the longest records
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Figure 3. Time series of daily precipitation series in Athens at the Hill of Nymphs station of the

National Observatory of Athens (average daily values start in 1860 with a total length of 161 years;

daily and maximum daily values start in 1864 with a total length of 155 years). The graph also shows

(a) the high and low records, (b) the climatic values (30-year averages), and (c) the fitted linear trends.

(Upper): average daily rainfall; (Lower): maximum daily rainfall.
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Figure 4. Time series of daily precipitation in Thessaloniki (average daily values start in 1892 with a
total length of 127 years; daily and maximum daily values start in 1930 with a total length of 93 years).
The graph also shows (a) the high and low records, (b) the climatic values (30-year averages), and
(c) the fitted linear trends. (Upper): average daily rainfall; (Lower): maximum daily rainfall.




5. Maximum daily precipitation
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Figure 5. Records of maximum daily precipitation depth (upper) and frequency thereof per year
(lower) for the 238 stations with long time series of annual maxima in the entire Greek territory. The
confidence limits in the lower panel have been calculated from the binomial distribution, assuming

independence and identical distribution.




6. Long records of maximum daily and hourly precipitation
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Figure 7. High and low records of average daily precipitation depth per year (upper) and frequency
thereof per year (lower) for the 62 stations with long and complete daily or monthly time series in
the entire Greek territory. The confidence limits in the lower panel have been calculated from the

binomial distribution, assuming independence and identical distribution.
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Figure 8. Probability distribution of the changes of annual average daily precipitation (as percentages
of the all-time average rainfall depths) for the 62 stations with long time series of daily or monthly
time series in the entire Greek territory. Climate difference, expressed as a percentage per decade, is
1/3 of the difference between the last two 30-year climatic values. Statistical expectations have been
estimated by the Monte Carlo method with normal distribution and a Hurst parameter of 0.75.
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Figure 9. Records of maximum hourly precipitation depth for the 18 stations with long time series of
hourly precipitation in the entire Greek territory.




7. Concluding remarks

* The two over-century-long rainfall time series of Greece (Athens and Thessaloniki) show that the record average
and maximum rainfall depths occurred in the 19th or early 20th century.

* The current period can be characterized as normal without notable climatic events.

* Both the temporal distribution of record highs and climatic fluctuations thereof are in agreement with
theoretical expectations under stationarity.

« There is a balance between positive and negative climatic trends, which may be physically justified by the
presence of long-range dependence in the precipitation process.

» Please share your thoughts; what type of stochastic description should we use to simulate the precipitation
process in Greece?
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