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A B S T R A C T

This study introduces a global clustering approach for reference evapotranspiration (ETo) based on spectral 
clustering techniques. By analyzing 3139 stations worldwide, the method segments the globe into 45 unique 
clusters that reflect shared ETo dynamics. This clustering technique not only enhances the accuracy of ETo 
estimation but also provides a simplified method for computing ETo in areas where meteorological data are 
limited. The spatial extent of these clusters allows for the application of pre-calculated parameters, streamlining 
ETo calculation and reducing the computational complexity typically involved. This approach draws an analogy 
to the Köppen-Geiger climate classification, aligning ETo clusters with well-established climate zones, thus 
revealing patterns between evapotranspiration and global climate behavior. Moreover, the study demonstrates 
that the clusters can be utilized to calibrate other ETo estimation methods, offering a tool for guiding regional 
model adjustments. The validation of this method, using 30 stations from diverse climates, showed strong cor-
relations and acceptable performance metrics, indicating its applicability for hydrological and engineering tasks. 
In conclusion, this global ETo clustering provides a robust, accessible framework for water resource manage-
ment, irrigation planning, and climate adaptation strategies, particularly in data-scarce regions.

1. Introduction

Evapotranspiration (ET) represents a historically critical component 
of the global water cycle, as it encapsulates the combined processes of 
water evaporation from land surfaces and transpiration from plants 
(Monteith, 1981; Penman, 1948; Ritchie, 1972). For agricultural, hy-
drological, and environmental applications, the accurate estimation of 
evapotranspiration, specifically reference evapotranspiration (ETo), is 
vital in assessing crop water needs, planning irrigation schedules, and 
modeling hydrological processes under varying climatic conditions. ETo 
represents the amount of evapotranspiration that would occur under a 
standard set of conditions, assuming a specific crop (such as grass) under 
well-watered conditions, providing a standardized measure across 
different climates and ecosystems (Allen et al., 1998; Hargreaves and 
Allen, 2003; Hargreaves and Samani, 1982; Tegos et al., 2015b). Its 
calculation is a foundation for understanding more specific evapo-
transpiration needs for various crops, especially under stressful condi-
tions like droughts or heatwaves.

Traditionally, ETo has been calculated using, temperature, radiation- 
temperature, combination, and multivariate models, such as the 
Penman-Monteith equation (PM) (Allen et al., 1998; Doorenbos and 
Pruitt, 1977; McMahon et al., 2016), which integrates meteorological 
variables like temperature, solar radiation, humidity, and wind speed to 
provide a reference estimate. While the PM equation is widely used, it 
requires a substantial amount of meteorological data, which may not be 
consistently available in many regions around the world.

Current methodologies for ETo estimation, while numerous and 
varied (McMahon et al., 2016), often require calibration to tackle spatial 
specificity and sensitivity to local climatic variations. This limitation 
hampers the precision of water resource planning and agricultural irri-
gation scheduling, leading to inefficiencies and increased vulnerability 
to climatic anomalies (Pereira et al., 2020). To tackle this, machine 
learning techniques and clustering methods have emerged as powerful 
tools to enhance the precision of ETo estimates, particularly in areas 
where data availability is limited or where climate conditions vary 
significantly over space and time (Antonopoulos and Antonopoulos, 
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2017; Umutoni and Samadi, 2024). By leveraging these advanced 
techniques, researchers have been able to model ETo more effectively, 
even with incomplete data, and have discovered new patterns in 
evapotranspiration behavior across diverse landscapes (Ippolito et al., 
2024).

For example, in Iran, Kousari et al. (2013) provided a large-scale 
survey of ETo trends, covering the period from 1960 to 2005. Their 
study involved the use of clustering techniques to identify spatial and 
temporal patterns in ETo across the country. By grouping regions with 
similar ETo trends, they were able to assess the impacts of climate 
variability on water resources and agricultural productivity. The study 
underscored the utility of clustering as a tool for regionalizing ETo es-
timates and highlighted the long-term changes in evapotranspiration 
trends, which are critical for understanding the impacts of climate 
change on water availability.

Meanwhile, Demertzi et al. (2016) conducted an in-depth study on 
the hydroclimatic dynamics of Greece by applying multi-parametric 
clustering to both monthly precipitation and ETo data. Their research 
involved the identification of distinct regions based on similarities in 
climatic conditions and the generation of clusters that reflect the spatial 
variability of ETo across the country. The study highlighted the effec-
tiveness of clustering in capturing complex climatic interactions that 
influence evapotranspiration, especially in geographically diverse re-
gions such as Greece, where mountainous terrain and coastal areas 
create significant local climate variations.

Similarly, Bellido-Jiménez et al. (2022) explored the potential of 
machine learning and clustering in Southern Spain, a region character-
ized by frequent droughts and water scarcity. Their study introduced a 
novel approach by applying a regional machine learning-based clus-
tering method to improve ETo estimation, particularly in data-scarce 
regions. The authors demonstrated that this clustering approach out-
performed traditional temperature-based models by grouping meteo-
rological data into clusters with similar ETo behaviors, which improved 
the overall accuracy of the ETo estimates. The results of the study 
underscored the importance of leveraging regional data and clustering 
techniques in enhancing the performance of evapotranspiration models, 
especially in arid and semi-arid regions where accurate water manage-
ment is essential.

In Brazil, where climatic variability is vast due to the country’s size 
and geographical diversity, Ferreira et al. (2022) applied a clustering- 
based approach to improve ETo estimates across different regions. 
Brazil’s climatic zones range from tropical rainforests to arid semi- 
deserts, which present unique challenges for accurate ETo modeling. 
Ferreira et al. used multi-task learning in combination with clustering to 
integrate meteorological data and ETo estimates, producing more ac-
curate models for regions with limited meteorological information. This 
study highlighted the power of combining clustering methods with 
machine learning to overcome data limitations and ensure precise ETo 
estimation in diverse climatic regions.

Di Nunno and Granata, (2023) applied a similar clustering approach 
to predict future ETo trends in the island of Sicily, using CORDEX 
climate data. CORDEX (Coordinated Regional Climate Downscaling 
Experiment) provides high-resolution climate data for different regions, 
and its integration with machine learning techniques has allowed for 
more precise regional forecasts of evapotranspiration under changing 
climatic conditions. Di Nunno and Granata’s work combined clustering 
and machine learning to project future ETo values and identify potential 
water stress scenarios in Sicily. By clustering areas with similar ETo 
trends, they were able to create targeted predictions, providing valuable 
insights for future agricultural planning and water resource 
management.

To our knowledge, a global-scale clustering analysis of monthly 
reference ETo has not yet been conducted. This study introduces a novel 
framework for understanding the spatial distribution of ETo rates and 
their intricate relationship with climatic and geographic factors. By 
segmenting the globe into distinct clusters based on parameters with 

physical meaning, our approach reveals underlying spatial patterns and 
correlations, ensuring that the outcome captures regional environmental 
influences. These spatially coherent clusters serve as a foundation for 
refining and calibrating both new and existing ETo estimation methods, 
providing region-specific parameterizations that enhance model accu-
racy. Furthermore, spatial contiguity enhances the applicability of the 
results, facilitating their integration into hydrological models, devel-
oping more effective water resource management strategies, optimizing 
irrigation systems, and mitigating the impacts of climate variability on 
agriculture and ecosystems.

Apart from the distribution analysis by country, the produced clus-
ters are analyzed in relation to the Köppen-Geiger climate classification, 
which categorizes global climates based on specific temperature and 
precipitation thresholds. While evapotranspiration is inherently influ-
enced by climatic variables, limited past research has explored the 
connection between evapotranspiration patterns and climate classifi-
cations (Akhavan et al., 2018; Almorox et al., 2015; Pimentel et al., 
2023). Through cross-tabulation and percentage distribution analyses, 
we acquired the Köppen-Geiger classes distribution within each ETo 
cluster, enabling a detailed exploration of the interplay between ETo 
patterns and global climate zones.

2. Materials and methods

2.1. The parametric model

The Parametric model (Tegos et al., 2015a,b;2013), provides 
evapotranspiration estimates through calibration based on given 
evapotranspiration data. The model’s performance was satisfactory as 
the proposed framework provides consistent monthly evapotranspira-
tion estimates at point and especially at regional scale. The calibration 
can be performed for either Potential Evapotranspiration (PET) or ETo, 
depending on the intended application. In this study, the model was 
calibrated using monthly ETo data, ensuring that the outcome aligns 
with standardized reference crop conditions.

The mathematical expression of the parametric model, which is 
applicable to temporal scales from daily to monthly, is the following: 

ETo =
a Ra + b
1 − c T

(1) 

where ETo is the reference evapotranspiration in kg m− 2, which is 
equivalent to mm, Ra (kJ m− 2) is the extraterrestrial radiation, T (◦C) is 
the mean air temperature, and a (kg kJ− 1), b (kg m− 2) and c (oC–1) are 
model parameters that should be inferred through calibration, against 
evapotranspiration data, either modelled or measured. We remark that 
from a macroscopic point-of-view, the above parameterization has some 
physical correspondence to the Penman-Montheith (PM) equation, since 
the product a Ra represents the overall energy term (i.e., incoming minus 
outgoing solar radiation), parameter b represents the missing aero-
dynamic term. Finally, the expression (1 – c T) approximates the de-
nominator term of the Penman-Montheith formula, i.e. (1 + γ΄/Δ), given 
the fact that γ΄ is a function of the surface and aerodynamic resistance 
and Δ is the slope of the vapour pressure curve, which is a function of 
temperature (Tegos et al., 2015b).

Tegos et al. (2017), in the context of producing global maps of 
optimized model parameters, argued that a more parsimonious version 
of the Parametric Model, tackles uncertainties due to “blind” calibration 
approaches or overfitting, when the actual ETo data is little informative 
to support the inference of the three parameters, e.g. due to limited 
length of associated meteorological data: 

ETo =
aʹRa

1 − ć (Tmin + Tmax)/2
(2) 

Equation (2) contains two instead of three parameters (parameter a΄ in 
the numerator and parameter c΄ in the denominator) also considering 
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the minimum and maximum temperature, instead of the mean daily one.

2.2. ETo clustering using a’ and c’ parameters

The Parametric approach allows for mapping the spatial distribution 
of the optimized model parameters a’ and c’, instead of its response, i.e. 
ETo (Malamos et al., 2017). This is a major advantage, since it allows 
implementing eq. (2) wherever in the globe, using interpolated values of 
the point (i.e., locally calibrated) parameters. Since the two parameters 
are negatively correlated (Tegos et al., 2017), they reflect the correlation 
of the associated meteorological variables of the parametric formula 
(extraterrestrial radiation, in the numerator, and temperature, in the 
denominator).

While clustering directly based on ETo measurements might seem 
intuitive, it potentially overlooks the complex interplay of climatic 
factors that influence ETo. The chosen methodology, by leveraging the 
Parametric method’s parameters and geographic locations, provides a 
comprehensive view of the climatic and environmental patterns 
affecting ETo, yielding clusters that are both climatically meaningful 
and geographically coherent. This approach ensures that the resulting 
clusters are not only scientifically robust but also practically applicable 
for addressing global water resources and agricultural challenges.

The choice to produce clusters based on the two parameters (a΄ and 
c΄) from the Parametric method using weights that combine geographic 
location of each station along with the corresponding values of the pa-
rameters, versus directly using ETo measurements for clustering, can be 
justified on several grounds.

First of all, this approach reflects the underlying climatic processes, 
since the parameters a΄ and c΄ in the Parametric method, as already 
presented, encapsulate critical climatic influences on ETo, including 
temperature, solar radiation, wind speed, and humidity. Clustering 
based on these parameters rather than raw ETo values allows for groups 
to be formed based on underlying climatic processes that drive ETo, 
offering a more nuanced understanding of evapotranspiration dynamics 
across different regions. Incorporating these parameters, even as a minor 
component, ensures that clusters have a degree of climatic coherence, 
which is crucial for practical applications like agricultural planning and 
water resource management. This approach mitigates the risk of 
creating clusters that are geographically similar but climatically 
dispersed.

Furthermore, the direct use of ETo measurements may be influenced 
by local anomalies or short-term fluctuations that do not accurately 
reflect the broader climatic trends. The Parametric method’s parameters 
are conceived to model ETo across a wide range of conditions. Using 
these parameters for clustering is inherently robust to the diverse cli-
mates encountered globally. By focusing on a΄ and c΄ parameters, clus-
ters represent stable, long-term climatic similarities among stations, 
reducing the impact of temporary variations and ensuring that clusters 
capture consistent environmental characteristics.

2.3. ETo data

The FAO CLIMWAT 2.0 database is a joint initiative by the Water 
Development and Management Unit and the Climate Change and Bio-
energy Unit of Food and Agriculture Organization of the United Nations 
(FAO, 1993), which provides average monthly climatic data at 4300 
stations, well-distributed worldwide. These data include monthly mean 
values of mean daily maximum and minimum temperature (◦C), daily 
relative humidity (%), wind speed (km day− 1), daily sunshine duration 
(h), daily solar radiation (MJ/m2), monthly rainfall, gross and effective 
(mm), as well as mean monthly ETo estimations through the Penman- 
Monteith formula.

Tegos et al. (2017), used the FAO CLIMWAT 2.0 database to calibrate 
the parametric expression (eq. (2)), thus providing local estimations of 
parameters a΄ and c΄ at all station sites, using the Nash-Sutcliffe Effi-
ciency (NSE) (Nash and Sutcliffe, 1970) as the objective function to 

maximize against parameters a΄ and c΄. The model demonstrated strong 
predictive performance across Eurasia, North America, and much of 
Oceania, as confirmed by multiple evaluation metrics. However, its 
performance was weaker in equatorial regions, including South Amer-
ica, Africa, and the Indian and Indonesian Peninsula. This lower accu-
racy, as indicated by the NSE criterion, is likely due to the model’s 
omission of relative humidity and wind speed, two crucial factors 
influencing net incoming solar radiation and evaporation demand, 
which are key drivers of the evapotranspiration process in tropical cli-
mates (Tegos et al., 2017). Thus, to enhance the validity of our research 
outcomes, we limited our selection to stations that demonstrated NSE 
values above 0.75, resulting in a refined dataset of 3139 stations 
worldwide.

2.4. Spectral clustering

Clustering methods like k-means, k-medians or k-medoids are 
designed to discover convex clusters in multidimensional data (Han and 
Kamber, 2012). In the context of the present study, we employed all the 
mentioned clustering methods to create clusters of reference evapo-
transpiration across the globe using the parameters of the Parametric 
ETo model, but according to our findings they failed to create good 
separations. Our analysis showed that spectral clustering not only ach-
ieved higher consistency in cluster quality but also provided meaningful 
clusters of the a’ and c’ parameters data.

Spectral clustering uses the eigenvalues of the affinity matrix to 
project data into a lower-dimensional space, where clusters can be more 
easily identified (Jia et al., 2014). The affinity matrix is a square matrix 
where each entry (i, j) represents the degree of similarity or “affinity” 
between two data points i and j. The values in the affinity matrix are 
typically based on a similarity function, such as a Gaussian (radial basis 
function) kernel, that quantifies how close or similar the points are in a 
given space. The matrix is symmetric, with higher values indicating 
stronger similarities and lower values indicating less similarity or dis-
tance between points.

This approach ensures that the true relationships between different 
geographic zones are better maintained and reflected in the resulting 
clusters, particularly in terms of handling complex data and capturing 
the intrinsic similarities within the dataset. The dimensionality of the 
new space is set to the desired number of clusters. This setting expects 
that each new dimension should be able to manifest a cluster (Han and 
Kamber, 2012).

A brief description of the spectral clustering follows.
Given a set of objects o1,…, on, the distance between each pair of 

objects, dist(oi, oj) with 1 ≤ i, j ≤ n, and the desired number k of clusters, 
the spectral clustering workflow includes the following steps (Von 
Luxburg, 2007): 

1. Using the distance measure, calculate an affinity matrix, W, using 
pairwise similarities between data points to form it. This is achieved 
by computing a k-nearest neighbors (k-NN) graph.

2. Via the affinity matrix W, derive the normalized graph Laplacian L, 
which encapsulates the data’s connectivity as: 

L = I – D–1/2 W D–1/2                                                                     (3)

where I is the identity matrix and D is the degree matrix. The degree 
matrix D is a diagonal matrix where each entry Dii represents the sum 
of the affinities between point i and every other point j: 

Dii =
∑n

j=1
Wij (4) 

3. Find the k leading eigenvectors of L. By performing eigen decom-
position on the Laplacian matrix L, select the eigenvectors corre-
sponding to the smallest non-zero eigenvalues, as these capture the 
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most significant structural information of the data. The number of 
selected eigenvectors typically corresponds to the desired number of 
clusters k.

4. Using the k leading eigenvectors, project the original data into the 
new lower-dimensional space defined by those eigenvectors and run 
a clustering algorithm such as k-means to find k clusters.

2.5. Cluster size analysis

For the needs of the present study, following spectral clustering we 
applied the k-means method to acquire the size, i.e. the number, of the 
clusters of the ETo dataset, using a centroid-based partitioning tech-
nique implementing spatial weights based on multi-attribute distances, 
i.e. parameters’ values and geometric distance between the stations and 
the cluster’s center point. The centroid is defined as the mean value of 
the a’ and c’ parameters from the stations assigned to the cluster (Han 
and Kamber, 2012), while in terms of geographical distance, the 
centroid is defined as the geometric difference between a station and the 
center of the cluster, determined as the great circle distance (Earle, 
2005; Tseng and Lee, 2007) between the two points. The quality of 
clustering was measured by the within-cluster variation, which was the 
sum of squared error (SSE) between all stations in a cluster and its 
centroid, computed as the multi-attribute distance of a’ and c’ param-
eters and the geometric centroid. Thus, SSE acts as a global measure of 
error, as the number of clusters increases, the SSE decreases because 
clusters are, by definition, smaller: 

SSE =
∑k

i=1

∑h

s=1
dist(ps, ci)

2 (5) 

where dist(ps, ci) is the multi-attribute distance of each station s and the 
centroid of cluster ci (1 ≤ i ≤ k) that includes h stations, for k clusters in 
total.

All variables, i.e. a′, c′, and geometric distance, were normalized to a 
common scale by subtracting their respective mean and dividing by the 
mean absolute deviation (MAD) values (Kaufman and Rousseeuw, 
2005). Thus, each variable is transformed to have a mean of 0 and a 
dispersion based on MAD, ensuring that all variables contribute equi-
tably to the clustering process: 

Xnorm =
X − X

MAD (X)
,MAD(X) =

1
n
∑n

i=1
|Xi − X| (6) 

where Xnorm is the normalized value, X represents each variable, i.e. a’, 
c’, or geometric distance, and X is the mean of the corresponding 

variable.
The determination of the appropriate cluster size was based in the 

comparison of the SSE for a different numbers of cluster solutions, using 
the elbow method (Han and Kamber, 2012). Elbow method incorporates 
a plot of the SSE against the series of sequential cluster levels and pro-
vides a graphical way to choose an appropriate cluster size, such that the 
intra-cluster similarity is maximized, and the between-cluster similarity 
is minimized (Anselin, 2024). That is, an appropriate cluster solution 
could be defined as the solution at which the reduction in SSE slows 
dramatically. The first turning point (elbow) of the SSE curve suggests 
the “right” number of clusters.

This procedure was repeated for several combinations of spatial 
weights and number of clusters resulting in the global optimum solution.

3. Results and discussion

3.1. ETo clusters

The clustering of the parameters of the Parametric ETo model for the 
3139 stations involved in the analysis, was implemented using the 
spectral clustering method of the Geoda software, which is free and open 
source software tool for spatial data analysis (Anselin, 2024).

SSE analysis along with elbow plots were performed for several 
combinations of spatial weights and number of clusters to acquire the 
global optimum clusters size. The weight for geometric distance ranged 
from 1 (100%) to 0.85 (85%), while the combined weight of the two 
parameters ranged from 0 (0%) to 0.15 (15%), respectively. These limits 
were realized after a preliminary investigation into the physical mean-
ing and rationality of the produced clusters.

The combination that provided the smallest SSE and concurrently the 
smaller number of meaningful clusters, was 0.96 for the geometric dis-
tance and 0.02 for each one of the parameters. Thus, the objective 
function to be minimized (eq. (5)) was transformed to: 

min(SSE) =
∑k

i=1

∑h

s

[
0.96 dist(s, ci)

2
+ 0.02 dist(a’, a’ci)

2

+ 0.02 dist(c’, c’ci)
2
]

(7) 

where s is the great circle distance between each station and the center 
of cluster i. Also, a’ and c’ are the parameters of the modified Parametric 
method (eq. (2) and c’ci, a’ci are the values of parameters at the centroid 
of cluster ci (1 ≤ i ≤ k), that includes h stations.

The above detailed approach resulted in the identification of 45 
unique ETo clusters (CL1 to CL45) across the globe, each representing 

Fig. 1. Elbow plot depicting the optimum number of clusters (45) for the selected weights.
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distinctive ETo characteristics. (Fig. 1). The clusters are numbered in 
descending order based on the number of contributing stations, with 
CL1 containing the most stations and CL45 the fewest.

To further assess the internal consistency of the identified clusters, 
we conducted a boxplot analysis of the normalized values of a’ and c’ 
within each cluster (Fig. 2). This allowed evaluation of the variability of 
the parameters while mitigating the effects of different numerical 
magnitudes. The results reveal that the clusters exhibit narrow 

interquartile ranges (IQRs), indicating a high degree of internal consis-
tency. A limited number of clusters, i.e. one or two, present wider IQRs 
for both parameters, suggesting some degree of intra-cluster variability. 
This intra-cluster variability is explained, given the evapotranspiration’s 
complex nature that is influenced by multiple climatic and environ-
mental factors in these regions, which are discussed further in Section 
3.4.

Table 1 presents the values of the a’ and c’ parameters at each of the 

Fig. 2. Boxplots of the normalized values of a’ (i) and c’ (ii) parameters within each cluster.
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45 clusters centers. Obviously, these values can be applied for the esti-
mation of the ETo inside each cluster using eq. (2), providing means for 
direct application of the parametric method. The validation of the pro-
posed values is presented in the corresponding section of this study.

Fig. 3 illustrates the spatial distribution of the 45 ETo clusters across 
the globe. The colored dots correspond to the meteorological stations 
involved in the clustering process, with their color indicating the specific 
cluster to which they belong.

Asia covering a large part of the globe, comprises from thirteen 
clusters: 1, 3, 10, 13, 17, 18, 21, 32, 38, 40, 41, 42 and 43. North 
America is dominated by clusters 11 and 29. Central and South America 
are covered by nine clusters: 8, 9, 22, 24, 25, 27, 30, 36, and 39; as Africa 
which is covered by clusters: 4, 15, 20, 23, 28, 31, 35, 37 and 44. Europe 
includes seven clusters: 2, 6, 7, 12, 14, 16 and 19, while Australia and 
Oceania include five clusters: 5, 26, 33, 34 and 45.

The clustering results proved that the spectral clustering approach 
effectively identified spatially coherent ETo clusters while incorporating 
the underlying evapotranspiration dynamics. Unlike traditional clus-
tering methods, where the assigned weights directly influence the 
clustering structure, spectral clustering operates on a transformed rep-
resentation of the data derived from the eigenvalues of the affinity 
matrix. This transformation mitigated the risk of any single variable 
dominating the clustering outcome, allowing for a more balanced inte-
gration of geographic and ETo attributes. The weighting scheme (0.96 
for geometric distance, 0.02 each for a′ and c′), determined through 
optimization, ensured that the resulting clusters maintained spatial 
coherence without neglecting the ETo parameters. Had the clustering 
been based solely on a’ and c’, it would have resulted in geographically 
disconnected clusters, reducing the functionality for regional hydro-
logical modeling and applications.

A detailed analysis of the distribution of the clusters is presented in 
the following sections.

3.2. Distribution of stations by clusters

Table 2 presents the distribution of stations across the 45 identified 
clusters. The number of stations per cluster ranges significantly, from as 
few as 14 stations (in clusters such as CL44 and CL45) to as many as 160 
stations (in CL1). The distribution of stations across clusters reflects the 
global variability in both climatic zones and the availability of meteo-
rological data. Larger clusters, in terms of the higher number of stations 
included, are associated with more widespread climatic conditions, such 
as arid or Mediterranean climates, which cover extensive geographic 
regions and have more available meteorological observations. 
Conversely, clusters with small number of stations included, indicate 
more localized or unique climatic zones, where distinct ETo dynamics 
prevail. These regions may require specialized water management 
strategies due to their specific ETo characteristics, as discussed in section 

3.4 and depicted in Table 5.
Cluster 1 (160 stations) and cluster 2 (155 stations), are the largest 

clusters. These large clusters suggest broad climatic zones that are well- 
represented by a large number of weather stations. The size of these 
clusters indicates that the areas they represent have relatively homo-
geneous a’ and c’ values, i.e. similar ETo variability across the corre-
sponding geographic regions. For instance, cluster 1, with stations from 
countries like Iran, Afghanistan, and Pakistan, likely represents arid and 
semi-arid climates where ETo is heavily driven by high temperatures 
and low precipitation. Cluster 2, dominated by stations in Türkiye and 
Greece, reflects regions with Mediterranean climates characterized by 
distinct dry and wet seasons. The significant number of stations in these 
clusters suggests that these regions have well-established meteorological 
data networks, allowing for robust cluster formation.

On the contrary, clusters 44 and 45, with only 14 stations each, 
represent much more geographically and climatically localized ETo 
conditions, such as certain temperate-tropical (Cluster 44) or oceanic 
regions (Cluster 45), which sets them apart from adjacent clusters.

Overall, the variation in cluster sizes is foreseeable, as regions with 
uniform climatic conditions naturally form larger clusters, while regions 
with more complex climatic influences create smaller, more distinct 
clusters. While station availability influences the number of stations per 
cluster, their distribution underscores the robustness of the clustering 
method, which captures both broad-scale climatic trends and localized 
ETo variations.

3.3. Distribution of clusters by country

Each of the 45 clusters identified through spectral clustering was 
analyzed in terms of geographic distribution, focusing on the countries 
contributing the most stations to each cluster. This analysis helps to 
understand how specific geographic regions align with the clusters 
based on ETo characteristics and climate factors, offering insights into 
regional variations in water needs and management practices.

Table 3 summarizes the top three countries contributing stations to 
each cluster, highlighting both the geographic and climatic diversity 
captured by the clustering method. The largest cluster, Cluster 1, is 
predominantly composed of stations from Iran (26.88%), Afghanistan 
(15.62%), and Pakistan (13.12%). This cluster represents a region 
characterized by a mixture of arid and semi-arid climates, which is 
consistent with the high reference evapotranspiration rates typically 
observed in these areas. The high percentage of stations from these 
countries suggests that this cluster may represent a climatic zone where 
ETo is strongly influenced by factors such as high temperatures and low 
humidity, particularly in regions with sparse vegetation and limited 
water availability.

Cluster 2 is primarily dominated by stations in Türkiye (86.45%), 
with smaller contributions from Greece (10.97%) and Iran (1.94%). The 

Table 1 
Values of the a’ and c’ parameters at the clusters centroids.

Cluster a’ c’ Cluster a’ c’ Cluster a’ c’

1 7.384E-05 0.0210 16 5.950E-05 0.0229 31 3.380E-05 0.0249
2 5.401E-05 0.0263 17 6.618E-05 0.0170 32 5.998E-05 0.0147
3 5.054E-05 0.0255 18 5.523E-05 0.0169 33 1.032E-04 0.0188
4 8.164E-05 0.0176 19 5.624E-05 0.0125 34 5.689E-05 0.0172
5 8.127E-05 0.0177 20 8.493E-05 0.0116 35 2.945E-05 0.0270
6 5.005E-05 0.0254 21 5.989E-05 0.0143 36 6.039E-05 0.0181
7 4.382E-05 0.0278 22 4.209E-05 0.0234 37 1.267E-04 − 0.0090
8 5.934E-05 0.0229 23 8.349E-05 0.0114 38 6.173E-05 0.0192
9 7.479E-05 0.0112 24 6.582E-05 0.0127 39 4.021E-05 0.0202
10 7.398E-05 0.0213 25 2.394E-04 − 0.0456 40 5.091E-05 0.0246
11 7.184E-05 0.0197 26 5.900E-05 0.0253 41 3.741E-05 0.0323
12 4.885E-05 0.0256 27 8.171E-05 0.0160 42 5.200E-05 0.0159
13 7.005E-05 0.0162 28 9.492E-05 0.0168 43 6.269E-05 0.0222
14 5.121E-05 0.0249 29 6.547E-05 0.0268 44 6.114E-05 0.0177
15 4.515E-05 0.0265 30 6.170E-05 0.0252 45 4.971E-05 0.0253
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Fig. 3. Global ETo clustering of FAO ClimWat stations based on the parametric method.

N
. M

alam
os et al.                                                                                                                                                                                                                               

Journal of Hydrology 660 (2025) 133342 

7 



distribution of this cluster reflects the Mediterranean climate, which is 
characterized by hot, dry summers and mild, wet winters. ETo in these 
regions is typically high during the summer months due to increased 
solar radiation and temperature, making this cluster significant for 
agricultural planning, particularly in the context of irrigation 

management during drought periods.
The Russian Federation features prominently in several clusters, with 

the largest representation in Cluster 3, where 69.12% of the stations are 
in Russia, followed by Mongolia (17.65%). The dominance of Russian 
stations in this and other clusters (e.g., Cluster 7 with 86.84%) suggests 
that the methodology effectively captures the varied climatic zones 
within Russia, ranging from humid continental to subarctic climates. 
These regions are characterized by considerable seasonal variation in 
temperature, which directly impacts ETo rates. This variation in climatic 
conditions within a single country illustrates the robustness of the 
clustering approach, which is capable of distinguishing between distinct 
ETo patterns within large geographic regions.

In Africa, Cluster 15 is composed of stations from Kenya (39.51%), 
United Republic of Tanzania (19.75%), and Republic of Uganda 
(14.81%). This cluster likely represents tropical savanna and equatorial 
climates, where rainfall is seasonal, and temperatures remain consis-
tently high throughout the year. The high ETo rates in these regions 
necessitate effective water resource management, particularly for agri-
culture, where irrigation is crucial during dry seasons.

Clusters 5, 33 and 45 are almost entirely composed of stations from 
Australia with percentages that range from 95.83% to 100%. Australia’s 
presence in multiple clusters underscores the continent’s wide range of 
climatic zones, from tropical and arid regions in the north and center to 

Table 2 
ETo Clusters and the corresponding number of stations included.

Cluster Number of 
stations

Cluster Number of 
stations

Cluster Number of 
stations

1 160 16 80 31 46
2 155 17 77 32 43
3 136 18 75 33 43
4 123 19 74 34 37
5 120 20 73 35 33
6 118 21 71 36 33
7 114 22 70 37 33
8 111 23 69 38 30
9 105 24 67 39 29
10 99 25 66 40 22
11 96 26 65 41 22
12 95 27 63 42 22
13 88 28 61 43 16
14 86 29 58 44 14
15 81 30 46 45 14

Table 3 
Clusters’ station distribution across the three major contributing countries.

Cluster Country 1 Country 2 Country 3

1 Iran (26.88%) Afghanistan (15.62%) Pakistan (13.12%)
2 Türkiye (86.45%) Greece (10.97%) Iran (1.94%)
3 Russian Federation (69.12%) Mongolia (17.65%) 
4 Egypt (24.39%) Algeria (17.89%) Libya (13.82%)
5 Australia (95.83%)  
6 Italy (49.15%) Romania (9.32%) Croatia (7.63%)
7 Russian Federation (86.84%) Estonia (8.77%) Sweden (3.51%)
8 Argentina (61.26%) Uruguay (15.32%) Chile (13.51%)
9 Brazil (71.43%) Argentina (11.43%) Paraguay (11.43%)
10 Syria (34.34%) Jordan (27.27%) Lebanon (15.15%)
11 USA (79.17%) Canada (19.79%) 
12 Germany (55.79%) Netherlands (7.37%) Poland (7.37%)
13 China (93.18%) Russian Federation (5.68%) 
14 France (66.28%) Germany (24.42%) Italy (3.49%)
15 Kenya (39.51%) Tanzania (19.75%) Uganda (14.81%)
16 Spain (76.25%) Portugal (17.50%) France (5.00%)
17 India (68.83%) Nepal (23.38%) China (3.90%)
18 China (57.33%) India (9.33%) Vietnam (8.00%)
19 United Kingdom (77.03%) Ireland (17.57%) Iceland (2.70%)
20 South Africa (50.68%) Mozambique (27.40%) Lesotho (10.96%)
21 Japan (100.00%)  
22 Ecuador (47.14%) Venezuela (20.00%) Brazil (11.43%)
23 Mozambique (55.07%) Zimbabwe (21.74%) Botswana (10.14%)
24 Peru (59.70%) Bolivia (37.31%) 
25 Haiti (27.27%) Dominican Republic (16.67%) Jamaica (10.61%)
26 Australia (50.77%) Malaysia (20.00%) Indonesia (18.46%)
27 Mexico (60.32%)  
28 Sudan (32.79%) Saudi Arabia (18.03%) Ethiopia (14.75%)
29 Canada (51.72%)  
30 Argentina (65.22%) Chile (32.61%) 
31 Congo (50.00%) Gabon (19.57%) Congo (13.04%)
32 Japan (69.77%)  
33 Australia (100.00%)  
34 Philippines (97.30%)  
35 Cote D’ Ivoire (33.33%) Ghana (33.33%) Benin (9.09%)
36 Brazil (100.00%)  
37 Madagascar (39.39%) Mozambique (33.33%) Mauritius (15.15%)
38 India (76.67%) Sri Lanka (23.33%)
39 Guatemala (34.48%) Honduras (34.48%) Costa Rica (13.79%)
40 Russian Federation (100.00%)  
41 Russian Federation (100.00%)  
42 Japan (95.45%)  
43 Cyprus (87.50%) Turkey (12.50%) 
44 Mozambique (78.57%) Malawi (21.43%) 
45 Australia (100.00%)  
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temperate zones in the south. The clustering results reflect the diversity 
of ETo patterns in Australia, with high evapotranspiration rates in arid 
and semi-arid regions driving water management practices focused on 
conservation and efficient irrigation.

Interestingly, some clusters reflect more isolated station distribu-
tions. For instance, Cluster 27 is dominated by stations from Mexico 
(60.32%), emphasizing the importance of local climatic factors in 
determining ETo patterns. This cluster may represent the distinct cli-
matic conditions found in Mexico’s arid and semi-arid regions, where 
evapotranspiration is a critical factor in agricultural water use. Another 
example is Cluster 34 which contains stations from Philippines (97.30%) 
depicting the unique and diverse tropical maritime climate of the 
archipelago.

Overall, the geographic distribution of stations within each cluster 
aligns well with the expected climatic patterns of the regions, providing 
strong validation of the clustering approach. The presence of distinct 
country groupings within each cluster indicates that the method suc-
cessfully captures both local and regional variability in ETo, contrib-
uting to a more nuanced understanding of global evapotranspiration 
dynamics.

3.4. Analogy to Köppen-Geiger climate classification

The Köppen-Geiger climate classification (Beck et al., 2018; Kottek 
et al., 2006) (Table 4), a widely recognized system for delineating global 
climate zones based on temperature, precipitation, and their seasonal 
patterns, was used to correlate these ETo clusters with specific climate 
types. To assess the correlation between the clusters and specific climate 
zones, an analysis was conducted to determine the dominant Köppen- 
Geiger climate types within each cluster. This approach allows the 
assessment of the relationship between the proposed ETo clusters and 
climatic conditions across the globe.

Fig. 4 illustrates the distribution of stations across Köppen-Geiger 
classes, demonstrating a strong alignment between large number of 
stations and specific climate zones. On the other hand, the small number 
of stations noticed at specific Köppen-Geiger classes can be justified 
from the small number or even absence of monitoring networks in those 
regions.

Fig. 5 illustrates the ETo clusters, as points at the stations locations, 
compared to Köppen-Geiger classes across the globe. It is apparent that 
the proposed clusters respect the distinguished climate patterns, since in 
most of the cases they are allocated within specific climate zones.

Table 4 
Köppen-Geiger climate classification.

Class Code Classification Class Code Classification

1 Af Tropical, rainforest 17 Dsa Cold, dry summer, hot summer
2 Am Tropical, monsoon 18 Dsb Cold, dry summer, warm summer
3 Aw Tropical, savannah 19 Dsc Cold, dry summer, cold summer
4 BWh Arid, desert, hot 20 Dsd Cold, dry summer, very cold winter
5 BWk Arid, desert, cold 21 Dwa Cold, dry winter, hot summer
6 BSh Arid, steppe, hot 22 Dwb Cold, dry winter, warm summer
7 BSk Arid, steppe, cold 23 Dwc Cold, dry winter, cold summer
8 Csa Temperate, dry summer, hot summer 24 Dwd Cold, dry winter, very cold winter
9 Csb Temperate, dry summer, warm summer 25 Dfa Cold, no dry season, hot summer
10 Csc Temperate, dry summer, cold summer 26 Dfb Cold, no dry season, warm summer
11 Cwa Temperate, dry winter, hot summer 27 Dfc Cold, no dry season, cold summer
12 Cwb Temperate, dry winter, warm summer 28 Dfd Cold, no dry season, very cold winter
13 Cwc Temperate, dry winter, cold summer 29 ET Polar, tundra
14 Cfa Temperate, no dry season, hot summer 30 EF Polar, frost
15 Cfb Temperate, no dry season, warm summer 
16 Cfc Temperate, no dry season, cold summer 

Fig. 4. Distribution of 3139 stations among the Köppen-Geiger climate classification.
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Fig. 5. Global ETo clustering compared to Köppen-Geiger classes.
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Table 5 
Distribution of the Köppen-Geiger climate classes among the 45 clusters.

Cluster Köppen-Geiger Class

25 Af (36.4%) Aw (36.4%) Am (13.6%) BSh (6.1%) Cfb (4.5%) Cwb 
(1.5%)

Cfa (1.5%)    

26 Af (38.5%) BSh 
(23.1%)

BWh 
(13.8%)

Aw (12.3%) Am (7.7%) Cwa 
(1.5%)

Cwb 
(1.5%)

Cfa (1.5%)   

34 Af (56.8%) Am (24.3%) Aw (18.9%)        
22 Aw (30.0%) Af (27.1%) Am (18.6%) BSh 

(10.0%)
Cfb (7.1%) BWh 

(2.9%)
ET (2.9%) BSk 

(1.4%)
  

9 Aw (36.2%) Cfa (30.5%) Cwa 
(13.3%)

Cfb (6.7%) Am (3.8%) Af (2.9%) BSh 
(2.9%)

BSk 
(1.9%)

Cwb 
(1.9%)

 

36 Aw (39.4%) BSh 
(36.4%)

Am (15.2%) Af (9.1%)       

37 Aw (42.4%) Af (27.3%) Am (9.1%) Cwb (9.1%) BSh (6.1%) Csb (3%) Cwa (3%)    
31 Aw (43.5%) Af (32.6%) Am (19.6%) BWh (2.2%) BSh (2.2%)      
39 Aw (44.8%) Af (27.6%) Am (17.2%) Cfb (6.9%) Cwb (3.4%)      
15 Aw (46.9%) Cfb (14.8%) BSh 

(12.3%)
Af (8.6%) Csb (7.4%) Cwb 

(6.2%)
Am (3.7%)    

35 Aw (75.8%) Am (21.2%) Af (3%)        
38 Aw (76.7%) BSh 

(16.7%)
Af (3.3%) Cfb (3.3%)       

23 BSh 
(37.7%)

Aw (33.3%) BWh 
(10.1%)

Cwa 
(10.1%)

Cwb (5.8%) BSk (2.9%)     

29 BSk (31.0%) Dfb (20.7%) Dfc (10.3%) ET (8.6%) Csb (6.9%) Cfb (6.9%) BWk 
(5.2%)

Dfa (5.2%) Csa (1.7%) Dsc 
(1.7%)

Dwa (1.7 
%)

16 BSk (33.8%) Csa (27.5%) Csb (16.3%) Cfb (15.0%) BSh (3.8%) BWh 
(2.5%)

Cfa (1.3%)    

27 BWh 
(19.0%)

BSh 
(19.0%)

Aw (15.9%) BSk (15.9%) Cfa (12.7%) BWk 
(4.8%)

Cwb 
(4.8%)

Cwa 
(3.2%)

Af (1.6%) Am (1.6%) Cfb (1.6%)

24 BWh 
(23.9%)

ET (20.9%) Af (14.9%) Cwb 
(11.9%)

Aw (9.0%) BSk (7.5%) Am (4.5%) BWk 
(3.0%)

BSh 
(1.5%)

Cwa 
(1.5%)

Cwc 
(1.5%)

1 BWh 
(30.0%)

BWk 
(21.3%)

BSk (18.1%) Csa (12.5%) BSh (10.6%) Dsa (2.5%) Cwa 
(1.3%)

Cfa (1.3%) ET (1.3%) Dsb 
(0.6%)

Dfb (0.6%)

33 BWh 
(44.2%)

BWk 
(11.6%)

BSh 
(11.6%)

BSk (11.6%) Csa (9.3%) Csb (9.3%) EF (2.3%)    

4 BWh 
(63.4%)

Csa (17.1%) BSh 
(11.4%)

BSk (4.1%) Aw (3.3%) BWk 
(0.8%)

    

28 BWh 
(73.8%)

BSh 
(13.1%)

Aw (6.6%) BSk (4.9%) Csb (1.6%)      

30 BWk 
(30.4%)

BSk (23.9%) Csb (19.6%) Cfb (10.9%) Cfc (8.7%) ET (4.3%) Csc (2.2%)    

5 Cfa (25.0%) BSk (22.5%) BWh 
(14.2%)

Cfb (12.5%) BSh (10.8%) BWk 
(5.0%)

Csb (3.3%) Csa (2.5%) Am (1.7%) Aw (1.7%) Af (0.8%)

18 Cfa (41.3%) Cwa 
(24.0%)

Aw (17.3%) Am (5.3%) Af (4.0%) BSh (4.0%) Dwc 
(2.7%)

Dwb 
(1.3%)

  

8 Cfa (50.5%) BWk 
(11.7%)

Cwa (9.0%) BSk (7.2%) BSh (5.4%) Cfb (4.5%) Csa (3.6%) Csb (3.6%) BWh 
(1.8%)

ET (1.8%) Am (0.9%)

32 Cfa (79.1%) Dwa 
(14.0%)

Dfa (4.7%) Cwa (2.3%)       

21 Cfa (81.7%) Dfa (16.9%) Dfb (1.4%)        
12 Cfb (50.5%) Dfb (48.4%) Dfc (1.1%)        
14 Cfb (64.0%) Dfb (17.4%) Csa (11.6%) BSk (2.3%) Cfa (2.3%) Dfc (1.2%) ET (1.2%)    
45 Cfb (85.7%) BSk (7.1%) ET (7.1%)        
19 Cfb (93.2%) Cfc (4.1%) Dsc (1.4%) Dfc (1.4%)       
10 Csa (45.5%) BWh 

(26.3%)
BSk (14.1%) BSh 

(12.1%)
BWk (1.0%) Dsb (1.0%)     

2 Csa (45.8%) BSk (27.1%) Cfa (8.4%) Dsb (6.5%) Dsa (3.9%) Dfb (3.2%) Cfb (2.6%) BWk 
(1.3%)

Csb (1.3%)  

43 Csa (62.5%) BSh 
(31.3%)

Csb (6.3%)        

17 Cwa 
(48.1%)

Aw (18.2%) BSh 
(16.9%)

BWh 
(11.7%)

ET (2.6%) BSk (1.3%) Cwb 
(1.3%)

   

44 Cwa 
(57.1%)

Aw (28.6%) Am (14.3%)        

20 Cwb 
(17.8%)

Aw (16.4%) BSh 
(13.7%)

BWh 
(11.0%)

BWk (11.0 
%)

BSk 
(11.0%)

Cwa 
(8.2%)

Cfa (5.5%) Cfb (2.7%) Csb 
(1.4%)

Dwc 
(1.4%)

6 Dfa (1.7%) ET (1.7%) BSk (13.6%) Dfb (21.2%) Cfa (26.3%) Csa 
(35.6%)

    

11 Dfa (39.6%) Cfa (31.3%) Dfb (24.0%) Dfc (3.1%) Af (1.0%) BSk (1.0 %)     
40 Dfa (40.9%) BSk (27.3%) BWk 

(13.6%)
Cfa (9.1%) Dfb (9.1%)      

42 Dfb (54.5%) Dfa (45.5%)         
7 Dfb (61.4%) Dfc (31.6%) BSk (3.5%) Dfa (3.5%)       
3 Dfc (29.4%) Dwc 

(25.0%)
BWk 
(11.8%)

BSk (11.0%) Dfb (10.3%) Dwb 
(3.7%)

Dwa 
(2.9%)

Dfd (2.2%) Dsc (1.5%) Dsb 
(0.7%)

Dwd 
(0.7%)

41 Dfc (36.4%) Dsc (31.8%) ET (18.2%) Dfd (9.1%) Dwc (4.5%)      
13 Dwa 

(47.7%)
BSk (29.5%) BWk (9.1%) Dwb (8.0%) Cwa (3.4%) Cfa (1.1%) Dfb (1.1%)    
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Table 5 provides a detailed breakdown of the Köppen-Geiger classes 
within each ETo cluster. It is obvious that each cluster is primarily 
composed of a few dominant climate types, with additional classifica-
tions contributing only minor fractions. This suggests that while ETo 
clusters and climate zones are not identical, they share meaningful cli-
matic relationships, reinforcing the validity of the clustering approach. 
This presence of multiple Köppen-Geiger climate zones within an ETo 
cluster reflects the continuity of climate transitions and localized 
geographic effects on ETo dynamics.

For example, Cluster 1 is primarily dominated by hot desert climates 
(BWh) and cold semi-arid climates (BSk), with some Mediterranean 
influences (Csa), reflecting the arid, dry conditions typical of desert 
regions with occasional Mediterranean climates. In Cluster 2, Mediter-
ranean climate (Csa) is the dominant type, followed by cold semi-arid 
(BSk) and humid subtropical (Cfa) climates, indicating dry summers, 
wet winters, and moderate temperature variation. Cluster 3 is charac-
terized by cold climates, particularly subarctic (Dfc) and monsoon- 
influenced climates (Dwc), with the presence of desert climates (BWk) 
highlighting the cold and arid regions.

Cluster 4 is dominated by hot desert climates (BWh), indicating 
extremely arid conditions with minimal rainfall and minor Mediterra-
nean influences (Csa). In Cluster 5, humid subtropical climates (Cfa) 
dominate, followed by cold semi-arid (BSk) and hot desert (BWh) cli-
mates, representing warmer, wetter climates alongside dry desert con-
ditions. Cluster 6 is primarily Mediterranean (Csa), with humid 
subtropical (Cfa) and cold semi-arid (BSk) influences, reflecting warm, 
dry summers and wet winters. In Cluster 7, cold, subarctic climates (Dfb, 
Dfc) dominate, representing regions with long, harsh winters and short 
summers. Cluster 8 is dominated by humid subtropical climates (Cfa), 
followed by desert (BWk) and semi-arid (BSk) climates, indicating a mix 
of warm, humid conditions alongside arid regions. Cluster 9 features 
tropical savanna (Aw) and humid subtropical (Cfa) climates, with a 
diverse mix of monsoon-influenced (Cwa) and semi-arid (BSh) climates.

Cluster 10 is dominated by Mediterranean climates (Csa) and hot 
desert (BWh), reflecting hot, dry summers and arid desert conditions. 
Cluster 11 is characterized by cold continental (Dfa) and humid sub-
tropical (Cfa) climates, reflecting colder, wetter conditions with sea-
sonal variation. In Cluster 12, oceanic (Cfb) and cold continental (Dfb) 
climates dominate, indicating regions with moderate temperatures and 
significant precipitation throughout the year. Cluster 13 is primarily 
cold monsoon (Dwa) and cold semi-arid (BSk), reflecting significant 
temperature variation and semi-arid conditions. Cluster 14 is dominated 
by oceanic (Cfb) climates, with Mediterranean (Csa) and cold semi-arid 
(BSk) influences, indicating wet, mild conditions with dry summers. 
Cluster 15 features tropical savanna (Aw) as the primary climate, fol-
lowed by oceanic (Cfb) and semi-arid (BSh) climates, reflecting tropical 
wet-dry conditions and temperate influences. In Cluster 16, cold semi- 
arid (BSk) and Mediterranean (Csa) climates dominate, reflecting dry, 
arid conditions with seasonal temperature variation. Cluster 17 is 
characterized by humid subtropical (Cwa) and tropical savanna (Aw) 
climates, representing regions with significant seasonal rainfall and 
warm temperatures. Cluster 18 is dominated by humid subtropical cli-
mates (Cfa), with tropical savanna (Aw) and monsoon influences (Am), 
indicating warm, wet conditions.

Cluster 19 is primarily oceanic (Cfb), representing regions with mild, 
wet conditions throughout the year. Cluster 20 is dominated by sub-
tropical highland (Cwb) and tropical savanna (Aw) climates, reflecting 
mild temperatures and significant rainfall. Cluster 21 is primarily humid 
subtropical (Cfa), representing warm, wet conditions typical of sub-
tropical regions. In Cluster 22, tropical savanna (Aw) and tropical 
rainforest (Af) dominate, indicating regions with consistent warmth and 
significant rainfall. Cluster 23 is distinguished by semi-arid (BSh) and 
tropical savanna (Aw) climates, representing hot, dry conditions with 
some seasonal rainfall. Cluster 24 is dominated by hot desert (BWh) and 
tundra (ET), reflecting extremely arid conditions with occasional colder, 
high-altitude regions.

Cluster 25 is characterized by tropical rainforest (Af) and tropical 
savanna (Aw), reflecting warm, wet conditions typical of equatorial 
regions. Cluster 26 is dominated by tropical rainforest climates (Af), 
followed by semi-arid (BSh) and desert (BWh) climates, indicating a mix 
of warm, wet and arid conditions. The presence of humid tropical areas 
alongside drier semi-arid regions reflects the heterogeneity in ETo pat-
terns, encapsulated through the spectral clustering of the two parame-
ters. Cluster 27 is dominated by hot desert (BWh) and semi-arid (BSh) 
climates, reflecting arid desert regions with limited rainfall.

In Cluster 28, hot desert climates (BWh) dominate, reflecting 
extreme arid conditions with little to no rainfall. Cluster 29 features cold 
semi-arid (BSk) and cold continental (Dfb, Dfc) climates, reflecting dry, 
cold conditions with harsh winters. Cluster 30 is dominated by cold 
desert (BWk) and cold semi-arid (BSk), reflecting arid regions with cold, 
dry conditions.

Cluster 31 is primarily tropical savanna (Aw) and tropical rainforest 
(Af), representing warm, wet conditions with seasonal rainfall. Cluster 
32 is dominated by humid subtropical (Cfa) climates, reflecting warm, 
wet conditions throughout the year. Cluster 33 is distinguished by hot 
desert (BWh) and cold desert (BWk) climates, reflecting arid conditions 
with minimal rainfall. In Cluster 34, tropical rainforest climates (Af) 
dominate, indicating warm, wet conditions typical of equatorial regions. 
Cluster 35 is primarily tropical savanna (Aw), reflecting regions with 
seasonal rainfall and warm temperatures. Cluster 36 features tropical 
savanna (Aw) and semi-arid (BSh) climates, representing warm, dry 
conditions with some seasonal rainfall. Cluster 37 is dominated by 
tropical savanna (Aw), with tropical rainforest (Af) and subtropical 
highland (Cwb) influences, indicating a mix of wet, tropical and 
temperate conditions. Cluster 38 is primarily tropical savanna (Aw), 
followed by semi-arid (BSh), indicating warm, dry conditions. Cluster 39 
features tropical savanna (Aw) and tropical rainforest (Af) climates, 
with some temperate influences (Cfb, Cwb), reflecting a mix of wet and 
dry tropical conditions.

Cluster 40 is characterized by cold continental (Dfa) and semi-arid 
(BSk) climates, indicating cold, dry conditions with significant sea-
sonal variation. Cluster 41 is dominated by subarctic (Dfc) and tundra 
(ET) climates, reflecting regions with long, harsh winters and minimal 
rainfall. Cluster 42 is primarily cold continental climates (Dfb, Dfa), 
reflecting cold, wet conditions with significant seasonal variation. In 
Cluster 43, Mediterranean (Csa) and semi-arid (BSh) climates dominate, 
indicating dry summers and moderate temperatures. Cluster 44 is pri-
marily humid subtropical (Cwa) and tropical savanna (Aw), reflecting 
warm, wet conditions with seasonal rainfall. Finally, Cluster 45 is 
dominated by oceanic (Cfb) climates, indicating mild wet conditions 
throughout the year.

3.5. Clustered ETo validation

Even though this study depicts the global clustering of monthly ETo, 
thus the areas for calibrating methods of ETo estimation, it also provides 
a way to compute ETo using the clustered parameters across the globe in 
a different, simpler way than the one presented in Tegos et al., 2017. 
This can be achieved using the parameters’ values that correspond to the 
cluster that includes each area of interest, rather than performing cal-
culations in GIS environment. Obviously, there should be a tradeoff 
between accuracy and ease of use, however the performance is accept-
able for hydrological and engineering tasks in monthly scale as depicted 
in Table 6.

The validation dataset comprised from 30 stations from countries 
with different hydroclimatic regimes (USA, China, Spain, Germany, 
Ireland, Greece and Australia), for which we obtained full time series of 
the required meteorological data, at the monthly scale, from various 
data sources (Du et al., 2016; Gentilucci et al., 2020; Mamassis et al., 
2021; Tegos et al., 2017, 2015b; Webb, 2010).

For this purpose, we implemented several accuracy measures such as 
the Nash-Sutcliffe Efficiency (NSE), the mean absolute error (MAE), the 
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normalized mean absolute error (NMAE), the coefficient of determina-
tion (r2) and the normalized root mean square error (NRMSE) 
(Koutsoyiannis, 2025; Tegos et al., 2017; Willmott, 1982, 1981): 

NSE = 1 −
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2
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2

]1/2

o
(12) 

where n is the number of predictions / observations, oi is the ith obser-
vation, pi is the ith prediction, o is the observations average while p is the 
predictions average.

Most stations demonstrate excellent performance with high NSE 
values, low MAE and NMAE, and high r2, indicating that the variance of 
the observed values has been accounted along with small bias, thus there 
is agreement between them and the estimated ETo values 
(Koutsoyiannis, 2025). For instance, Camerino and Ancona in Italy 
achieve NSE values of 0.940 and 0.961, respectively, with low MAE (8.6 
mm and 7.7 mm), r2 values above 0.97. Similarly, stations like Manteca 
(USA), Hamburg (Germany), and Mace Head (Ireland) show NSE values 
above 0.930, with relatively low errors, confirming the method’s 

robustness in temperate climates.
Only a few stations exhibit lower performance, i.e. Zaragoza (Spain) 

shows a NSE of 0.705 and a MAE of 29.7 mm, although the r2 remains 
high at 0.960, indicating some consistency since the variance of the 
observed values was acknowledged but with large bias. Eastern Adams 
County (USA) and Angermunde (Germany) also have low NSE values, i. 
e. 0.556 and 0.656 respectively, with high MAE and NMAE values, 
suggesting more significant deviations between estimated and observed 
ETo.

Overall, the validation procedure indicated that the use of clustered 
values of the two parameters provides a balance between ease of use and 
acceptable accuracy for practical applications across diverse climates.

4. Conclusions

This study introduces a novel approach to global reference evapo-
transpiration (ETo) estimation using spectral clustering techniques, 
which groups regions based on shared ETo dynamics derived from the 
parametric model variables (a’ and c’). Through this approach, 45 
distinct clusters were identified globally, with each cluster representing 
unique climatic and evapotranspiration characteristics.

The correspondence between the ETo clusters and Köppen-Geiger 
classification makes underscores the coherence of the clustering 
approach, as it groups areas with similar climatic behaviors into clearly 
defined clusters, similar to how the Köppen-Geiger system categorizes 
climates based on temperature and precipitation. This analogy provides 
a structured framework that connects ETo dynamics with global climate 
patterns.

A critical benefit of this clustering approach is its application to 
calibrating other ETo estimation methods. The spatial extent of the 
clusters can be used to guide and calibrate other models, such as tem-
perature- and radiation-based models. The delineation of these clusters 
provides a geographical framework for grouping regions that exhibit 
similar ETo behaviors, allowing other models to be adjusted or fine- 
tuned based on the spatial extent of these coherent clusters. This 

Table 6 
Statistical indexes for the monthly ETo validation dataset.

# Station Country Validation period NSE MAE 
(mm)

NMAE 
(%)

r2 NRMSE 
(%)

1 Camerino Italy January 2010 − December 2019 0.940 8.6 12.2 0.975 6.9
2 Ancona Italy January 2010 − December 2019 0.961 7.7 9.6 0.977 5.8
3 Macerata Italy January 2010 − December 2019 0.927 11.2 13.7 0.969 7.4
4 HRB M2 China January 2003 − December 2014 0.750 22.1 23.5 0.958 16.4
5 Ft. Lauderdale USA February 2004 − December 2018 0.686 13.2 12.2 0.806 15.8
6 Eastern Adams County USA February 2003 − November 2016 0.556 18.4 23.3 0.878 15.4
7 Buntigville USA January 2003 − December 2016 0.764 24.1 25.7 0.942 12.4
8 Davis USA January 2003 − December 2016 0.919 14.2 12.6 0.945 8.2
9 McArthur USA January 2003 − December 2016 0.822 18.5 21.0 0.968 12.2
10 Temecula USA January 2003 − December 2016 0.839 12.0 11.2 0.890 12.2
11 Manteca USA January 2003 − December 2016 0.943 11.8 10.3 0.948 6.8
12 Tulelake FS USA January 2003 − December 2016 0.773 18.8 23.1 0.963 13.7
13 Aachen-Hörn Germany January 2003 − May 2011 0.924 7.4 12.8 0.952 7.2
14 Angermunde Germany January 2003 − May 2013 0.656 18.3 33.2 0.681 15.1
15 Bremen Germany January 2003 − June 2013 0.944 6.2 11.6 0.948 6.0
16 Dresden Germany January 2003 − June 2013 0.884 10.2 16.5 0.930 8.3
17 Dusseldorf Germany January 2003 − June 2013 0.922 8.0 13.0 0.953 6.7
18 Frankfurt Germany January 2003 − June 2013 0.916 9.0 13.7 0.967 8.0
19 Hamburg Germany January 2003 − June 2013 0.945 6.1 11.4 0.950 6.0
20 Karlshue Germany January 2003 − September 2008 0.863 12.2 17.7 0.949 10.5
21 München Germany January 2003 − May 2013 0.715 15.7 27.5 0.720 14.9
22 Alicante Spain January 2003 − October 2009 0.887 12.3 11.3 0.964 10.4
23 Zaragoza Spain January 2003 − November 2009 0.705 29.7 25.9 0.960 16.2
24 Mace Head Ireland January 2011 − January 2022 0.930 5.2 11.0 0.946 7.3
25 Kostakioi Greece March 2015 − September 2019 0.766 13.1 15.7 0.915 13.9
26 Tunnack Fire Station Australia January 2003 − December 2016 0.663 20.3 25.3 0.954 15.2
27 Adelaide Airport Australia January 2003 − December 2016 0.772 24.3 17.9 0.973 14.3
28 Sydney Airport AMO Australia January 2003 − December 2016 0.655 19.5 14.6 0.831 15.3
29 Alice Springs Airport Australia January 2009 − December 2014 0.878 19.9 10.6 0.903 10.2
30 Newman_Aero Australia January 2009 − December 2016 0.788 24.1 12.1 0.890 12.3
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significantly simplifies the calibration process, as users can focus on 
predefined areas that have similar evapotranspiration characteristics 
without needing to account for the intricate variations across large 
geographic regions.

While the pre-calculated parameters derived from each cluster 
obviously provide means for estimating ETo using the Parametric 
method, the spatial boundaries of the clusters serve as a tool for 
improving the accuracy and efficiency of other methods. By using the 
spatial extent of these clusters, researchers can avoid recalibrating 
models for individual locations, instead applying a broader, more effi-
cient approach that accounts for regional climatic variability. This re-
duces the computational burden and technical complexity of ETo 
estimation, especially in areas with limited meteorological data or 
resources.

The use of the pre-calculated parameters for each cluster obviously 
provides means for estimating ETo using the Parametric method. The 
validation results underscore the robustness of the clustered Parametric 
approach across a wide range of climatic conditions. The analysis of 30 
stations from diverse hydroclimatic regions, such as the USA, China, 
Spain, Germany, Ireland, Greece, and Australia, demonstrated strong 
performance with high NSE values and high correlations (r2) between 
observed and estimated ETo values. In many cases the achieved NSE 
values were above 0.9, indicating the method’s suitability for hydro-
logical and engineering tasks on a monthly scale. The validation also 
revealed limitations in regions with complex microclimates, such as 
Eastern Adams County in USA, where the clustered method showed a 
decrease in performance. This suggests that while the clusters are highly 
effective for larger regions, additional refinements may be required for 
areas with unique local conditions or laying close to the clusters limits.

The trade-off between accuracy and ease of use is one of the most 
significant advantages of the clustered approach. By providing both a 
simplified method for ETo estimation and a framework for calibrating 
other models, this study offers a solution that balances precision with 
practicality. The clustering approach reduces the need for detailed, 
location-specific data, making it an ideal tool for large-scale water 
resource management, agricultural planning, and climate resilience 
strategies, especially in regions where high-resolution datasets are 
scarce or unavailable.

The dataset of 3139 stations, including geographical information, 
parameter values for a’ and c’, model performance metrics, and clus-
tering details, is available for download from https://www.itia.ntua. 
gr/en/docinfo/2523/. This dataset aims to support further research in 
testing and refining the clustering results, particularly in regions with 
complex microclimates, while also promoting the applicability of the 
findings from this study.
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