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 A B S T R A C T

An extension of the BLUECAT approach and software for uncertainty assessment of environmental predictions 
is presented, allowing the application to multimodel outputs. BLUECAT operates by transforming a point 
prediction provided by deterministic models to a corresponding stochastic formulation, thereby allowing the 
estimation of a bias corrected expected value along with confidence limits. In this paper we also propose to 
use BLUECAT for model selection in the context of multimodel predictions, by using a measure of uncertainty 
as selection criterion. We emphasise here the value of BLUECAT for gaining an improved understanding of the 
underlying environmental systems and multimodel combination. Two examples of applications are presented, 
highlighting the benefits attainable through uncertainty driven integration of several prediction models. These 
case studies can be reproduced through the BLUECAT software, that is available in the public domain along 
with help facilities and instructions.
1. Software and data availability

• Name of software: Bluecat-R and Bluecat-Python (R and Python 
versions, respectively)

• Developers: Alberto Montanari and Demetris Koutsoyiannis
• Contact: alberto.montanari@unibo.it
• Date first available: August 8, 2024
• Software required: R statistical environment, Python3 environ-
ment

• Program language: R and Python
• Source code at: https://github.com/albertomontanari/Bluecat-R 
and https://github.com/albertomontanari/Bluecat-Python (R and 
Python versions, respectively)

• Documentation: Detailed documentation for application installa-
tion, testing, and deployment can be found at https://github.com/
albertomontanari/Bluecat-R/blob/main/README.md and https:
//github.com/albertomontanari/Bluecat-Python/blob/main/REA
DME.md (R and Python versions, respectively). Further informa-
tion is provided by the R help (included in the R version)

• Data required for reproducing the case studies presented in the 
paper are included in the repository of the source codes as appli-
cation examples

∗ Corresponding author.
E-mail address: alberto.montanari@unibo.it (A. Montanari).

2. Introduction

Uncertainty means lack of deterministic predictability (Anderson 
et al., 2001). It is the real reason why managing environmental is-
sues and emergencies has continuously been an essential and difficult 
task for humans during their history and evolution (Hughes, 2016). 
Uncertainty is due to the complexity, chaotic behaviours and our 
limited understanding of several involved processes (Dewulf and Bies-
broek, 2018). Understanding uncertainty is the key to gain a better 
comprehension of the involved environmental systems.

In fact, uncertainty of predictions is today recognised as an essen-
tial information for elaborating reliable environmental risk mitigation 
and adaptation strategies (White et al., 2021; Sheikholeslami et al., 
2024). Indeed, humans are used to take decisions under uncertainty 
in everyday life. However, we also recognise the value of a rigorous 
and quantitative approach to uncertainty estimation and communica-
tion, in particular when the risk associated to the decision becomes 
relevant (Vose, 2008).

Uncertainty assessment in environmental modelling has been long 
investigated and discussed. See, for instance, Koutsoyiannis (2023), 
Beven (2018), Refsgaard et al. (2007), Burke et al. (2015), Kim et al. 
(2024), Hughes and Lawrence (2024), Liang et al. (2024), Lin et al. 
(2024), Plunge et al. (2024) and  Auer et al. (2024), to cite only a few. 
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The problem is multifaceted, for the diversity of applications, contexts 
and available information.

Here, we focus on the general case where environmental variables 
are predicted by using one or more calibrated models (multimodel) that 
produce one or more point estimations for which uncertainty assess-
ment is needed. In most of those cases, models are deterministic and 
process based or data-driven (see, for example, the recent applications 
by Gomes Jr. et al. (2024), Imhoff et al. (2024), Zou et al. (2024) 
and Jonsson et al. (2024)), but uncertainty assessment may also be 
required for the statistics or parameters of stochastic models (see, for 
instance, Cappelli et al. (2024)). We also refer to the case where a 
sufficiently long record of past outputs from each considered model 
is available that can be compared with the corresponding true values, 
that are typically derived from observations. Under such circumstances, 
uncertainty of model predictions can be assessed by comparing the 
predictions themselves with the corresponding reality. Several past 
studies (see, e.g., Beven (2016)) have demonstrated that drawing con-
clusions basing on such comparison is not an easy task. Prediction 
errors show a diversity of statistical behaviours, arising from several 
sources of uncertainty depending on the state of the considered system 
and therefore change in time and space.

Accordingly, a variety of approaches to uncertainty assessment have 
been proposed by the literature, including (1) data analysis meth-
ods, comprising analytical and statistical procedures for evaluating the 
accuracy of data, (2) derived distribution methods to compute the 
probability distribution function of the model output, (3) simulation 
and sampling-based methods, estimating the full distribution of the 
model output via simulation with different models and/or parameters. 
The category of the data analysis methods includes, among the others, 
statistical approaches (Honti et al., 2013), artificial intelligence (Kabir 
et al., 2018) and in particular machine learning (Shrestha and Solo-
matine, 2008). Simulation and sampling methods include multimodel 
approaches that are widely applied in environmental sciences (Her-
rmann and Marzocchi, 2023; Slater et al., 2019). In general, methods 
for assessing uncertainty are formulated for a single model, but can be 
converted to the case of multimodel prediction.

Several data analysis methods are based on the analysis of model 
prediction errors, which in most of the cases is performed by using 
statistical procedures (see, for instance, Montanari and Brath (2004), 
Montanari and Grossi (2008), Montanari and Koutsoyiannis (2012), 
Sikorska et al. (2015) and Liang et al. (2024)). Several contributions 
have pointed out that these methods are based on assumptions, like 
independence and homoscedasticity of model errors, which may be not 
satisfied and thus result in wrong uncertainty estimates (Beven, 2019). 
Therefore, the use of approaches that extract information directly from 
data rather than their statistics may be preferable.

Building on the above considerations, Koutsoyiannis and Monta-
nari (2022a) proposed the BLUECAT approach, a simple, easy-to-use 
and transparent methodology to upgrade a deterministic model into 
a stochastic one, thereby producing an estimate of the probability 
distribution of the true value to be predicted. Therefore, BLUECAT 
first upgrades the deterministic prediction into the stochastic expected 
value, by essentially operating a bias correction, and then produces 
an estimate of the confidence band for the considered variable. A 
software working in R-environment for the application of BLUECAT to 
predictions given by the HyMod rainfall-runoff model (Boyle, 2000) is 
available at https://github.com/albertomontanari/hymodbluecat. The 
method has been applied to a number of case studie in the realm of hy-
drology (Jorquera and Pizarro, 2023; Rozos et al., 2022; Koutsoyiannis 
and Montanari, 2022b).

Here, we present an updated and more general version of the 
BLUECAT approach and software, to allow the application to any 
environmental prediction obtained with a single model or a set of 
models. In fact, multimodels are increasingly used in environmental 
modelling to investigate the possible range of environmental predic-
tions and simulations (see the recent contributions by Mangukiya et al. 
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(2024), Wang et al. (2024) and Tu et al. (2024)). Thus, estimating 
their uncertainty is emerging as a key issue in environmental modelling 
that motivates the effort to remove any assumption on the nature and 
number of predictive models (Giustolisi et al., 2007). The present work 
discusses the whole set of hypotheses conditioning the application of 
BLUECAT to multimodels as well as an extended set of procedures for 
testing the validity of the estimated uncertainty measures. The updated 
BLUECAT software is provided in two languages - R (R Core Team, 
2021) and Python3 (Van Rossum and Drake, 2009).

3. The BLUECAT approach

We discuss here BLUECAT by referring first to the case of a single 
model prediction as in Koutsoyiannis and Montanari (2022a). We will 
discuss application to multimodel prediction in Section 6.

Let us denote with the symbol 𝑌𝜏 the output from a generic de-
terministic environmental model at discrete prediction step 𝜏, with 
𝑌𝜏 ∈ ℜ. Step 𝜏 indicates any allocation index of the individual model 
output into a set of predictions. We take for given that the true value of 
the predicted variable is available, which we denote with the symbol 
𝑦𝜏 . The first assumption of BLUECAT is that the information contained 
in the available samples of 𝑌𝜏 and 𝑦𝜏 is sufficient to support the trans-
formation from the deterministic to the stochastic output, therefore 
allowing to estimate uncertainty of the output itself.

The above first assumption does not imply severe limitations in 
practical applications. Indeed, most environmental models are cali-
brated and/or can produce hindcasts of the relevant variables. In both 
cases, a record of predictions along with corresponding observations is 
produced, so that uncertainty can be assessed by comparing the model 
output with the corresponding true value.

The target of BLUECAT is to efficiently extract such information 
in order to produce a reliable estimate of uncertainty, with the sim-
plest approach possible, by avoiding sophisticated assumptions. In 
what follows, we underline stochastic entities (variables, processes 
and functions). Variable values, deterministic functions and realisa-
tion of stochastic processes are indicated with non-underlined sym-
bols. Stochastic processes correspond to the real processes, while the 
outcome of the deterministic model (D-model) is an estimate thereof.

To update the deterministic prediction 𝑌𝜏 to its stochastic form (S-
model), we need to specify the conditional probability distribution: 

𝐹𝑦|𝑌 (𝑦|𝑌 ) = 𝑃 {𝑦 ≤ 𝑦|𝑌 = 𝑌 } (1)

where 𝑦 and 𝑌  correspond to the same discrete step 𝜏 and 𝑃  indicates 
probability. Let us note that 𝑌  is a scalar, i.e., a model output for a 
single prediction step.

Koutsoyiannis and Montanari (2022a) suggested a fully data based 
approach to estimate the conditional distribution 𝐹𝑦|𝑌 (𝑦|𝑌 ). First, a 
sample �̄�𝑖, 𝑖 = 1,… , 𝑚𝑙 + 𝑚𝑢 + 1 of true values is assembled that 
correspond to the sample 𝑌𝑖 of the D-model outputs that are closest 
in value to 𝑌 , according to: 
𝐹𝑦|𝑌 (𝑦|𝑌 ) ≈ 𝑃 {𝑦 ≤ 𝑦|𝑌 − 𝛥𝑌1 ≤ 𝑌 ≤ 𝑌 + 𝛥𝑌2} (2)

where 𝛥𝑌1 and 𝛥𝑌2 are chosen to include a number of lower and upper 
neighbours to 𝑌  equal to 𝑚𝑙 ∶= 𝛥𝐹1𝑛 and 𝑚𝑢 ∶= 𝛥𝐹2𝑛, respectively; 𝑛
is the sample size of the available 𝑦 and 𝑌  values. Numbers 𝑚𝑙 and 𝑚𝑢
should not be too large, in order to ensure that 𝐹𝑌 (𝑌 ) ± 𝛥𝐹1,2 is close 
to 𝐹𝑌 (𝑌 ), nor too small, to ensure that the probability 

𝑃
{

𝑦 ≤ 𝑦|𝐹𝑌 (𝑌 ) − 𝑚𝑙∕𝑛 ≤ 𝐹𝑌 (𝑌 ) ≤ 𝐹𝑌 (𝑌 ) + 𝑚𝑢∕𝑛)
}

(3)

can be estimated from the sample �̄�𝑖. Note that it may not be possible to 
collect the desired sample size of model output for the extreme values 
of the prediction, for which enough lower or higher model outputs 
may not be available, so that the numbers 𝑚𝑙 and 𝑚𝑢 should be ad-hoc 
reduced. This solution is adopted in the BLUECAT software. Here, we 
adopt 𝑚 = 𝑚 = 𝑚 and therefore the resulting sample size of �̄�  is 2𝑚+1.
𝑙 𝑢 𝑖

https://github.com/albertomontanari/hymodbluecat


A. Montanari and D. Koutsoyiannis Environmental Modelling and Software 188 (2025) 106419 
Fig. 1. Schematic of the BLUECAT workflow and software. The deterministic model 
(D-Model) is transformed to the stochastic model (S-model) by a stochastic analysis 
of the D-model predicted data in calibration versus the corresponding observations. 
The painting in the upper right is cropped from the picture available at https://www.
flickr.com/photos/cizauskas/36142084534/ of the Andy Warhol exhibition at the High 
Museum, Atlanta, Georgia, USA (CC BY-NC-ND 4.0).

From the probability distribution given by (3) one can easily esti-
mate the mean value (alternatively the median which may be more ro-
bust against outliers) which gives the S-model prediction, and quantiles 
corresponding to assigned probabilities, which may be used to define 
the confidence band of the S-model prediction for given confidence 
level.

In the BLUECAT software we estimate quantiles through order 
statistics or, in alternative, a robust approach based on the concept of 
knowable moments (K-moments, see Koutsoyiannis (2019, 2023)). The 
approach is presented with full details in Koutsoyiannis and Montanari 
(2022a), to which the interested reader is referred to. Note that for both 
order statistics and K-moments the minimum and maximum quantiles 
that can be estimated are min(�̄�𝑖) and max(�̄�𝑖), respectively. If one needs 
to extrapolate quantiles for arbitrary probabilities, a parametric rela-
tionship for 𝐹𝑦|𝑌 (𝑦|𝑌 ) should be adopted. For instance, Koutsoyiannis 
and Montanari (2022a) fitted a local linear regression between 𝑌  and 𝑦
to extrapolate quantiles beyond the lowest and highest values in �̄�𝑖. In 
the BLUECAT software we use the approximation 𝐹−1

𝑦|𝑌 (𝑦|𝑌 ) = min(�̄�𝑖), 
∀𝑌 ≤ min(𝑌𝑖) and 𝐹−1

𝑦|𝑌 (𝑦|𝑌 ) = max(�̄�𝑖), ∀𝑌 ≥ max(𝑌𝑖), where 𝑌𝑖 is the 
sample of predicted data corresponding to �̄�𝑖.

A schematic of the BLUECAT workflow is presented in Fig.  1.

4. BLUECAT testing

The BLUECAT software includes procedures for testing the reliabil-
ity of the estimated confidence bands against observed values of the 
variable to be predicted. Let us point out that the true values 𝑦𝜏 should 
necessarily fall with probability 1 − 𝛼 within the confidence bands 
estimated for significance level 𝛼. It follows that a first opportunity 
to check the BLUECAT output is simply to count the percentage of 
true values lying within (or outside) the confidence band. This check 
is automatically performed by the BLUECAT software. 

Moreover, the above percentage should necessarily be independent 
of the value of 𝑦𝜏 , namely, the number of true values within the confi-
dence bands should not change for different values of 𝑦𝜏 .  Koutsoyiannis 
and Montanari (2022a) propose two graphical methods to check the 
reliability of the BLUECAT output at local scale along the whole range 
of predicted variables: the ‘‘Combined Probability-Probability’’ (CPP) 
plot and the ‘‘Predictive Probability-Probability’’ (PPP) plot, which are 
drawn by the BLUECAT software provided the testing flag is set to 
‘‘true’’ (see Section 7).

The CPP plot essentially compares the probability distributions of a 
set of observed and predicted data. It is described in detail by Kout-
soyiannis and Montanari (2022a) to which the interested reader is 
referred to.
3 
Fig. 2. Predictive probability-probability plot. Segments A and B provide a measure 
of the excess percentage of observations lying below the lower and above the upper 
confidence limit, respectively, for significance level of 20%..
Source: Reproduced from Koutsoyiannis and Montanari (2022a).

4.1. Predictive Probability-Probability plot (PPP)

We discuss here the PPP plot to further support, with additional 
considerations, its use for testing the reliability of the uncertainty 
assessment provided by BLUECAT. The PPP plot was first introduced 
by Laio and Tamea (2007) and then discussed by several authors, 
including Eslamian (2014). The plot was referred to with different 
terms in previous studies. PPP is a plot of the empirical distribution 
function 𝐹𝑧(𝑧) of a stochastic variable 𝑧, where the latter also is a 
conditional non-exceedance probability, namely 
𝑧𝑌 ∶= 𝐹𝑦|𝑌 (𝑦). (4)

One notes that 𝑧 is the distribution function of the observed values 
evaluated for any prediction. Such probabilities are regarded as inde-
pendent and identically distributed with uniform distribution in [0,1]. 
To check such condition, for each prediction 𝑌𝜏 we look at the corre-
sponding sample �̄�𝑖 and compute the sample frequency of the value 𝑦𝜏 , 
that is evaluated by using the Weibull plotting position in the BLUECAT 
software. To check whether 𝑧𝑌  is uniformly distributed the PPP plot 
displays its values against the corresponding sample frequency. If the 
plot lies over the identity line then we can conclude that the confidence 
band is reliably estimated for any value of 𝑌𝜏 .

Specifically, a shape of the validation curve above or below the 
equality line indicates overprediction and underprediction, respec-
tively, while a shape above (below) the equality line in the first part of 
the diagram and below (above) the same line in the second part means 
that the band is narrow (large). Fig.  2 provides a graphical overview 
of the above features. Furthermore, the departure of the PPP plot from 
the equality line provides a measure of the reliability of the confidence 
band for a given confidence level. For instance, for a confidence level of 
0.8 one would expect about 10% of the observed points lying below and 
10% lying above a reliably estimated confidence band. Then, if we refer 
to the blue line in Fig.  2 that is an example of a narrow band, segments 
A and B provide a measure of the excess percentage of observations 
lying below the lower and above the upper confidence limit.

5. Summary of the BLUECAT assumptions, limitations, and op-
tions

Model building is inevitably based on assumptions. They do not 
undermine the efficiency and credibility of approaches, but rather 
allow their application to rigorously defined contexts. More than that, 
assumptions allow researchers to gain an improved understanding of 

https://www.flickr.com/photos/cizauskas/36142084534/
https://www.flickr.com/photos/cizauskas/36142084534/
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natural processes. They are unavoidably needed to set up and test 
models, but they need to be discussed transparently and, when possible, 
checked through rigorous testing. For these reasons, we believe it is ap-
propriate the summarise in the following 4 items the main assumptions 
of BLUECAT:

1. The statistical behaviours of the stochastic processes describ-
ing the modelled variables do not change in the application 
phase with respect to calibration. This assumption can be re-
laxed by using D-models accounting for changes, for instance 
non-stationary models (Koutsoyiannis and Montanari, 2022a,b).

2. The calibration data set is extended enough to ensure that suf-
ficient information is available to upgrade the D-model into the 
S-model.

3. The difference between the model output and the corresponding 
true value quantifies in an aggregated form all types of uncer-
tainty, including uncertainty due to input data and parameters, 
model structure and so forth.

4. The information needed to assess predictive uncertainty at each 
prediction step is synthesised by the value of the model predic-
tion.

The implications of the above assumptions determine the limitations 
of the approach. Regarding the first assumption, in the presence of 
changes in the stochastics processes the uncertainties estimated in 
calibration may differ with respect to application. Particular attention 
should be paid to the sample size of the calibration data set. Uncertain-
ties estimated over a limited amount of information may not be reliable. 
The information requirements depend on the local application and con-
text, and in particular the statistical behaviours of data and predictive 
uncertainty. Therefore, the minimal sample size required for reliably 
assessing uncertainty should be evaluated through expert opinion, case 
by case. Particular care should be paid when estimating uncertainty 
for predictions outside the range of calibration data. The information 
supporting BLUECAT testing should also be carefully evaluated. The 
software automatically includes warnings when testing is performed 
against a data set including less than 20 points.

The implication of the last assumption is that BLUECAT provides 
the same estimate for identical values of model predictions, regardless 
of other conditions, for instance related to the state of the system, 
which may impact model reliability. Eventually, the assumption may 
be removed by conditioning the probability distribution 𝐹𝑦|𝑌 (𝑦|𝑌 ) at the 
left hand side of Eq. (1) to additional variables besides 𝑌  at the right 
hand side (for instance, see Koutsoyiannis and Montanari (2022b)). 
Such potential for further research and extension of BLUECAT is an 
interesting opportunity to further increase the information content of 
environmental predictions.

6. BLUECAT application to multimodel prediction

While any uncertainty assessment method for single models can 
potentially be extended to the multimodel case, actually such extension 
introduces additional research questions related to (a) how to com-
bine the predictions of different deterministic models and (b) how to 
estimate uncertainty for the obtained combination.

Question (a) is addressed by a diverse set of approaches in envi-
ronmental sciences. Examples are ensemble averaging (Marmion et al., 
2009; Grenouillet et al., 2011) and Bayesian algorithms (Tebaldi and 
Knutti, 2007). Unweighted averaging of multimodel predictions is fre-
quently used, thus loosing part of the information conveyed by singular 
models that may significantly diverge and implying a smoothing effect, 
that reduces the internal variability of the signal.

In BLUECAT, we propose to use uncertainty of the considered model 
estimated at each prediction step as a criteria to select the optimal en-
semble member. Accordingly, a single model prediction corresponding 
to the least uncertain ensemble member, that is identified through a 
4 
proper measure, is picked up at each prediction step, thereby allowing 
the identification and use of the supposedly best performing model in 
the specific context and system state.

A key step of the above procedure is the identification of the proper 
uncertainty measure 𝑈𝜏,𝑘 for S-model 𝑘 at prediction step 𝜏, which 
depends on model type and intended use. We tested several different 
options, that were identified in coherence with the BLUECAT aim of 
seeking flexibility and simplicity, and finally included in the BLUECAT 
software the following 6 measures: 
𝑈𝜏,𝑘 = |𝑌𝜏,𝑘,𝑢 − 𝑌𝜏,𝑘,𝑙| (5)

𝑈𝜏,𝑘 = |(𝑌𝜏,𝑘,𝑢 − 𝑌𝜏,𝑘,𝑙)∕𝑌𝜏,𝑘,𝑆 | (6)

𝑈𝜏,𝑘 = |𝑌𝜏,𝑘,𝐷 − 𝑌𝜏,𝑘,𝑆 | (7)

𝑈𝜏,𝑘 = |(𝑌𝜏,𝑘,𝐷 − 𝑌𝜏,𝑘,𝑆 )∕𝑌𝜏,𝑘,𝑆 | (8)

𝑈𝜏,𝑘 = 𝑁𝐸𝜏,𝑘,𝐷 (9)

𝑈𝜏,𝑘 = 𝑆𝐴𝐸𝜏,𝑘,𝐷 (10)

where 𝑌𝜏,𝑘,𝑢 − 𝑌𝜏,𝑘,𝑙 are the upper and lower confidence limits for the 
prediction 𝑌𝜏,𝑘,𝑆 by S-model 𝑘, 𝑌𝜏,𝑘,𝐷 is the prediction by D-model 
𝑘, and 𝑁𝐸𝜏,𝑘,𝐷 and 𝑆𝐴𝐸𝜏,𝑘,𝐷 are the Nash–Sutcliffe efficiency (Nash 
and Sutcliffe, 1970) and sum of absolute errors, respectively, of the 
prediction by D-model 𝑘 of the sample of true values �̄�𝑖 identified at 
each prediction step 𝜏 (see Section 3).

We found that Eq. (5) may be indicated for applications where the 
variability of 𝑌  is relatively limited. The BLUECAT software reports 
back which model has been used at each step 𝜏 thus allowing to test 
the different options. Fig.  3 shows a sketch of the uncertainty based 
step-by-step model selection procedure.

More rigorous methods for estimating 𝑈𝜏,𝑘 may be applied based 
on the estimate provided by BLUECAT of the conditioned probability 
distribution 𝐹𝑦|𝑌 (𝑦|𝑌 ). Interested users are welcome to update the 
BLUECAT software (see Section 7) with additional options.

7. The BLUECAT software

The BLUECAT software is available in the R and Python3 versions 
(see section ‘Software and data availability’). The R software installs a 
R function requiring the arguments listed below. The Python3 software 
runs as a stand alone code, reading the same arguments, settings and 
input data from text files. Additional details on file format, installation 
and running the software are given in the R help, README files of 
R and Python3 versions and examples of application provided for 
both versions, which allow to reproduce the case studies presented in 
Section 8.

The user needs to specify the following arguments (acronyms and 
variable names are those used in the software):

• 𝑟𝑒𝑠𝑢𝑙𝑡𝑐𝑎𝑙𝑖𝑏, real values, list in the R version, matrix in the Python3 
version, providing the predicted and observed data, for each 
considered model, to be used for calibrating BLUECAT;

• 𝑚𝑜𝑑𝑒𝑙𝑠𝑖𝑚, matrix of real values, providing the D-model output for 
which uncertainty is to be assessed, for each considered model;

• 𝑛𝑚𝑜𝑑𝑒𝑙𝑠, integer value, the number of models considered in the 
multimodel approach. Default is 1;

• 𝑢𝑛𝑐𝑚𝑒𝑎𝑠, integer, 1,… , 6 for using the uncertainty measure given 
by Eqs. (5), (6), (7), (8), (9) and (10), respectively, in the multi-
model approach. Default is 2;

• 𝑝𝑟𝑒𝑑𝑠𝑚𝑜𝑑𝑒𝑙, character, ‘‘avg’’ (default) or ‘‘mdn’’ for adopting the 
average value or the median of the sample as S-model prediction;

• 𝑒𝑚𝑝𝑞𝑢𝑎𝑛𝑡, logical value, 𝑇  or F (default) for estimating empirical 
quantiles with sample statistics or K-moments;
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Fig. 3. The multimodel BLUECAT uncertainty based, step-by-step model selection.
3. 
• 𝑠𝑖𝑔𝑙𝑒𝑣, real value, significance level of the estimated confidence 
bands; default value is 0.2;

• 𝑚, integer, the number of predicted (and corresponding observed) 
data points lower and higher than each model output that are 
used to build the sample of observations to support uncertainty 
estimation. Default is 100;

• 𝑚1, integer, the number of K-moments used for the robust estima-
tion of quantiles. Default is 80;

• 𝑝𝑎𝑟𝑎𝑚𝑑, vector of 4 real numbers, the initial values for the param-
eters of the PBF distribution, default is (0.1,1,10,NA);

• 𝑙𝑜𝑤𝑝𝑎𝑟𝑎𝑚𝑑, vector of 4 real numbers, the lower values for the 
parameters of the PBF distribution, default is (0.001,0.5,0.001,0);

• 𝑢𝑝𝑝𝑎𝑟𝑎𝑚𝑑, vector of 4 real numbers, the upper values for the 
parameters of the PBF distribution, default is (1,5,20,NA);

• 𝑞𝑜𝑠𝑠, vector of real values, observed data corresponding to mod-
elsim. Default values is NULL for no data available. In this case 
confidence bands are computed, basing on the calibration data, 
but results are not tested;

• 𝑝𝑙𝑜𝑡𝑓 𝑙𝑎𝑔, logical value, 𝑇  (default) or F for performing or not the 
goodness of fit testing with plots;

• 𝑐𝑝𝑝𝑡𝑟𝑒𝑠ℎ, real value, threshold level indicating the minimum value 
of observed data to be used for the goodness of fit tests. Default 
is the minimum of observed and predicted data.

The above options are specified in the R command line invoking the
bluecat.sim R function, or the file settings.txt in the Python3 version. 
The interested user may refer to the R help and README files of R and 
Python3 versions for a step-by-step guidance to the installation of the 
software and reproduction of the case studies.

Computational time for the applications presented here is few sec-
onds with an Intel Core i7-9700 CPU at 3.00 GHz and 16 GB RAM under 
the Linux operating system.

8. Examples of application

We present here two examples of uncertainty estimation with BLUE-
CAT, that refer to a single model and a multimodel prediction, respec-
tively.

8.1. Single model prediction of tree ring width

Franke et al. (2021) considered predictions by a single model 
of temperature-sensitive chronologies of standardised tree ring width 
(TRW) for the period 1401–2000. The predicted series were gridded 
and averaged over the Northern Hemisphere to reduce local noise, thus 
obtaining one simulation average at annual resolution, including 600 
data points. Corresponding observed data were gridded and averaged 
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in the same way. See Franke et al. (2021) for more details on data 
and standardisation, in particular Fig.  5 in their contribution. Their 
work supported a detection and attribution study of climate variations 
due to volcanic forcing. Prediction of TRW was obtained by applying 
the Vaganov–Shashkin Lite (VSL) sensor model, which estimates stan-
dardised tree-ring width (TRW) annual chronologies based on monthly 
mean temperature, precipitation and latitude. More details and the data 
herein used are given by Franke et al. (2021) to which the interested 
reader is referred to. Here, we limit our analysis to uncertainty assess-
ment of the predicted and normalised TRW by comparing them with the 
corresponding observed values. Franke et al. (2021) report a correlation 
coefficient between observed and predicted series of 0.23, so the width 
of the estimated confidence band is expected to be large, in order to 
include the expected percentage of observed points. We point out that 
the target of Franke et al. (2021) was not to reproduce the observed 
data with the highest accuracy, but rather to filter the observed series 
to eliminate noise. Thus, uncertainty is indeed expected to be large, 
with the width of the confidence band indicating the magnitude of the 
noise that was removed.

We applied BLUECAT and goodness of fit tests by computing quan-
tiles with K-moments (empquant = F), significance level (siglev) 0.2, 𝑚 =
50, 𝑚1 = 40 and default values for the remaining options. BLUECAT was 
calibrated against the first 400 data points (1401–1800) and validated 
over the last 200 (1801–2000).

Results are summarised in Figs.  4 and 5. The percentage of vali-
dation points lying above and below the confidence bands are 3.1% 
and 2.5%, respectively, namely, lower than the expected values (10%). 
This means that the width of the confidence band is slightly overesti-
mated, probably in view of the approximations introduced by the low 
value of 𝑚 and the reduced sample size of the calibration data set. 
Overestimation of the confidence band width is confirmed by the PPP 
plot. According to our experience and testing, the above results look 
satisfactory in a validation experiment over a limited sample size.

8.2. Multimodel prediction of daily river flows

Koutsoyiannis and Montanari (2022a) presented a calibration and 
validation experiment for BLUECAT that considered the 1-step ahead 
prediction of daily river flows for the Arno River at Subbiano. The D-
model is HyMod (Boyle, 2000), which was calibrated by maximising 
Nash–Sutcliffe efficiency. The data of mean areal daily rainfall (es-
timated from raingauge observations), evapotranspiration (estimated 
from temperature data) and river flow span the 22-year period 1992–201
We used the first 20 years for HyMod and BLUECAT calibration and 
the last two years for validation. The Nash–Sutcliffe efficiency of the 
HyMod D-model is 0.63 in calibration and 0.57 in validation. The S-
model efficiency in validation is 0.62, with an overestimation of low 
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Fig. 4. Case study of tree ring widths. Scatterplot of observed versus predicted 
data and confidence band at the 80% confidence level, in validation, as provided 
by the BLUECAT software. Data are standardised and temperature sensitive tree-
ring chronologies averaged over the grid boxes considered by Franke et al. (2021) 
(nondimensional).

Fig. 5. Case study of tree ring widths. Predictive probability-probability plot (PPP) 
as provided by the BLUECAT software. The validation curve is displaced below the 
equality line in the first part of the diagram and above the same line in the second 
part, thus indicating that the band is slightly large (see also Fig.  2).

flows and confidence bands that are slightly narrow. Table  1 reports 
the percentage of observations lying outside the confidence limits, 
which are in fact higher than the value of 10% – for each limit – 
that one would expect for the confidence level of 80% that was used 
here. Extended details on model and catchment, as well as calibration 
and validation results, are provided by Koutsoyiannis and Montanari 
(2022a). In what follows, we term the above application of the HyMod 
model as ‘‘D-model 1’’.

Here, we consider an additional version of HyMod with a different 
parameter set (‘‘D-model 2’’), that is obtained by using the mean 
absolute relative error instead of the Nash–Sutcliffe efficiency as ob-
jective function for HyMod calibration. D-model 2 efficiency is 0.68 in 
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calibration and 0.61 in validation, namely, sligthly better performances 
with respect to D-model 1. S-model 2 efficiency in validation is 0.63, 
again a slightly improvement with respect to S-model 1. 

We also consider a third model for the Arno River at Subbiano (‘‘D-
model 3’’), namely, the GR5J model (Perrin et al., 2003; Le Moine, 
2008; Coron et al., 2017), counting 5 parameters and calibrated by 
maximising Nash–Sutcliffe efficiency. D-model 3 efficiency is 0.82 in 
calibration and 0.73 in validation, while S-model 3 efficiency in vali-
dation is 0.75. These performances mark an improvement with respect 
to S-model 1 and 2. Percentage of observations lying outside the 
confidence limits for the 3 S-models in validation are reported in Table 
1.

We applied the multimodel BLUECAT and goodness of fit tests by 
computing quantiles with K-moments (empquant = F), significance level 
(siglev) 0.2, 5 different combinations of parameters 𝑚, ranging from 20 
to 100, and 𝑚1, ranging from 10 to 80. We also used the two uncertainty 
measures given by Eqs.  (6) and (9), and default values for the remaining 
options. Different combinations of parameters 𝑚 and 𝑚1 allow us to test 
the sensitivity of BLUECAT output.

Multimodel efficiency in validation is 0.65 and 0.74, for the uncer-
tainty measures by Eqs. (6) and (9), respectively, and the combination 
of parameters 𝑚 = 100, 𝑚1 = 80. Table  1 reports the percentage of 
observations lying outside the confidence limits for both multimodel 
solutions. S-model 1, S-model 2, and S-model 3 were selected as least 
uncertain model in 21%, 7% and 72% of the validation steps, respec-
tively, for uncertainty measure by Eq. (6), and 37%, 7% and 56% of 
the validation steps, respectively, for uncertainty measure by Eq. (9).

It is interesting to note that the performances of the multimodel 
solution, in terms of Nash–Sutcliffe efficiency and percentage of ob-
servations lying outside the confidence limits, are not necessarily im-
proved with respect to the best performing single model, that is, GR5J. 
This result is expected, as the multimodel is the composition of the 
least uncertain model at each prediction step, according to a given 
uncertainty measure. Such composition does not necessarily lead to an 
improvement with respect to the best performing model in terms of 
Nash–Sutcliffe efficiency and number of observations encompassed by 
the confidence bands for the overall simulation. In fact, these are two 
different performance indexes with respect to the uncertainty measure 
that has been used to compose the multimodel. Not surprisingly, when 
the uncertainty measure given by Eq. (9) is used, that is, the Nash–
Sutcliffe efficiency in the prediction of the sample of true values �̄�𝑖
identified at each prediction step 𝜏, we obtain an overall efficiency for 
the multimodel that is close to the best efficiency obtained by the GR5J 
model.

The above reasoning highlights the fundamental role of the un-
certainty measure in multimodel selection, that should be chosen by 
bearing in mind the purpose of the application, to make sure that 
models are mixed with an optimal solution from a technical point of 
view.

Furthermore, we note from Table  1 that the performances of BLUE-
CAT, in terms of percentage of observations lying outside the confi-
dence band, are not much sensitive to parameters 𝑚 and 𝑚1. This means 
that uncertainty assessment looks reliable even when the probability 
distribution given by Eq. (3) is estimated over a limited data sample. 
This result is particularly relevant when assessing uncertainty in regions 
of the prediction domain with few observed data points (like, for 
instance, the region of peak flows). However, we noticed that the 
confidence band looks less regular and more fluctuating when working 
with low 𝑚 values, for the obvious reason that estimation variance 
is larger. For this reason we would like to reiterate that particular 
care should be paid when working with limited data samples and 
in particular when estimating uncertainty for predictions outside the 
range of calibration data (see also Section 5). 

Figs.  6 and 7 show the estimated confidence band for the time win-
dow October 26, 2012–December 31, 2013 of the validation period and 
the two selected uncertainty measures. Lower and upper confidence 
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Fig. 6. Case study of Arno River at Subbiano. Results of the step-by-step model selection for the time window October 26, 2012-December 31, 2013 of the validation period and 
uncertainty measure given by Eq. (6). Lower and upper confidence limits, and the confidence band between them, are marked at each prediction step with the same colour: red, 
blue and green when band is estimated by S-model 1, S-model 2 and S-model 3, respectively.
Fig. 7. Case study of Arno River at Subbiano. Results of the step-by-step model selection for the time window October 26, 2012-December 31, 2013 of the validation period and 
uncertainty measure given by Eq. (9). Lower and upper confidence limits, and the confidence band between them, are marked at each prediction step with the same colour: red, 
blue and green when band is estimated by S-model 1, S-model 2 and S-model 3, respectively.
 
 
 
 
 
 

limits, and the confidence band between them, are marked at each 
prediction step with the same colour: red when band is estimated by 
S-model 1, blue for S-model 2 and green for S-model 3. It is confirmed 
that S-model 3 is selected for most of the prediction steps.

Fig.  8 displays the PPP plots for S-model 1, S-model 2 , S-model 
3 and S-multimodel with uncertainty measure given by Eq. (9). Fig. 
9 shows the scatterplot of observed versus predicted by the same 
S-multimodel river flows, along with confidence limits at the 80% 
confidence level, in validation.

The results further confirm that the uncertainty measure plays a 
relevant role for model selection. However, a careful inspection of the 
simulation results presented in Figs.  6 and 7 revealed that there is no 
large difference between the two multimodels in the magnitude of the 
prediction at each time step 𝜏.
7 
Table 1
Percentage of observations lying outside the 80% confidence limits for the multimodel 
case study of the Arno River at Subbiano. Band was estimated with K-moments. 
Subscripts 𝑢 and 𝑙 refer to upper and lower limit, respectively.
 𝑚, 𝑚1 S1 S2 S3 SM1 SM2

%𝑢 %𝑙 %𝑢 %𝑙 %𝑢 %𝑙 %𝑢 %𝑙 %𝑢 %𝑙  
100, 80 16% 15% 19% 11% 11% 14% 11% 17% 15% 17% 
80, 60 16% 15% 19% 10% 12% 16% 11% 19% 15% 17% 
60, 40 16% 15% 19% 10% 11% 15% 12% 19% 14% 17% 
40, 20 16% 16% 20% 11% 11% 15% 12% 19% 14% 17% 
20, 10 16% 15% 20% 11% 12% 17% 14% 19% 13% 17% 
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Fig. 8. Case study of Arno River at Subbiano. Predictive probability-probability plots 
for S-model 1, S-model 2 and S-multimodel with uncertainty measure given by Eq. (9) 
in validation provided by the BLUECAT software.

Fig. 9. Case study of Arno River at Subbiano. Scatterplot in logarithmic scale of ob-
served versus predicted data and confidence band for the multimodel with uncertainty 
measure given by Eq. (9).

9. Conclusions

We present here an extension of the BLUECAT method allowing 
uncertainty assessment for the output from a single or multiple cali-
brated deterministic models. The new version of the method is suited 
for assessing reliability of environmental predictions and quantify-
ing their uncertainty, which is particularly important for providing 
vital information to decision makers and managing environmental 
emergencies.

BLUECAT transforms the deterministic model – or multimodel – 
into a stochastic formulation, basing on assumptions that are not par-
ticularly restrictive which are discussed in Section 5. If a multimodel 
application is considered, BLUECAT selects at each prediction step the 
optimal ensemble member by identifying the solution corresponding to 
8 
the minimum of a suitable uncertainty measure. Therefore, BLUECAT 
can be applied to combine different models to ensure that uncertainty 
is minimised in dependence of the state of the system.

A software is made available in the public domain for the swift 
application of BLUECAT in the R and Python environments (see Sec-
tions ‘Software and data availability’ and 7). The software comes with 
data and help facilities to allow reproduction of the case studies herein 
presented. We note that calibration of the deterministic models and 
BLUECAT implies optimisation procedures and therefore the repro-
duced results may slightly differ with respect to what is presented 
here.

We recommend that BLUECAT application is carried out by bearing 
in mind the underlying assumptions and limitations presented in Sec-
tions 5 and 6. In particular, the sample size of the data set that is used 
to assess uncertainty and the uncertainty measure that is used for model 
selection in multimodel applications should be carefully evaluated by 
taking into account the behaviours of the predicted variables and the 
target of the analysis. These issues necessarily have to be evaluated on 
the basis of expert knowledge and dialogue between researchers, policy 
makers and end users.

We would like to emphasise that BLUECAT delivers insights on the 
performances and weaknesses of the underlying deterministic models, 
therefore providing valuable support for improving our understanding 
of environmental systems and model accuracy. Recognising and assess-
ing uncertainty is not only providing an essential support to policy 
makers and agencies in charge of civil protection: it also delivers key 
information towards the improvement of environmental knowledge and 
predictions. 
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