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Appendix SA: On the inappropriateness of the term “greenhouse effect” 

Several scholars attribute the “discovery” of the “greenhouse effect” to Arrhenius (1896) but Fleming 

(1998) notes that this attribution is misleading and incorrect. He adds that the history of the greenhouse 

effect is not well known either outside or inside the atmospheric sciences. What Arrhenius (1896) 

actually stated is: “Fourier maintained that the atmosphere acts like the glass of a hothouse, because 

it lets through the light rays of the sun but retains the dark rays from the ground.” Notably, he used 

the term “hothouse” instead of “greenhouse”. However, as noted by Fleming (1998), Fourier's article 

is not in essence about the greenhouse effect.  

The term “greenhouse” was likely used for first time for the atmospheric behavior by Ekholm (1901), 

a Swedish meteorologist who was a close colleague of Arrhenius, who wrote: “the atmosphere may 

act like the glass of a green-house, letting through the light rays of the sun relatively easily, and 

absorbing a great part of the dark rays emitted from the ground, and it thereby may raise the mean 

temperature of the earth’s surface”.  

The first who appears to have used both terms “greenhouse effect” and “blanketing effect” for planetary 

atmospheres, with preference to the former, was Poynting (1907) who clearly stated, “A planetary 

atmosphere no doubt acts in some such way as the greenhouse glass.” His theory was criticized a year 

later by Very (1908) who asserted that no reasonable modification would enable the simple formula 

for a glass greenhouse to fit the atmospheric conditions on our earth. 

The analogy of the atmospheric behavior in terms of LW radiation, with the glass in a greenhouse or 

with a blanket was adopted by Humphreys (1913) who stated, “it is true that carbon dioxide is more 

absorptive of terrestrial than of solar radiation, and that it therefore produces a green-house or 

blanketing effect”. Likewise, Trewartha (1954; first edition in 1937) wrote: “The greenhouse depends 

mailto:dk@itia.ntua.gr


 
2 

for a large part of it heating upon the principle that the glass roof and sides permit free entrance of 

solar energy but, on the other hand, prevent the escape of long-wave heat energy.” 

The analogy had earlier been refuted by Wood (1909) based on an experiment using two similar boxes, 

but one having a glass cover and the other a cover of rock salt. He observed a maximum temperature 

of about 55 °C in each box when exposed to the sun and concluded that the function of the cover is 

mainly to prevent the loss of heat by convection (air flow), rather than the escape of LW radiation. 

Based on this finding he stated, “It seems to me very doubtful if the atmosphere is warmed to any great 

extent by absorbing the radiation from the ground.” Abbot (1909) discussed Wood’s (1909) work and 

agreed thar the main function of the cover of a “hot-box” or “hot-house” is to prevent loss of heat by 

convection. On the other hand, he opined that in the atmosphere there was a “blanket effect” that results 

in a temperature increase of 31 °C.  

Several modern scholars have repeated Wood’s (1909) experiment or different settings thereof (Nahle, 

2011a,b; Spencer, 2013a,b; Pratt, 2016; Seim and Olsen, 2020; Arveson, 2023) finding contradicting 

results. However, even the supporters of the GHE concept in fact verify with their experiments the 

dominance of preventing loss of heat by convection, rather than GHE. For example, Arveson (2023; 

his Fig. 5) found that in his experimental hotbox covered by polyethylene, which does not prevent the 

escape of LW radiation, the temperature increased from ambient temperatures 5-25 °C to more than 90 

°C. At the same time, in his glass-covered hotbox the typical difference in temperature was 8 °C. In 

other words, preventing heat loss by convection has an effect of about an order of magnitude higher 

than preventing heat loss by LW radiation. This is confirmed by the fact that in several countries (e.g. 

Greece) real-world greenhouses are typically covered by polyethylene films rather than glass.  

The most sophisticated and informative experiments on atmospheric behavior are those of Harde and 

Schnell (2022) and Schnell and Harde (2023). Their measurements are also confirmed by radiative 

transfer calculations. Their results suggest that ARE contributes to some warming of the Earth's 

surface, but not to any remarkable direct warming of the air temperature (see also Section 3.4). 

It is noted that the Intergovernmental Panel on Climate Change (IPCC), does not make any cautionary 

note about the inappropriateness of the term GHE, which it uses massively in all its assessment reports, 

from the first (IPCC, 1990) to the last (IPCC, 2021). In particular, in its fourth assessment report (IPCC, 

2007) it uses equivalently the term blanketing effect: “The reason the Earth’s surface is this warm is 

the presence of greenhouse gases, which act as a partial blanket for the longwave radiation coming 

from the surface. […] Clouds, on the other hand, do exert a blanketing effect similar to that of the 

greenhouse gases; however, this effect is offset by their reflectivity, such that on average, clouds tend 

to have a cooling effect on climate (although locally one can feel the warming effect: cloudy nights 

tend to remain warmer than clear nights because the clouds radiate longwave energy back down to 

the surface).”  

Similar is the situation in glossaries of several learned societies, such as WMO (1992) which severely 

misrepresents the term “greenhouse climate/climat de serre”. The United States National 

Oceanography and Atmospheric Administration (NOAA) does not issue any warning in its glossaries 

(NOAA, undated 1,2) but it does so in other information sites. Thus, NOAA (undated 3) states: “This 

atmospheric process is referred to as the Greenhouse Effect, since both the atmosphere and a 

greenhouse act in a manner which retains energy as heat. However, this is an imperfect analogy. A 

greenhouse works primarily by preventing warm air (warmed by incoming solar radiation) close to 

the ground from rising due to convection, whereas the atmospheric Greenhouse Effect works by 

preventing infrared radiation loss to space.” The American Chemical Society (ACS, undated) used to 
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promote the following clear warning, which looks to have been withdrawn after 2024: “The 

atmospheric gases and a greenhouse work in quite different ways, but the resulting effect, higher 

temperature in both cases, has led to the nomenclature ‘greenhouse gases’ for the atmospheric gases 

responsible for the atmospheric warming effect. Although this nomenclature is misleading, it is in such 

common use that we use it here as well.” Also the American Institute of Physics (AIP, 2025) clarifies 

that “greenhouses are kept warm less by the radiation properties of glass than because the heated air 

cannot rise and blow away”. Additional information on the subject can be found in Gerlich and 

Tscheuschner (2009) and Arveson (2023). 

Based on the above review of experiments and related documents, we may summarize the flaws of the 

“greenhouse effect” analogy in the following points. 

Mechanism mismatch: convection vs. radiation and implication of a static barrier 

In a real greenhouse, heat is trapped primarily by preventing convection—the glass or plastic cover 

stop warm air from escaping, keeping the interior warm. In contrast, ARE relies on radiative processes, 

where RAGs absorb and re-emit radiation. A greenhouse has fixed glass or plastic cover and walls that 

create a controlled, enclosed environment. The atmosphere, however, is dynamic, with gases mixing, 

circulating, and interacting across layers. 

The analogy would suggest that physical barriers are involved, which does not accurately reflect the 

molecular-level radiative absorption in the atmosphere. Furthermore, the analogy would imply a static, 

uniform heat trap, whereas ARE varies by location, altitude, and time due to atmospheric dynamics. 

Adopting the analogy would mislead people into thinking the atmosphere is a sealed system, protected 

by a blanket, and ignoring its fluid and variable nature. 

Oversimplification and non-holistic view of complex processes 

Radiation in the atmosphere involves multiple factors, various RAGs with their specific absorption 

spectra, altitude and lapse rate effects, interaction of atmosphere with land and oceans, and feedback 

loops. The greenhouse analogy reduces them all to a single image of heat being trapped, like in a glass 

structure. It glosses over critical details, such as how different processes contribute to temperature 

changes or how heat is redistributed globally. The analogy leads to misconceptions about the scale and 

nature of atmospheric processes, making it harder to grasp the accurate scientific picture.  

An idea of the oversimplification and non-holistic view of the complex processes is provided by Figure 

SA1. It can readily be seen in Figure SA1 that the most important RAG, WV, and even the CO₂, are 

radiatively active not only in LW but also in SW radiation. Furthermore, as seen in Figure SA2 (left), 

constructed by RRTM, the SW radiation is not a universal constant but varies with altitude, and the 

variation becomes substantial in the presence of RAGs. Furthermore, as seen in Figure SA2 (right), the 

LW downward radiation flux is strongly correlated with the SW downward radiation flux in a negative 

pattern. Isolating the LW radiation, as the greenhouse analogy implies, is totally unscientific.  
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Figure SA1 Transmission of SW (solar) and LW (Earth’s) radiation through atmosphere, vs. wavelength and 

frequency. For comparison with Figure 1, the wavenumbers of 400 and 1600 cm–1 correspond to wavelengths of 25 

and 6.25 μm, respectively. Reproduced from Wei et al. (2019; their Figure 1 under the CC BY license.)  

 

Figure SA2 (left) SW downward energy flux as a function of altitude for the indicated cases, standard or isothermal 

atmosphere, with or without RAGs, and without clouds; (right). LW downward energy flux as a function of SW 

downward energy flux for the same cases. The default values are used for all other RRTM parameters.  
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Unjustified emphasis on RAGs 

As shown in Sections 3.4 – 3.6, it is the temperature gradient that makes the surface-level temperature 

increase from about 252 K to about 288 K (i.e. by 36 K), with RAGs playing a secondary role. The 

temperature increase does not reflect a “greenhouse effect”, but it is mainly the result of the temperature 

gradient, whose origin is not the ARE but the processes described in section 3.5. 

On the other hand, a real greenhouse maintains a relatively uniform warm temperature inside. Thus, 

the analogy implies that the entire atmosphere warms uniformly, missing climate dynamics. In the 

atmosphere, the ARE warms the surface and the lower atmosphere but not the upper troposphere, while 

it may cool the stratosphere due to radiative dynamics. 

Additional problems 

The greenhouse analogy treats all RAGs as a monolithic glass barrier rather than a diverse set of 

molecules, each one with unique properties. The analogy promotes the idea of a heat trap, leading to 

misrepresentation of how the Earth’s energy balance works. Unlike the heat blocking from the glass, 

the atmosphere does not fully block infrared radiation, with some escaping to space and some being 

re-emitted back to Earth’s surface. 

Appendix SB: Maximum entropy of a single monoatomic molecule 

We consider an air column with a square cross section of edge 𝑎 containing monoatomic molecules of 

mass 𝑚0, assumed to be spherical particles, in fast motion. We do not know their exact position and 

velocity (actually, it is infeasible to know them). We wish to find the marginal probability distribution 

of one of these particles. Its state is described by 6 variables, 3 indicating its position 𝑥𝑖  and 3 indicating 

its velocity 𝑢𝑖 with 𝑖 = 1,2,3, all represented as stochastic variables, forming the vector 𝒛 ≔

(𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2, 𝑢3). Notice that here we use the Dutch convention to underline stochastic (random) 

variables, while their values are not underlined. We denote 𝑓(𝒛) the probability density function. The 

constraints for the particle’s position are: 

0 ≤ 𝑥1,2 ≤ 𝑎, 𝑥3 ≥ 0 (SB1) 

We use a non-relativistic framework and therefore we do not constrain velocity. The feasible space, 𝛺, 

is thus 𝛺 ≔ {0 ≤ 𝑥1,2 ≤ 𝑎, 𝑥3 ≥ 0, −∞ < 𝑢𝑖 < ∞; 𝑖 = 1,2,3}.  

As the column is not in motion, conservation of momentum demands that E[𝑚0𝑢𝑖] =

𝑚0 ∫ 𝑢𝑖𝑓(𝒛)d𝒛
𝛺

= 0, or: 

E[𝑢𝑖] = 0, 𝑖 = 1,2,3 (SB2) 

We note that, in general, the expectation E[𝑢𝑖] represents macroscopic motion, while 𝑢𝑖 − E[𝑢𝑖] 

represents fluctuation at a microscopic level. (In our case the fluctuation is identical to 𝑢𝑖.) 

The conservation of energy demands that the sum of internal (or thermal) energy and the dynamic 

energy of the particle be constant, equal to the energy per particle, 𝜀. The former is E [𝑚0‖𝑢‖
2

/2] =
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(𝑚0/2) ∫ ‖𝑢‖
2

𝑓(𝒛)d𝒛
𝛺

, where ‖𝑢‖
2

= 𝑢1
2 + 𝑢2

2 + 𝑢3
2, and the latter is 𝑚0𝑔𝑥3, where 𝑔 is the gravity 

acceleration. Hence, the energy constraint is 

E [‖𝑢‖
2

+ 2𝑔𝑥3] =
2𝜀

𝑚0
 (SB3) 

Now we form the entropy of 𝒛 according to the entropy definition: 

𝛷[𝒛] ≔ E [− ln
𝑓(𝒛)

𝛽(𝒛)
] = − ∫ ln

𝑓(𝒛)

β(𝒛)
f(𝒛)d𝒛

𝛺

 (SB4)  

where 𝛽(𝒛) is a background density, assumed to be of Lebesgue form. We recognize from the quantity 

ln(𝑓(𝒛) β(𝒛)⁄ ) that the latter should have units [z–1] = [x–3] [u–3] = [L–6 T3]. To form this, we utilize a 

universal constant, i.e., the Planck constant ℎ = 6.626 × 10−34 J s; its dimensions are [L2 M T–1]. If we 

combine it with the particle mass 𝑚0, we observe that the quantity (𝑚0/ℎ)3 has the required 

dimensions [L–6 T3], thereby giving the entropy as 

𝛷[𝒛] ≔ E [− ln ((
ℎ

𝑚0
)

3

𝑓(𝒛))] = − ∫ ln ((
ℎ

𝑚0
)

3

𝑓(𝒛)) f(𝒛)d𝒛

𝛺

 (SB5) 

Notice that here we have not multiplied the entropy with the Boltzmann constant k = 1.381×10−23 J K−1 

and that 𝛷[𝒛] is dimensionless. 

To apply the principle of maximum entropy with constraints in Equations (SB1) – (SB3), plus the unity 

integral of the density function, we form the Lagrangian (using Lagrange multipliers 𝑙𝑖, 𝑖 = 0, … ,4): 

𝐴 ≔ − ∫ ln ((
ℎ

𝑚0
)

3

𝑓(𝒛)) f(𝒛)d𝒛

𝛺

− 𝑙0 (∫ f(𝒛)d𝒛

𝛺

− 1) − ∑ 𝑙𝑖

3

𝑖=1

∫ 𝑢𝑖f(𝒛)d𝒛

𝛺

− 𝑙4 (∫(𝑢1
2 + 𝑢2

2 + 𝑢3
2 + 2𝑔𝑥3) f(𝒛)d𝒛

𝛺

−
2𝜀

𝑚0
) 

(SB6) 

Taking the functional derivative, we find 

𝜕𝐴

𝜕𝑓(𝒛)
= − ln ((

ℎ

𝑚0
)

3

𝑓(𝒛)) − 1 − 𝑙0 − ∑ 𝑙𝑖

3

𝑖=1

𝑢𝑖 − 𝑙4(𝑢1
2 + 𝑢2

2 + 𝑢3
2 + 2𝑔𝑥3) = 0 (SB7) 

After algebraic manipulations, we eventually find the distribution of 𝒛 as: 
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𝑓(𝒛) =
2

π3/2
(

1

𝑎
)

2

(
5𝑚0

4𝜀
)

5 2⁄

𝑔 exp (−
5𝑚0

4𝜀
(‖𝑢‖

2
+ 2𝑔𝑥3)) (SB8) 

Indeed, 𝑓(𝒛) in Equation (SB8) satisfies all constraints, as it is trivial to show that: 

∫ 𝑓(𝒛)
𝛺

d𝒛 = 1, ∫ 𝑢𝑖𝑓(𝒛)
𝛺

d𝒛 = 0, ∫ (𝑢1
2 + 𝑢2

2 + 𝑢3
2 + 2𝑔𝑥3)

𝛺

𝑓(𝒛)d𝒛 =
2𝜀

𝑚0
 (SB9) 

To find the marginal distribution of each of the variables we integrate over the domain of the remaining 

variables. Thus, the marginal distribution of each of the location coordinates 𝑥𝑖 is easily found to be, 

𝑓𝑥1
(𝑥1) = 𝑓𝑥2

(𝑥2) =
1

𝑎
, 0 ≤ 𝑥1, 𝑥2 ≤ 𝑎, 𝑓𝑥3

(𝑥3) =
5𝑔𝑚0

2𝜀
exp (−

5𝑔𝑚0

2𝜀
𝑥3) (SB10) 

As 𝑓𝑥3
(𝑥3) is proportional to air density, the last equation shows that the density decreases 

exponentially with altitude. The marginal distribution of each of the velocity coordinates 𝑢𝑖 is derived 

from Equation (SB8) as 

𝑓𝑢𝑖
(𝑢𝑖) = (

5𝑚0

4π𝜀
)

1 2⁄

exp (−
5𝑚0

4𝜀
𝑢𝑖

2) (SB11) 

This is Gaussian with mean 0 and variance 2𝜀 5𝑚0⁄ .  

Furthermore, we readily deduce from the above results that the joint distribution 𝑓(𝒛) is a product of 

functions of 𝒛’s coordinates (𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2, 𝑢3). This means that all six stochastic variables are 

jointly independent. The independence results from entropy maximization. From Equations (SB8) and 

(SB11) we also observe a symmetry with respect to the three velocity coordinates, resulting in 

equipartition of the total energy 𝜀 into 𝜀/5 for each direction or degree of freedom. This is known as 

the equipartition principle and is again a result of entropy maximization. In other words, neither 

independence nor equipartition are posed as assumptions here. Clearly, they are derived by the 

principle of maximum entropy (that is, maximum uncertainty). 

To find the marginal distribution of the velocity magnitude ‖𝑢‖, we recall that the sum of squares of 

𝑛 independent 𝑁(0,1) stochastic variables has a 𝜒2(𝑛) distribution (Papoulis, 1990, pp. 219, 221) and 

then we use known results for the density of a transformation of a stochastic variable (Papoulis, 1990, 

p. 118) to obtain the distribution of the square root. The result is the Maxwell–Boltzmann distribution: 

𝑓‖𝑢‖(‖𝑢‖) =
4

√π
(

5𝑚0

4𝜀
)

3/2

‖𝑢‖
2

exp (−
5𝑚0

4𝜀
‖𝑢‖

2
) (SB12) 

Once 𝑓(𝒛) has been determined in Equation (SB8), the mean energy can be partitioned into thermal 

and dynamic (due to gravity) as follows: 
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𝜀𝜃 ≔ E [𝑚0‖𝑢‖
2

/2] =
3𝜀

5
, 𝜀𝑔 ≔ E[𝑚0𝑔𝑥3] =

2𝜀

5
 (SB13) 

Given that the kinetic state of a monoatomic molecule has three degrees of freedom (one per direction 

of motion), the above result shows that gravity is equivalent to two additional degrees of freedom. 

The final expression of entropy is then obtained as follows. We observe that 

− ln 𝑓(𝒛) = 2 ln 𝑎 +
5

2
ln (

4π𝜀

5𝑚0
) − ln(2π𝑔) +

5𝑚0

4𝜀
(𝑢1

2 + 𝑢2
2 + 𝑢3

2 + 2𝑔𝑥3), 

ln β(𝒛) = 3 ln
𝑚0

ℎ
  

(SB14) 

After performing the integration over 𝛺 we find 

𝛷[𝒛] =
5

2
ln (

28/5π3/5e

5
 

𝑚0
1/5

𝑔2/5ℎ6/5
𝜀𝑎4/5) (SB15) 

where e is the base of natural logarithms. It can be verified that the equation is dimensionally consistent 

and that 𝛷[𝒛] is dimensionless as it should be. 

The temperature is defined as the inverse of the partial derivative of entropy with respect to thermal 

energy, i.e., 

1

𝜃
≔ (

𝜕𝛷

𝜕𝜀𝜃
)

𝑉,𝑁

 (SB16) 

where the meaning of the subscripts is that the volume V and number of particles N should be constant. 

Notice that in this definition, temperature has units of energy and to convert it to the thermodynamic 

temperature T we must divide it by Boltzmann constant (𝑇 = 𝜃/𝑘). In our case 𝑁 = 1 and the V of the 

column is infinite, and thus we replace it with the mean of the volume, regarded as a stochastic variable, 

i.e. 

𝜇𝑉 ≔ E[𝑉] = 𝑎2E[𝑥3] = 𝑎2 ∫
5𝑔𝑚0

2𝜀
exp (−

5𝑔𝑚0

2𝜀
𝑥3) d𝑥3

∞

0

=
2𝜀𝑎2

5𝑔𝑚0
 (SB17) 

so that, to have constant 𝜇𝑉 the size 𝑎 should be 

𝑎 = (
5𝑔𝑚0

2𝜀
𝜇𝑉)

1/2

 (SB18) 

Equation (SB15) can then be written as  
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𝛷[𝒛] =
5

2
ln (

26/5π3/5e

33/5
 
𝑚0

3/5

ℎ6/5
𝜀𝜃

3/5
𝜇𝑉

2/5
) (SB19) 

Taking the derivative with respect to 𝜀𝜃, we easily find 

1

𝜃
=

𝜕𝛷

𝜕𝜀𝜃
=

3

2𝜀𝜃
⇒ 𝜃 =

2𝜀𝜃

3
 (SB20) 

The above analysis was made for the entire air column. Next, we will fix the altitude to a specific value 

𝑥3 and find the same quantities conditional on this altitude. Using the subscript C for conditional, in 

this case we have 

𝑓C(𝒛|𝑥3) =
𝑓(𝒛)

𝑓𝑥3
(𝑥3)

= (
1

𝑎
)

2

(
5𝑚0

4π𝜀
)

3 2⁄

exp (−
5𝑚0

4𝜀
(‖𝑢‖

2
)) (SB21) 

where we observe that the conditional probability density does not depend on the altitude 𝑥3. Now the 

integration volume is 𝛺C ≔ {0 ≤ 𝑥1,2 ≤ 𝑎, −∞ < 𝑢𝑖 < ∞; 𝑖 = 1,2,3}. Integrated over this volume, the 

mean energy is: 

𝜀𝜃 = E [𝑚0‖𝑢‖
2

/2] = ∫ (𝑢1
2 + 𝑢2

2 + 𝑢3
2)

𝛺C

𝑓C(𝒛)d𝒛 =
3𝜀

5
 (SB22) 

This is the same as in the unconditional case. The potential energy is fixed, 𝜀𝑔 = 𝑚0𝑔𝑥3, and its 

average over the column is 

𝜀𝑔 ≔ ∫ 𝑚0𝑔𝑥3𝑓𝑥3
(𝑥3)d𝑥3

∞

0

=
2𝜀

5
 (SB23) 

which agrees with the previous result. 

The entropy is not easy to calculate in conditional mode, as an assumption is needed for adapting the 

background measure 𝛽(𝒛). For this reason, we follow a different approach, replacing the condition 

𝑥3 = 𝑥3 with 𝑥3 − 𝑎 2⁄ ≤ 𝑥3 ≤ 𝑥3 + 𝑎/2, so that no change to the background measure be necessary. 

In order for this approximation to be valid, we assume 𝑎 ≪ 𝑥3, which is not a problem as we can make 

𝑎 as small as we wish. In this case, a uniform distribution for the location of the molecule in the cube 

is plausible. Based on the results in Koutsoyiannis (2014) and substituting 3𝜀 5⁄  for ε, we have 

𝑓F(𝒛) = (
1

𝑎
)

3

(
5𝑚0

4π𝜀
)

3 2⁄

exp (−
5𝑚0

4𝜀
(‖𝑢‖

2
)) (SB24) 
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where the subscript F stands for “fixed 𝑥3” and the only difference from Equation (SB21) is that 𝑎 is 

cubed, rather than squared. The thermal energy is then found to be  

𝜀𝜃 =
3𝜀

5
 (SB25) 

i.e., the same as above. The entropy is 

𝛷F[𝒛] =
3

2
ln (

4πe

5
 
𝑚0

ℎ2
𝜀𝑎2) (SB26) 

and the temperature 

1

𝜃F
=

𝜕𝛷F

𝜕𝜀
/

𝜕𝜀𝜃

𝜕𝜀
=

3

2𝜀
/

3

5
⇒ 𝜃𝐹 =

2𝜀

5
=

2𝜀𝜃

3
 (SB27) 

which is constant, independent of 𝑥3. 

Appendix SC: Maximum entropy of a single diatomic molecule 

In diatomic gases, which constitute the vast majority in the atmosphere (N₂, O₂), in addition to the 

kinetic energy, we have rotational energy at two axes 𝑥4 and 𝑥5 perpendicular to the axis defined by 

the two molecules. These energies are 𝐿4
2 2𝐼⁄  and 𝐿5

2 2𝐼⁄ , where L denotes angular momentum at the 

two axes 𝑥4 and 𝑥5 (dimensions [M L2 T–1]) and I denotes rotational inertia (dimensions [M L2]). Due 

to symmetry, 𝐼4 = 𝐼5 = 𝐼. 

We consider again the same column with square cross section of edge a, containing identical diatomic 

molecules, each one with mass 𝑚0, rotational inertia 𝐼, and sum of kinetic, rotational and dynamic 

energy ε. Each molecule is described by eight variables, three indicating its position, 𝑥𝑖, three indicating 

its velocity 𝑢𝑖 (𝑖 = 1,2,3) and two indicating its rotation, 𝑢4 = 𝐿4/√𝐼𝑚0 and 𝑢5 = 𝐿5/√𝐼𝑚0. Note 

that the coordinates 𝑢4 and 𝑢5 were chosen so as have the same dimensions as all other 𝑢𝑖 and 

𝑚0𝑢𝑖
2 2⁄ , 𝑖 = 4,5 represent the rotational energy. The coordinates 𝑥1, 𝑥2, 𝑥3 and the five 𝑢𝑖 are 

represented as stochastic variables, forming the vector 𝒛 = (𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5). 

The constraints are the same as in Appendix SB (Equations (SB1) – (SB3)). The background density 

𝛽(𝑥) in ln(𝑓(𝑥) β(𝑥)⁄ ) should have units [z–1] = [x–3] [u–5] = [L–8 T5]. Combining the Planck constant 

ℎ with the particle mass 𝑚0 and rotational inertia I, we observe that the required dimensions are 

attained by the quantity 𝑚0
4𝐼/ℎ5, thereby giving the entropy as 

𝛷[𝒛] ≔ E [− ln (
ℎ5

𝑚0
4𝐼

𝑓(𝒛))] = − ∫ ln (
ℎ5

𝑚0
4𝐼

𝑓(𝒛)) f(𝒛)d𝒛

𝛺

 (SC1) 

Application of the principle of maximum entropy with constraints in Equations (SB1) – (SB3) plus the 

unity integral of the density function will give the density of 𝒛 as: 
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𝑓(𝒛) =
2

π5/2
(

1

𝑎
)

2

(
7𝑚0

4𝜀
)

7 2⁄

𝑔 exp (−
7𝑚0

4𝜀
(‖𝑢‖

2
+ 2𝑔𝑥3)) (SC2) 

which is again uniform for the location coordinates 𝑥1, 𝑥2, exponential for the location coordinate 𝑥3, 

and Gaussian for the translational and rotation coordinates. The entropy is then calculated as 

𝛷[𝒛] =
7

2
ln (

212/7π5/7e

7
 

𝑚0
1/7

𝐼2/7

𝑔2/7ℎ10/7
𝜀𝑎4/7) (SC3) 

The marginal distribution of each of the location coordinates 𝑥𝑖 is easily found to be 

𝑓𝑥1
(𝑥1) = 𝑓𝑥2

(𝑥2) =
1

𝑎
, 0 ≤ 𝑥1, 𝑥2 ≤ 𝑎, 𝑓𝑥3

(𝑥3) =
7𝑔𝑚0

2𝜀
exp (−

7𝑔𝑚0

2𝜀
𝑥3) (SC4) 

Again, the last equation shows that the density decreases exponentially with altitude. The marginal 

distribution of each of the velocity coordinates 𝑢𝑖 is derived as 

𝑓𝑢𝑖
(𝑢𝑖) = (

7𝑚0

4π𝜀
)

1 2⁄

exp (−
7𝑚0

4𝜀
𝑢𝑖

2) (SC5) 

This is Gaussian with mean 0 and variance 2𝜀 7𝑚0⁄ . 

Once 𝑓(𝒛) has been determined in Equation (SC2), the mean energy can be partitioned into thermal 

and dynamic (due to gravity) as follows: 

𝜀𝜃 ≔ E [𝑚0‖𝑢‖
2

/2] =
5𝜀

7
, 𝜀𝑔 ≔ E[𝑚0𝑔𝑥3] =

2𝜀

7
 (SC6) 

Given that the kinetic state of a diatomic molecule has five degrees of freedom, the above result shows 

that gravity is equivalent to two additional degrees of freedom. Furthermore, we readily deduce from 

the above results that the joint distribution 𝑓(𝒛) is a product of functions of 𝒛’s coordinates 
(𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5). This means that all eight stochastic variables are jointly independent. The 

independence results from entropy maximization. From Equations (SC2) and (SC5) we also observe a 

symmetry with respect to the five kinetic coordinates, resulting in equipartition of the total energy 

𝜀 into 𝜀/7 for each degree of freedom (equipartition principle, a result of entropy maximization). 

The mean volume of the column, regarded as a stochastic variable, is  

𝜇𝑉 ≔ E[𝑉] = 𝑎2E[𝑥3] = 𝑎2 ∫
7𝑔𝑚0

2𝜀
exp (−

7𝑔𝑚0

2𝜀
𝑥3) d𝑥3

∞

0

=
2𝜀𝑎2

7𝑔𝑚0
 (SC7) 

so that, to have constant 𝜇𝑉 the size 𝑎 should be 
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𝑎 = (
7𝑔𝑚0

2𝜀
𝜇𝑉)

1/2

 (SC8) 

Equation (SC3) can then be written as  

𝛷[𝒛] =
7

2
ln (

212/7π5/7e

55/722/7
 
𝑚0

3/7
𝐼2/7

ℎ10/7
𝜀𝜃

5/7
𝜇𝑉

2/7
) (SC9) 

Taking the derivative with respect to 𝜀𝜃, we easily find 

1

𝜃
=

𝜕𝛷

𝜕𝜀𝜃
=

5

2𝜀𝜃
⇒ 𝜃 =

2𝜀𝜃

5
 (SC10) 

This has units of energy and to convert it to the thermodynamic temperature T we must divide it by 

Boltzmann constant (𝑇 = 𝜃/𝑘).  

The above analysis was made for the entire air column. Next, we will fix the altitude to a specific value 

𝑥3 and find the same quantities conditional on this altitude. Using the subscript C for conditional, in 

this case we have 

𝑓C(𝒛|𝑥3) =
𝑓(𝒛)

𝑓𝑥3
(𝑥3)

= (
1

𝑎
)

2

(
7𝑚0

4π𝜀
)

5 2⁄

exp (−
7𝑚0

4𝜀
(‖𝑢‖

2
)) (SC11) 

where we observe that the conditional probability density does not depend on the altitude 𝑥3. Now the 

integration volume is 𝛺C ≔ {0 ≤ 𝑥1,2 ≤ 𝑎, −∞ < 𝑢𝑖 < ∞; 𝑖 = 1, … ,5}. Integrated over this volume, 

the mean energy is:  

𝜀𝜃 = E [𝑚0‖𝑢‖
2

/2] = ∫ (𝑢1
2 + 𝑢2

2 + 𝑢3
2 + 𝑢4

2 + 𝑢5
2)

𝛺C

𝑓C(𝒛)d𝒛 =
5𝜀

7
 (SC12) 

This is the same as in the unconditional case. The potential energy is fixed, 𝜀𝑔 = 𝑚0𝑔𝑥3, and its 

average over the column is 

𝜀𝑔 ≔ ∫ 𝑚0𝑔𝑥3𝑓𝑥3
(𝑥3)d𝑥3

∞

0

=
2𝜀

7
 (SC13) 

in consistence with the previous result. 

To calculate entropy in conditional mode, we again assume a fixed cube with edge a centered at the 

altitude 𝑥3, with 𝑎 ≪ 𝑥3, so that a uniform distribution for the location of the molecule in the cube be 

plausible. In this case, based on the results in Koutsoyiannis (2014) and substituting 5𝜀 7⁄  for ε, we 

have 
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𝑓F(𝒛) = (
1

𝑎
)

3

(
7𝑚0

4π𝜀
)

5 2⁄

exp (−
7𝑚0

4𝜀
(‖𝑢‖

2
)) (SC14) 

with the same thermal energy  

𝜀𝜃 =
5𝜀

7
 (SC15) 

entropy, 

𝛷F[𝒛] =
5

2
ln (

4πe

7
 
𝑚0

3/5
𝐼2/5

ℎ2
𝜀𝑎6/5) (SC16) 

and temperature 

1

𝜃F
=

𝜕𝛷F

𝜕𝜀
/

𝜕𝜀𝜃

𝜕𝜀
=

5

2𝜀
/

5

7
⇒ 𝜃𝐹 =

2𝜀

7
=

2𝜀𝜃

5
 (SC17) 

which is constant, independent of 𝑥3. 

Appendix SD: Molecular motion simulation 

Simulation setup 

We conducted a molecular dynamics simulation to validate the theoretical expectation that, in the 

absence of convection and radiation, the atmosphere should be isothermal. The simulation software 

was developed in-house and is available for testing within the Supplementary Information of the paper 

and at https://www.itia.ntua.gr/2537/. The software architecture follows the principles of event-driven 

simulations, as described by Pöschel and Schwager (2005). 

The system consists of 100 000 particles with a kinetic diameter of 3.64×10⁻¹⁰ m and molecular mass 

of 4.65×10⁻²⁶ kg—parameters closely resembling those of nitrogen molecules. We assume the particles 

behave as perfectly elastic hard spheres. The simulation box has a size of L = 1.55×10⁻⁷ m. A 

gravitational field of –9.8 m/s² is applied vertically along the vertical axis (𝑧 ≡ 𝑥3). 

The simulation uses periodic boundary conditions along the horizontal axes (𝑥 ≡ 𝑥1, 𝑦 ≡ 𝑥2) and 

reflective boundaries in the plane perpendicular to the z-axis. When a molecule hits the bottom 

boundary, its vertical velocity component uz is reversed, while ux and uy remain unchanged. 

The total initial energy was chosen such that particles rarely reach the top boundary, as seen in the 

accompanying videos (available within the Supplementary Information of the paper and at 

https://www.itia.ntua.gr/2537/). Additionally, as seen in Figure SD2 (right), the density at the top 1% 

part of the simulation box is just 0.00004% of that at the bottom 1% part. Thus, the setup effectively 

simulates an infinite column with reflective surface, with gas confinement due solely to gravity. 

https://www.itia.ntua.gr/2537/
https://www.itia.ntua.gr/2537/


 
14 

Energy and momentum are conserved in the system. More specifically, the system’s total energy 

(kinetic plus potential) is precisely conserved, while, due to the reflections at the bottom boundary, the 

total momentum fluctuates, yet it is conserved statistically. 

As can be seen in the videos, initially the particles are uniformly distributed up to about 30% of the 

box height, with small random deviations in x and y directions. We then allow the system to evolve 

under gravity until it reaches a stationary dynamic state. The simulation runs for 1.2 billion collisions, 

averaging 24 000 collisions per particle. 

Velocity distribution 

We periodically sampled velocities along the three axes. As shown in Figure SD1, the velocity 

distribution along the x axis closely matches a normal distribution with the same mean and variance. 

An Anderson-Darling (AD) test for normality yielded a statistic of 0.31, indicating that we cannot 

reject a normality hypothesis (like in the classical 1D Maxwell-Boltzmann form). Same findings hold 

for the y and z direction. 

 

Figure SD1 Probability density function of the velocity at the horizontal x direction: Simulation data (dashed orange 

line) and same mean-variance normal distribution (continuous blue line, indistinguishable from the dashed line).  

Density and temperature  

We divided the simulation domain into 100 horizontal slabs of equal height (L/100) from bottom to 

top. Every 25 000 collisions, we calculated the density and temperature in each slab. After completing 

1.2 billion collisions (24 000 per particle), we averaged the calculated values to generate profiles of 

density and temperature per height. 

Figure SD2 shows the gas density vs. height, where an exponential decrease of density with height is 

observed (a straight line in a plot on a logarithmic density axis). A non-equilibrium boundary layer 

(Knudsen layer with typical thickness of a few mean free paths) forms near the bottom, where particle-
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wall interactions distort local distributions. As seen in the view zoomed at the bottom of the simulation 

box (right panel), for height < 0.6×10⁻⁹, the density distribution is distorted. To exclude this effect from 

our results, we assumed a transition height further up, at height ≈10⁻⁸ m. All data from lower slabs 

were excluded and grayed out in the plot. 

Figure SD3 shows the profiles of density and temperature in linear plots. The lowest slab used is at 

height 1.02×10⁻⁸ m (determined from Figure SD2 as explained), which we treat as the base level 

(analogous to sea level). Densities and temperatures at all other heights are expressed as percentages 

of this baseline. Above a certain level (0.7×10⁻⁷ m in Figure SD2) the temperature fluctuates 

irregularly, which is a statistical effect due to the small number of particles per slab. Still, below this 

height (where the density falls to 0.29% of the base) the temperature profile remains remarkably flat. 

This suggests that the temperature is independent of altitude in this regime. Beyond that, larger 

fluctuations would require more simulation time for robust conclusions. 

 

Figure SD2 Density measurements per height (logarithmic profile): (left) full range of scales; (right) zoom at the 

bottom of the simulation box.  

 

Figure SD3 Linear plots of density and temperature profiles. 



 
16 

To make the simulation results physically realistic, as shown in Figure 3 (in the body of the paper), we 

made the following conversions (rescaling). We set the base density to 1.2 kg/m³ (sea-level air density) 

and scale the other values accordingly using the percentages shown in Figure SD3. When the density 

reaches ~30% of the base, we mark it as the top of the troposphere (~10 km). The top of the stratosphere 

is also annotated in Figure 3. For the temperature, we set the base to 252 K and plot the profile 

accordingly. As seen, the temperature remains essentially constant throughout the troposphere and 

stratosphere. Overall, the simulation and analysis support the conclusion that, in the absence of 

radiation and convection, the atmosphere remains isothermal for all practical purposes. 
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