Ανάλυση αστοχίας άνω φράγματος και αλυσιδωτές επιπτώσεις κατάντη σε αντλησιοταμιευτικά υδροηλεκτρικά συστήματα: Μελέτη περίπτωσης του έργου Μπράβα - Σφηκιά στον Ποταμό Αλιάκμονα

16ο Πανελλήνιο Συνέδριο Ελληνικής Υδροτεχνικής Ένωσης

30/05/2025

Τμήμα Πολιτικών Μηχανικών, Δημοκρίτειο Πανεπιστήμιο Θράκης (Δ.Π.Θ.), Πανεπιστημιούπολη Κιμμερίων, Ξάνθη

Ερευνητική ομάδα:

- Παναγιώτης Δήμας, Πολ. Μηχανικός ΕΜΠ, MAS ETH Zürich, Υποψ. Δρ.
- Αρχοντία Λύκου, Πολ. Μηχανικός ΕΜΠ, MSc Επιστήμη & Τεχνολογία Υδατικών Πόρων
- Άκης Ζαρκαδούλας, Πολ. Μηχανικός ΕΜΠ, MAS ETH Zürich
- Γεωργία-Κωνσταντίνα Σακκή, Δρ. Μηχανικός ΕΜΠ, MSc Οικον. & Δίκαιο Ενέργειας
- Αργυρώ Λουλούδη, Δρ. Μηχανικός ΕΜΠ, ΔΕΗ Α.Ε.
- Ανδρέας Ευστρατιάδης, Αναπλ. Καθηγητής ΕΜΠ
- Χρήστος Μακρόπουλος, Καθηγητής ΕΜΠ

Δομή παρουσίασης

- Αντικείμενο μελέτης
- Περιοχή μελέτης Τεχνικά 2. χαρακτηριστικά έργων
- Μηχανισμοί κατάρρευσης 3. φράγματος - Μοντελοποίηση
- Διόδευση πλημμυρικού κύματος -4. Μοντελοποίηση - Αποτελέσματα
- Εκτίμηση επιπτώσεων στον 5. ταμιευτήρα Σφηκιάς (διόδευση πλημμυρογραφήματος & τσουνάμι)
- Συμπεράσματα 6.
- Ενδεικτική βιβλιογραφία 7.

Η μεθοδολογική προσέγγιση με μια ματιά & σχετικά ερωτήματα

- Ποιοι μηχανισμοί δύνανται να προκαλέσουν θραύση του φράγματος Μπράβας;
- Ποιες είναι οι κρίσιμες παράμετροι και παραδοχές
 της θραύσης του εν λόγω φράγματος, και πώς
 αυτές υλοποιούνται στα αντίστοιχα μοντέλα;
- Ποιες είναι οι πιθανές δυσμενείς καταστάσεις του συγκροτήματος Αλιάκμονα κατά το ενδεχόμενο θραύσης του φράγματος (αρχική στάθμη Σφηκιάς, εισροές από Πολύφυτο), και πώς αντιμετωπίζονται υπό τη μορφή συνδυαστικών σεναρίων;
- Πώς χειριζόμαστε την έντονη αβεβαιότητα του
 Μπράβα φαινομένου; (πολλά μοντέλα, με εξαιρετικά μεγάλο εύρος εκτιμήσεων)
- Πώς αναπαρίσταται η διόδευση του πλημμυρικού κύματος και τι επιπτώσεις έχει κατά μήκος της διαδρομής του;
- Ποιες είναι οι δυνητικές επιπτώσεις των εν λόγω σεναρίων στον ταμιευτήρα Σφηκιάς;
- Υπάρχει κίνδυνος υπερπήδησης του φράγματος Σφηκιάς και πρόκλησης αλυσιδωτών επιπτώσεων κατάντη;

Περιοχή μελέτης – Τεχνικά χαρακτηριστικά έργων (1)

Περιοχή μελέτης – Τεχνικά χαρακτηριστικά έργων (2)

Α) Άποψη φράγματος Σφηκιάς από τα ανάντη

B) Θυροφράγματα εκχειλιστή φράγματος Σφηκιάς

Μηχανισμοί κατάρρευσης φράγματος

Α) Υπερπήδηση

B) Διασωλήνωση

Σενάρια προσομοίωσης της διασωλήνωσης φράγματος

Scenario Nr.	Scenario Nr. Methodology		Side slopes of breach (H:V)	Breach formation time (h)	
1	MacDonald et al. (1984)	50	0.5	1.2	
2	2 Froehlich (1995)		0.9	0.5	
3 Froehlich (2008)		28	0.7	0.47	
	Dam erodibility	Medium			
4a	4a Von Thun and Gillette (1990)		0.5	0.99	
5a Xu and Zhang (2009)		28	0.6	1.32	
	Dam erodibility	High			
4b Von Thun and Gillette (1990)		116	0.5	0.56	
5b	5bXu and Zhang (2009)		1.05	0.69	

Software: E	BASEbreach	
Macchione (2008)	6	
Peter (2017)	7	
Peter Calibrated (Peter et al. 2018)	8	

Εξετάζονται **10 σενάρια διασωλήνωσης** με διαφορετικά μοντέλα και παραδοχές τους, και παράγονται τα αντίστοιχα **πλημμυρογραφήματα**, λόγω της θραύσης του φράγματος.

Εκτίμηση πλημμυρικών αιχμών με εμπειρικές σχέσεις

Method			Empirical formula	Qmax (m ³ /s)	
USBR (1982)		32)	$Q = 19.1(h_w)^{1.85}$	15,213	
	MacDonald and Langridge- Monopolis (1984)		$Q = 1.154 (V_w h_w)^{0.412}$	3,951	
	Froehlich (19	95b)	$Q = 0.607 V_w^{0.295} h_w^{1.24}$	6,251	
Xu and Zhang (2009)		(2009)	$\frac{Q}{\sqrt{gV_w^{5/3}}} = 0.175 \left(\frac{h_d}{h_r}\right)^{0.199} \left(\frac{V_w^{1/3}}{h_w}\right)^{-1.274} e^{B_4}$	6,171(medium) 8,916 (high)	
	SCS (198	1)	$Q = 16.6(h_w)^{1.85}$	13,222	
	Hagen (198	32)	$Q = 0.54(Sh_d)^{0.5}$	10,516	
	Singh and Snorras (1)	on (1984)	$Q = 13.4(h_d)^{1.89}$	12,969	
	Singh and Snorras (2)	on (1984)	$Q = 1.776(S)^{0.47}$	3,503	
	Costa (1985))(1)	$Q = 1.122(S)^{0.57}$	12,111	
	Costa (1985) (2)		$Q = 0.981(Sh_d)^{0.42}$ 3,978		
	Costa (1985) (envelope)		$Q = 2.634(Sh_d)^{0.44}$ 15,865		
Evans (1986)		36)	$Q = 0.72 V_w^{0.53}$	3,741	
	Παράμετροι		Επεξήγηση		Τιμή
	hw (m)	Ύψος	ς όγκου νερού υπεράνω του σημείου έναρξης τ	της θραύσης	37
	Vw (m ³)	ΰ	γκος νερού υπεράνω του σημείου έναρξης της	θραύσης	10,250,000
	S (m ³)	Αποθηκευτ	Αποθηκευτικότητα ταμιευτήρα υπεράνω του σημείου έναρξης της θραύσης		10,250,000
	hd (m) Ύψος φράγματος		38		
			Παράμετροι για μέθοδο Xu and Zhang (2009)		
	hr	hr Χαρακτηριστικό ύψος διαχωρισμού μεταξύ μεγάλων και μικρών φραγμάτων		15	
	b3	Συντελεστής για χωμάτινο φράγμα		-0.649	
	b4	Συντελεστής για σενάριο διασωλήνωσης		-1.039	
	b5 high	Συντελεστής για υψηλή διαβρωσιμότητα		-0.007	
	b5 medium	Συντελεστής για μέση διαβρωσιμότητα		-0.375	
	B4 high	b3 + b4 + b5 high		-1.695	
	B4 medium b3 + b4 + b5 medium			-2.063	

Πλημμυρικές αιχμές **μοντέλων προσομοίωσης**:

- Μέση: 6,744 m³/s
- Μέγιστη: 10,188 m³/s

Πλημμυρικές αιχμές **εμπειρικών σχέσεων**:

- Μέση: 7,908 m³/s
- Μέγιστη: 15,865 m³/s

Κατάρτιση αντιπροσωπευτικού πλημμυρογραφήματος θραύσης

- Τα σενάρια αποτυπώνουν την έντονη αβεβαιότητα των μηχανισμών θραύσης, της μοντελοποίησής τους, και των ισχυόντων συνθηκών.
- Ζητούμενο η κατάρτιση ενός αντιπροσωπευτικού σεναρίου, που αναπαριστά ένα φαινόμενο θραύσης «μέσης» πιθανότητας.
- Ο μέσος όρος των παροχών (μέσο σενάριο) υποεκτιμά την αιχμή,
 λόγω διαφορετικών σχημάτων των επιμέρους πλημμυρογραφημάτων.
- Διαμόρφωση αντιπροσωπευτικού πλημμυρογραφήματος ώστε να αναπαράγονται η μέση αιχμή και το μέσο χρονικό προφίλ των εξεταζόμενων σεναρίων.

Διόδευση πλημμυρικού κύματος κατάντη του φράγματος

Ψηφιακό μοντέλο εδάφους, διδιάστατη περιοχή ροής και οριακές συνθήκες

- Κατάρτιση 2D μοντέλου διόδευσης με χρήση
 Ψηφιακού Μοντέλου Εδάφους (ΨΜΕ)
 ανάλυσης 2x2 m από το Κτηματολόγιο.
- Το μοντέλο αναπτύχθηκε στο λογισμικό HEC-RAS του US Army Corps of Engineers και συγκεκριμένα στην πλέον πρόσφατη έκδοσή του (6.6).
- Βασικές παραδοχές μοντέλου:
 - Διακριτοποίηση **στοιχείων** 50 x 50 m
 - Χρονικό βήμα 1.0 s. (κριτήριο CFL)
 - **Manning** = 0.06
 - Ανάντη οριακή συνθήκη:
 πλημμυρογράφημα θραύσης
 - Κατάντη οριακή συνθήκη:
 ΑΣΥ της Σφηκιάς (+146.00)

Flood wave propagation between the upper and the lower reservoir: Results

Β) Χρόνος άφιξης

Σύγκριση **ανάντη και κατάντη πλημμυρογραφήματος** και όγκων:

- Έντονες κλίσεις εδάφους → μικρός χρόνος υστέρησης (~ 5min) → μικρή εξομάλυνση αιχμών (δυσμενές: 0,2%, ευμενές 0.4%, αντιπροσωπευτικό: 0.2%)
- Οι αντίστοιχοι πλημμυρικοί όγκοι κυμαίνονται από
 6.9 έως 8.3 hm³ (όγκος που απελευθερώνεται κατά τη θραύση 10.5 hm³)

Διόδευση πλημμυρογραφήματος θραύσης

4 σενάρια – Υδροηλεκτρικό Συγκρότημα Αλιάκμονα:

Συνδυασμός 2 υδρογραφημάτων κατάρρευσης ανάντη (αντιπροσωπευτικό & δυσμενές) με 2 τρόπους λειτουργίας του συγκροτήματος

- Κατάσταση Αδράνειας:
 - Καμία ροή μεταξύ των ταμιευτήρων(Πολύφυτο → Σφηκιά → Ασώματα)
 - Ολα τα τεχνικά αρχικά κλειστά
 - Στρόβιλοι (600 m³/s) σε πλήρη λειτουργία μετά από 10 λεπτά
 - Θύρες υπερχειλιστών (έως 1600 m³/s) ανοίγουν σταδιακά εντός 30 λεπτών
- Κατάσταση Πλημμύρας:
 - Πλήρης λειτουργική ικανότητα σε όλες τις εγκαταστάσεις
 - Σταθερή εισροή στη Σφηκιά: 1,720 m³/s
 - Εκροή μέσω στροβίλων: 600 m³/s + πλήρως ανοιχτός υπερχειλιστής

Χρονοσειρές εισροών έναντι διοχετευμένων εκροών (αριστερά) και στάθμης ταμιευτήρα (δεξιά) για τα σενάρια 1 (άνω γράφημα) και 4 (κάτω γράφημα). Η κόκκινη γραμμή υποδηλώνει τη στέψη του φράγματος.

Εκτίμηση επιπτώσεων λόγω τσουνάμι: Θεωρητική προσέγγιση

- Προσομοίωση δημιουργίας κύματος από την κατολίσθηση.
 - Εξασθένιση κύματος λόγω τριβής πυθμένα, λόγω ακτινικής διάδοσης και περίθλασης.

$$A(x,t) = 2 \frac{P}{\rho\beta(t)} \sqrt{\frac{h}{g}} \left\{ A_i[Z(x+L,t)] - A_i\left[Z(x+L,t) + \frac{L}{\beta(t)}\right] \right\} + \int_0^{t_{imm}} \frac{LV(\tau)}{\beta(t-\tau)} A_i[Z(x,t-\tau)] d\tau + \frac{P}{\rho} \int_0^t \frac{1}{\beta(\tau)} \frac{1}{\beta(t-\tau)} A_i[Z(x,t-\tau)] \{A_i[Z(2L,\tau)] + A_i[Z(0,\tau)]\} d\tau$$

Αποτελέσματα της επίλυσης της διαφορικής εξίσωσης ύψους κύματος.

Bottom friction coefficient, f_w	Initial wave height at the dam (m)	Wave height after diffraction (m)	Run- up, <i>R</i> (m)	Maximum water level (m)	Distance from dam crest (m)
0.05	3.5	1.5	3.7	149.7	1.0
0.50	1.9	0.8	2.0	148.0	2.7
1.00	1.3	0.5	1.4	147.4	3.3

$$R = 2 \ a \ exp(0.4\varepsilon) \left(\frac{90^0}{\beta}\right)^{0.20}$$

Γωνίες και συντελεστές περίθλασης, καθώς και απόσταση απωλειών λόγω τριβής πυθμένα.

Εκτίμηση επιπτώσεων λόγω τσουνάμι: Ημιεμπειρική προσέγγιση (1)

Γεωμετρία του ταμιευτήρα Σφηκιάς και χαρακτηριστικά σημεία που απεικονίζουν τη διαδρομή του κύματος που παράγεται από τον όγκο νερού που φτάνει στο σημείο Α.

- Εφαρμογή μεθοδολογίας που προτείνεται από το Εργαστήριο
 Υδραυλικής, Υδρολογίας και Παγετωνολογίας του ETH Zurich (Evers et al., 2019)
- Χρήση εμπειρικών σχέσεων για την εκτίμηση της δημιουργίας
 κυματισμού, διάδοσης (2D / 3D) και υπολογισμό αναρρίχησης
- Μέρος υπολογιστικής διαδικασίας υποστηρίζεται
 με εργαλείο υλοποιημένο σε excel
 που είναι διαθέσιμο από

που είναι διαθέσιμο από

https://zenodo.org/records/3492000

Εκτίμηση επιπτώσεων λόγω τσουνάμι: Ημιεμπειρική προσέγγιση (2)

Σημαντική απόσβεση του κύματος παρατηρείται κατά μήκος της διαδρομής διάδοσης λόγω ακτινικής διασποράς και τριβής πυθμένα.

- Υψόμετρα κορυφής κύματος σε βασικά σημεία:
 - **Σημείο Β** (660 m, 0° γωνία): 6.4 m
 - **Σημείο C** (1392 m, 48° γωνία): 1.9 m
 - **Σημείο Ε** (φράγμα, 4440 m): 0.55 m
- Εκτιμήσεις αναρρίχησης (R):
 - **Σημείο Β**: ~18 m
 - **Σημείο Ε**: ~1.41 m
- Συμβατά με το θεωρητικό σενάριο
- Χρόνοι άφιξης κύματος σε κρίσιμα σημεία:
 - Από το σημείο Α στο Β: 31 seconds
 - Από το Α στο φράγμα (Ε): 208 seconds
- Πολύ νωρίτερα από την κορύφωση του διοδευόμενου υδρογραφήματος (~27 λεπτά)
- Κρίσιμες επιπτώσεις που αποφεύχθηκαν:
 - Πιθανή επικάλυψη κορυφής τσουνάμι και πλημμυρικού υδρογραφήματος θα μπορούσε να προκαλέσει υπερπήδηση του φράγματος Σφηκιάς
 - Κίνδυνος αλυσιδωτών αστοχιών στο υδροηλεκτρικό σύστημα κατάντη

Συμπεράσματα

- Διπλή λειτουργία που καθιστά το έργο μοναδικό σε σχέση με άλλα για την αποθήκευση ενέργειας.
- Διερεύνηση δυνητικών επιπτώσεων κατάρρευσης του κυρίως φράγματος (τα δυο αυχενικά δεν αποτέλεσαν αντικείμενο ανάλυσης λόγω πολύ μικρού μεγέθους και μη επιρροής σε κατάντη περιοχές και υποδομές).
- Διερεύνηση πολλαπλών σεναρίων και προσδιορισμός αντιπροσωπευτικού πλημμυρογραφήματος.
- Διδιάστατη υδροδυναμική προσομοίωση της ροής για το πλέον ευμενές, δυσμενές και αντιπροσωπευτικό σενάριο.
- Διερεύνηση επιπτώσεων στον ταμιευτήρα Σφηκιάς: α) διόδευση πλημμυρικών παροχών μέσω τεχνικών έργων (για διάφορες καταστάσεις λειτουργίας Πολυφύτου και Σφηκιάς) και β) κυματισμός μορφής τσουνάμι.
- Δεν προκύπτει κίνδυνος υπερπήδησης του φράγματος Σφηκιάς λόγω διόδευσης πλημμυρικών αιχμών (ανύψωση 2.3 m πάνω από ΑΣΛ και 2.4 m κάτω από τη στέψη στο δυσμενέστερο σενάριο).
- Αναρρίχηση λόγω τσουνάμι εκτιμάται μεταξύ 1.4 και 3.7 m αφήνοντας περιθώριο ασφαλείας από 3.3 ως 1.0 m, σε σχέση με τη στέψη (σημαντικές αβεβαιότητες, εξαιρετικά περίπλοκο πρόβλημα υδροδυναμικής).
- Οι δυο διεργασίες δεν συμπίπτουν χρονικά (μέγιστη ανύψωση στάθμης λόγω διόδευσης ~ 30min, ο κυματισμός φτάνει στη θέση του φράγματος σε ~ 3 5 min).
- Ανάγκη κατάρτισης μέτρων α) συντήρησης-παρακολούθησης, β) προετοιμασία και εκπαίδευση και γ) ΣΑΕΚ από
 Γενική Γραμματεία Πολιτικής Προστασίας σε συνεργασία με ΔΕΗ Α.Ε.

Ενδεικτική βιβλιογραφία

- Ελληνική Επιτροπή Μεγάλων Φραγμάτων (2014). Τα φράγματα της Ελλάδας.
- Ελληνικό Κτηματολόγιο, ΕΠΨΣ 2007-13, ΕΠΑΝΕΚ2014 20.
- Ευστρατιάδης, Α., Υδρολογικός σχεδιασμός συστημάτων υπερχείλισης, Σημειώσεις μαθήματος "Υδραυλικές Κατασκευές Φράγματα", Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Μάιος 2023.
- Κουτσογιάννης, Δ., Θ. Ηλιοπούλου, Α. Κουκουβίνος, Ν. Μαλάμος, Ν. Μαμάσης, Π. Δημητριάδης, Ν. Τεπετίδης, και Δ. Μαρκαντώνης, Τεχνική Έκθεση, Παραγωγή χαρτών με τις επικαιροποιημένες παραμέτρους των όμβριων καμπυλών σε επίπεδο χώρας (εφαρμογή της Οδηγίας ΕΕ 2007/60/ΕΚ στην Ελλάδα), Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο, 2023.
- Ackerman, C. T., M. J. Fleming, and G. W. Brunner (2008). Hydrologic and hydraulic models for performing dam break studies. In *World Environmental and Water Resources Congress 2008*, 1–11. Honolulu, Hawaii, United States: American Society of Civil Engineers. doi:10.1061/40976(316)285.
- Albu, L.-M., A. Enea, M. Iosub, and I.-G. Breabăn (2020). Dam breach size comparison for flood simulations: A HEC-RAS based, GIS approach for Drăcşani Lake, Sitna River, Romania. Water, 12(4), 1090. doi:10.3390/w12041090.
- Amini, A., J. Bahrami, and A. Miraki (2022). Effects of dam break on downstream dam and lands using GIS and HEC RAS: A decision basis for the safe operation of two successive dams. *International Journal of River Basin Management*, 20(4), 487–498. doi:10.1080/15715124.2021.1901728.
- Butt, M. J., M. Umar, and R. Qamar (2013). Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan. *Natural Hazards*, 65(1), 241–54. doi:10.1007/s11069-012-0361-8.
- Dean, R. G., and R. A Dalrymple (1991). Water Wave Mechanics for Engineers and Scientists. Vol. 2. World Scientific Publishing Company.
- Di Risio, Marcello, and Paolo Sammarco (2008). Analytical Modeling of Landslide-Generated Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 134 (1): 53–60.
- Dyer, K. R. (1986). Coastal and Estuarine Sediment Dynamics.
- Efstratiadis, A., I. Tsoukalas, D. Koutsoyiannis (2021). Generalized storage-reliability-yield framework for hydroelectric reservoirs. *Hydrological Sciences Journal*, 66(4), 580–599, doi:10.1080/02626667.2021.1886299.
- Evers, F. M. (2019). Computational tool for "Landslide-generated Impulse Waves in Reservoirs Basics and Computation" (1.0). Zenodo. doi:10.5281/zenodo.3492000
- Evers, F. M., V. Heller, H. Fuchs, W.H. Hager, and R.M. Boes (2009). Landslide-generated Impulse waves in reservoirs: Basics and computation. Mitteilungen 211, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), R. Boes, Hrsg., ETH Züri
- Goda, Y. (2010). Random Seas and Design of Maritime Structures. World Scientific.
- Goodell, C. R. (2005). Dam break modeling for Tandem reservoirs A case study using HEC-RAS and HEC-HMS. In Impacts of Global Climate Change, 1–11. Anchorage, Alaska, United States: American Society of Civil Engineers. doi:10.1061/40792(173)402.
- Hardisty, J. (1990). *Beaches: Form and Process*. Springer Science & Business Media.
- Howarth, L. (1979). One hundred years of Lamb's Hydrodynamics. *Journal of Fluid Mechanics*, 90(1), 202–207.
- Institut de Mécanique des Fluides de Toulouse (1977). Rapport No 328-9, Toulouse.

URBAN WATER MANAGEMENT AND HYDROINFORMATICS GROUP

Ευχαριστώ για την προσοχή σας!

