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Part A
Introduction
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The ultimate risk index: deaths and classification of their causes
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Source: Koutsoyiannis (2024) –
Reference decade 2010
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Question for thought: Why has the last risk category on the list been elevated as the greatest 
global policy issue?



Are fatalities from natural disasters increasing?
◼ Floods, droughts and other 

natural disasters have always 
occurred and will always do.

◼ The risk from natural 
disasters has been 
spectacularly decreased.

◼ We owe that decrease to 
engineering and technology.

◼ Instead of casting pessimistic 
prophesies for the future, in 
the last century engineers 
improved hydro-technology, 
water management, and risk 
assessment and reduction.
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Source: Koutsoyiannis (2024).
Data from https://ourworldindata.org/world-population-growth; 
https://ourworldindata.org/ofdacred-international-disaster-data 
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Climate crisis is not a scientific issue; it’s a political doctrine

◼ This assertion is illustrated by 

(a) the decision of the European 
Parliament (Nov. 2019), 

(b) the creation of the Ministry of 
Climate Crisis in Greece (Sep. 
2021) and 

(c) the announcement of the UN 
(Apr. 2022)

◼ Question: Which one is a bigger 
threat? 

❑ A natural climate crisis? 

❑ Or a political "climate crisis"?
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https://www.europarl.europa.eu/news/
en/press-room/20191121IPR67110/

https://civilprotection.gov.gr/klimatiki-krisi

https://press.un.org/en/2022/sgsm21228.doc.htm
See also: 
https://climath.substack.com/p/introducing-climath
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Domains of climate analysis for this presentation
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Why Mediterranean?
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Why Greece?
◼ The Greek government 

is proud for the 
important innovation 
of establishing the 
Ministry of Climate 
Crisis.

◼ A Deep Search by Grok 
3 suggested that 
Greece is the only 
country with a ministry 
titled "climate crisis“.

◼ Also, there are no 
countries with 
ministries including 
“climate emergency” in 
their title.
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https://civilprotection.gov.gr/klimatiki-krisi 
(Automatically translated to English)
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Why Greece (2): «Golden Raspberry Awards» to Greeks
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THE TOP FOUR
Greece 86%
Italy 82%
Japan 82%
South Korea 82%

THE MIDDLE FOUR
The Netherlands 77%
Belgium 75%
United Kingdom 75%
Germany 73%

THE BOTTOM FOUR
Singapore 57%
USA 54%
Israel 47%
Malaysia 44%

◼ The table on the right shows the results of the most 
recent (2022) polls on the percentage of the 
population of various countries that feel fear for the 
alleged climate threat.

◼ Greeks consistently top the list with the following 
percentages. 2007-08: 82%, 2010: 87%, 2013: 87%, 
2019: 90%, 2022: 86%

Sources:
https://www.pewresearch.org/global/2022/08/31/climate-change-remains-top-global-threat-across-19-country-survey/
https://www.pewresearch.org/global/2019/02/10/climate-change-still-seen-as-the-top-global-threat-but-cyberattacks-a-rising-concern/
https://www.pewresearch.org/global/2013/06/24/climate-change-and-financial-instability-seen-as-top-global-threats/ 
https://news.gallup.com/poll/147203/Fewer-Americans-Europeans-View-Global-Warming-Threat.aspx 
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Part B
Global hydrology



Does atmospheric water 
show intensification of 
hydrological cycle? 
◼ IPCC (2013,2021) conjectured that the 

water vapour amount in the 
atmosphere would increase, and the 
hydrological cycle would intensify.

◼ However, the water vapour amount is 
fluctuating—not increasing 
monotonically (prediction falsified).
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Source of graph: Koutsoyiannis (2020); reanalysis data (NCEP-NCAR & ERA5): 
http://climexp.knmi.nl; satellite data, NVAP: Vonder Haar et al. (2012) (Figure 4c, 
after digitization); satellite data, MODIS: https://giovanni.gsfc.nasa.gov/giovanni/; 
averages from Terra and Aqua platforms.

Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively.

http://climexp.knmi.nl/
https://giovanni.gsfc.nasa.gov/giovanni/


Do satellite data of the 21st century show increasing 
presence of water vapour amount?
◼ Both Terra and Aqua satellite platforms for all atmospheric levels suggest decreasing 

trends.
◼ Hence, the data 

are opposite 
to the IPCC 
conjecture. 
Apparently, 
this suggests 
that climate 
models do not 
represent the 
physics 
correctly.
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Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively.
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https://giovanni.gsfc.nasa.gov/giovanni/ 

https://giovanni.gsfc.nasa.gov/giovanni/


Do precipitation and 
evaporation increase?

◼ Both precipitation and evaporation are 
fluctuating—not increasing 
monotonically.

◼ Hence, the IPCC conjecture is falsified.
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Source of graph: Koutsoyiannis (2020); reanalysis data (NCEP-NCAR & ERA5), 
gauge-based precipitation data gridded over land (CPC), and combined gauge 
and satellite precipitation data over a global grid (GPCP): 
http://climexp.knmi.nl

Thin and thick lines of the same colour represent monthly values and running 
annual averages (right aligned), respectively.

http://climexp.knmi.nl/


Is monthly maximum daily precipitation increasing? 
◼ The graphs show the variation of an 

index of extreme rainfall, which is 
the monthly maximum daily 
precipitation, areally averaged over 
the continents.

◼ In all continents, this index is 
fluctuating—not increasing 
monotonically.

◼ In particular, the satellite 
observations show decreasing, 
rather than increasing trends in the 
21st century.
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Source of graph: Koutsoyiannis (2020); reanalysis data 
(NCEP-NCAR & ERA5, gauge-based precipitation data 
gridded over land (CPC), and combined gauge and satellite 
precipitation data over a global grid (GPCP): 
http://climexp.knmi.nl

Thin and thick lines represent monthly values and running 
annual averages (right aligned).

http://climexp.knmi.nl/
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Is daily precipitation variability increasing? 
◼ The standard deviation of 

daily rainfall, areally averaged, 
as seen both from CPC and 
GPCP observational data, 
decreases, thus signifying 
deintensification of extremes 
in the 21st century.

◼ Again, it will be more prudent 
to speak about fluctuations 
rather than deintensification. 
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Source of graph: Koutsoyiannis (2020); gauge-based precipitation data gridded over land (CPC), and combined gauge and satellite precipitation data 
over the entire Earth (GPCP): http://climexp.knmi.nl

Thin and thick lines of the same colour represent 
monthly values and running annual averages (right 
aligned), respectively.

http://climexp.knmi.nl/


Have droughts 
been affected 
by humans?
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From the abstract: “No 
evidence is found for 
any systematic trend in 
precipitation deficits 
attributable to 
anthropogenic climate 
change…” O’Connell et al. (2022); see also https://notrickszone.com/2023/02/20/random-probability-analysis-of-global-

drought-data-affirm-no-pattern-can-be-linked-to-human-activity/ 
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Do climate models provide guidance for the future?
◼ Short answer: No. 

◼ Long answer: They have not provided skill for the past. Notice: (1) the large error of 
the “Multimodel” ensemble in terms of the mean; (2) the increasing trend of climate 
model outputs after 1980, which did not appear in reality. 
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Source of graph: Koutsoyiannis (2020); 
observations come from the combined 
gauge and satellite precipitation data 
over a global grid (GPCP); climate model 
outputs are for the scenario “RCP8.5” 
(frequently referred to as “business as 
usual”); “Multimodel” refers to CMIP5 
scenario runs (entries: CMIP5 mean – 
rcp85) and “Single model” refers to 
CCSM4 – rcp85 (ensemble member 0), 
where CCSM4 stands for Community 
Climate System Model version 4, released 
by NCAR. Data and model outputs are 
accessed through http://climexp.knmi.nl

Thin and thick lines represent monthly 
values and running annual averages (right 
aligned).

No trend
Error of mean

http://climexp.knmi.nl/
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Hydrology 
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Do rainfall data of the Mediterranean suggest a climate 
crisis at present and recent past?
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Source of data: Daily gridded data from the European ERA5 reanalysis, http://climexp.knmi.nl. The data are averages for the area 30°N-46°N, 6°W- 36°E; 
the graphs are for land points only, but no essential difference appears if the sea points are also considered.
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Source of data: Daily gridded data from 
the European ERA5 reanalysis, 
http://climexp.knmi.nl. The data are 
averages for the area 30°N-46°N, 6°W- 
36°, from which the number of days with 
average rainfall depth < 0.1 mm was 
calculated for each year; the graphs are 
for land points only, but no essential 
difference appears if the sea points are 
also considered.

Does rainfall frequency in the Mediterranean suggest 
unprecedented droughts at present and recent past?
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Source of data: Daily gridded data from 
the European ERA5 reanalysis, 
http://climexp.knmi.nl. The data are 
maxima for the area 30°N-46°N, 6°W- 
36°E; the graphs are for land points 
only, but no essential difference 
appears if the sea points are also 
considered.

Does maximum rainfall in the Mediterranean suggest 
unprecedented intensities at present and recent past?

All time min of max 
106 mm (2008)

All time maximum 
262.1 mm (2017)

0

50

100

150

200

250

300

1950 1960 1970 1980 1990 2000 2010 2020

A
n

n
u

al
 m

ax
im

u
m

ra
in

fa
ll 

d
ep

th
 (

m
m

/d
)

Annual
30-year climatic
10-year climatic
Linear trend -0.5%/decade

http://climexp.knmi.nl/


◼ Bologna, Italy: 
206 years of 
data since 1813.

◼ Change is 
perpetual.

◼ This change can 
be described in 
terms of Hurst-
Kolmogorov 
stochastic 
dynamics (Hurst 
parameter 0.86).

Record value 
155.7 mm (1933)
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Do long rainfall records in the Mediterranean suggest 
unprecedented changes at present and recent past?
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Do climate models simulate the real-world rainfall 
extremes?
◼ Tsaknias et al. (2016—multirejected paper) tested the reproduction of extreme events by three 

climate models of the IPCC AR4 at 8 test sites in the Mediterranean which had long time series of 
temperature and 
precipitation. 

◼ They concluded that 
model results are 
irrelevant to reality 
as they seriously 
underestimate 
extreme events. 
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Upper row: Daily annual 
maximum precipitation at 
Perpignan and Torrevieja; Lower 
row: empirical distribution 
functions of the data in upper 
row.

Source: Tsaknias et al. (2016)



Part D
Hydrology of Greece
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The Athens rainfall time 
series, the longest in 
Greece
◼ Compared to Bologna, Athens 

shows climate stability. 

◼ In the last 30 years there has been 
no remarkable climatic event. 

◼ The largest annual rainfall in 
history was recorded in the 
hydrological year 1885-86, and the 
smallest in 1989-90.

◼ The all-time high record of rainfall 
depth, 150.2 mm/d, occurred at 
the end of the 19th century (1899-
90).
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The Thessaloniki rainfall 
time series, the second 
longest in Greece
◼ Thessaloniki shows climatic stability, 

similar to Athens. 

◼ In the last thirty years there has been 
no remarkable climatic event. 

◼ The largest annual rainfall in history 
was recorded in the hydrological year 
1918-19, and the smallest in 1984-85. 

◼ The all-time high record of rainfall 
depth, 115.9 mm/d, occurred in the 
hydrological year 1985-86.
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Record high daily rainfall 
occurrence in the 238 
stations with longest 
time series in Greece 

◼ The distribution is as statistically 
expected.

◼ An exception is the lack of a record 
in the three-year period 1982-83 to 
1984-85.

◼ There are no noticeable climatic 
events.
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◼ The graph shows linear 
trends in the last ~60 
years and differences 
of two consecutive 30-
year climatic periods.

◼ The probability 
distribution of positive 
and negative trends is 
balanced.

◼ There is an impressive 
agreement of the 
empirical variations 
with the theoretically 
expected for a 
stationary process.
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Seeking “climatic trends” in annual maximum daily rainfall
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Record high and record low annual 
rainfall occurrence in the 62 
stations with longest complete 
daily time series in Greece
◼ The 1950s and early 1960s were strongly wet.

◼ About 1/3 of the high records of annual rainfall 
occurred in a single hydrological year, 1962-63.

◼ The 20-year period centered in 1990 was 
remarkably dry.

◼ In particular, about half of the low records of 
annual rainfall occurred in the 5-year period 
centered in 1990.

◼ The other periods, including the current one, are 
climatically neutral.

◼ The entire picture suggests the presence of 
Hurst-Kolmogorov dynamics in time and space. 
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Part E
- Two main properties of natural
  behaviour
- Two main tools for modelling risk
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Property 1: Nature produces change at all time scales
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Nile River annual minimum 
water level (849 values)

Data from Koutsoyiannis (2013), available at https://www.itia.ntua.gr/1351/; graph from Koutsoyiannis and Iliopoulou 
(2024); photos from Koutsoyiannis (2024), courtesy of Nikos Mamassis.

The graph shows the longest instrumental record on Earth, that of the Roda Nilometer 
(849 years of Nile’s water level)

https://www.itia.ntua.gr/1351/


Property 1 seen in modern 
long records of 
instrumental data
◼ 206 years or rainfall data in Bologna, Italy 

show perpetual change.

◼ The mean annual values for 50 years after 
1820 show an upward trend. A classical 
statistical test for a linear trend using merely 
these data values would reject the stationarity 
hypothesis at a p-value of 7.7 × 10–4.

◼ “Trends” are for kids. Adults use better 
descriptions of long-term variability, namely 
Hurst-Kolmogorov (HK) dynamics. 
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Dataset details Station: BOLOGNA, Italy, 44.50°N, 11.35°E, +53.0 m

Period: 1813-2018 (206 years).

Source of graphs: Koutsoyiannis (2024).

Sources of data: also detailed in Koutsoyiannis (2024).



D. Koutsoyiannis & T. Iliopoulou, A cool look at hydroclimatic risk 33

0.1

1

10

100

1000

0.01 1 100 10000

R
ai

n
fa

ll 
d

ep
th

,x
 (

m
m

)

Return period, T (years)

Empirical

Exponential

Pareto
1

10

100

0.01 0.1 1 10 100 1000

x(
T

),
 m

m
/d

T, years

1

10

100

0.01 0.1 1 10 100 1000

x(
T

),
 m

m
/d

T, years

Theoretical (PBF)

Empirical, K-moments

Empirical, Order statistics, VOT

Empirical, Order statistics, all data

Probability plot (rainfall depth vs. return 
period) for Bologna based on 19 426 daily 
rainfall depths observed throughout 206 years. 
The exponential distribution, 𝐹 𝑥 =
exp − Τ𝑥 𝜇 has been thought to represent a 
“regular” behaviour. However, the actual 
distribution tail is heavier than exponential, 

typically of Pareto type, 𝐹 𝑥 = 1 + 𝜉
𝑥

𝜆

−
1

𝜉

Probability plot showing the 
fitting of the Pareto-Burr-Feller 
distribution, 

𝐹 𝑥 = 1 + 𝜁𝜉
𝑥

𝜆

𝜁
−

1

𝜉𝜁

, on 

the Bologna daily rainfall record 
by the indicated methods, 
assuming independence.

As in (b) but accounting for long-range 
dependence (LRD). The curves of theoretical 
and empirical K-moments are 
indistinguishable for T > 1 year. The empirical 
distribution from order statistics does not 
consider dependence so that it is the same as 
in (b). 
Nb.: Accounting for LRD reduces the return 
period estimate up to an order of magnitude.

(a) (b) (c)

Property 2: Extremes are worse than thought as regular 

Koutsoyiannis (2024)



Tool 1, the climacogram: Quantifying change across time scales 

◼ Take the Nilometer time series, x1, x2, ..., x849, and calculate the sample estimate of variance γ(1), where 
the superscript (1) indicates time scale (1 year).

◼ Form a time series at time scale 2 (years): 
x1

(2) := (x1 + x2)/2, x2
(2)

 := (x3 + x4)/2, ..., x424 
(2) := (x847 + x848)/2

and calculate the sample estimate of the variance γ(2).

◼ Repeat the same procedure and form a time series at time scale 3, 4, … (years), up to scale 84 (1/10 of 
the record length) and calculate the variances γ(3), γ(4),… γ(84).

◼ The climacogram is the function of the variance γ(κ) vs. scale κ, typically plotted in logarithmic axes.

◼ If the time series xi represented a pure random process, the climacogram would be a straight line with 
slope –1 (the proof is very easy).

◼ In real world processes, the slope is different from –1, designated as 2H – 2, where H is the so-called 
Hurst parameter (0 < H < 1).

◼ The scaling law γ(κ) = γ(1) / κ2 – 2H defines the Hurst-Kolmogorov (HK) process.

◼ High values of H (> 0.5) indicate enhanced change at large scales, else known as long-term persistence, 
or strong clustering (grouping) of similar values.
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The climacogram of the 
Nilometer time series
◼ The Hurst-Kolmogorov process seems 

consistent with reality.

◼ The Hurst parameter is H = 0.85. (Similar H 
values are estimated from the 
simultaneous record of maximum water 
levels and from the modern, 131-year, flow 
record of the Nile flows at Aswan).

◼ The Hurst-Kolmogorov behaviour, seen in 
the climacogram, indicates that: 

(a) long-term changes are more frequent 
and intense than commonly perceived, 
and 

(b) future states are much more uncertain 
and unpredictable on long time horizons 
than implied by pure randomness.

The classical 
statistical 
estimator of 
standard 
deviation was 
used, which 
however is 
biased for HK 
processes
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Tool 2, the knowable moments (K-moments)
◼ Intuitive definition: the K-moment of order p equals the expected value of the upper 

or lower extreme of p independent stochastic variables 𝑥𝑖 , 𝑖 = 1, … , 𝑝, identical to 𝑥, 
i.e.,

❑ Upper K-moment: 𝐾𝑝
′ ≔ E max 𝑥1, 𝑥2, … , 𝑥𝑝 .

❑ Lower K-moment: 𝐾𝑝

′
≔ E min 𝑥1, 𝑥2, … , 𝑥𝑝 .

◼ Direct relationship to extremes, thanks to their definition.

◼ Substitution of classical moments, which are unknowable (not determinable from 
samples for 𝑝 > 2 − 3).

◼ Unbiased estimators (knowable even for very large orders, up to 𝑝 = 𝑛, where 𝑛 is 
the sample size).

◼ Capable of being assigned an empirical return period

◼ Capable of taking account for the effect of (spatial and temporal) dependence in the 
estimation of the return period.

36D. Koutsoyiannis & T. Iliopoulou, A cool look at hydroclimatic risk

Koutsoyiannis (2019, 2024)



Empirical K-moments as transformations of observations
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◼ From an observed sample of size 𝑛, 𝑥(𝑖,𝑛), 𝑖 = 1, … , 𝑛, ordered in ascending order, we 

can estimate 𝑛 upper K-moments 𝐾𝑖  and 𝑛 lower K-moments, 𝐾𝑖, with 𝐾1 = 𝐾1 = 𝜇.

◼ The three series 𝑥(𝑖,𝑛), 𝐾𝑖, 𝐾𝑖  are linearly equivalent; from any one of the three we can 
calculate any other.

◼ Notice that the 
series of 𝑥(𝑖,𝑛) is 
dense in the 
body and sparse 
in the tails while 
the opposite 
happens with 

the series 𝐾𝑖, 𝐾𝑖.

Koutsoyiannis (2024)
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Managing droughts
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Drought in 
Athens: 
Was it due 
to a 
“trend”, 
possibly 
suggesting 
“climate 
crisis”?
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A similar “trend” in the 
rainfall time series 
explains the “trend” in 
runoff.
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The historical time series 
of runoff up to 1986/87 
at one of the rivers 
supplying Athens, 
Boeoticos Kephisos.

A multi-year “trend” is 
observed.
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Next was a shocking 
drought.

Intense and persistent: 
Mean flow less than half 
compared to historical 
average; duration 7 years.
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Handling the long-lasting drought in Athens
◼ Close collaboration of (a) the National Technical University of Athens, (b) the Athens 

Water Supply and Sewerage Company (EYDAP), and (c) The Ministry of Environment 
and Public Works. 

◼ Understanding that droughts are regular natural events.

◼ Proper modelling of the drought within a stochastic Hurst-Kolmogorov framework 
(Koutsoyiannis, 2011).

◼ Development of a sophisticated decision support system (Koutsoyiannis et al., 2003).

◼ Transparency and veritable information to the population of Athens, and its 
engagement in the management of the crisis.

◼ Design and implementation of an increasing block rate pricing structure, combined 
with water conservation legislation measures (Xenos et al., 2002).

◼ Increased water supply through technological measures (see next slide).
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Results of the crisis management

◼ Not even in one house in not even one day throughout this 7-year period 
was there a water supply failure due to the drought.

◼ The water consumption of Athens was decreased by 1/3.

◼ New groundwater resources were exploited.

◼ In 1.5 year, a new tunnel was constructed and 
operated, diverting water from the Evinos 
River to Athens.

◼ In another 4 years, the new dam on the Evinos 
River was completed, thus increasing the water 
quantity transferred to Athens.

◼ Now Athens has a perfect water supply system.
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Rejected approach 1: 
Trend based
◼ The “trend model” is worse than that 

of a constant average (see table).

◼ According to the “trend model”, the 
flows would disappear a little after 
2050…

◼ In reality all three reservoirs spilled 
in 2006 and again two of them in 
2020 and 2021. 

◼ Conclusion: It is absurd to use such 
simplistic methods such as trend 
extrapolations.
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Root mean square errors (in m3/s) for the two validation periods 
for the linear-trend model and the constant-mean model, fitted 
to the calibration period (1937-87)

Validation period 1907-37 1987-2019

Assuming linear trend 13.4 12.7

Assuming constant mean 9.3 10.3

Boeoticos Kephisos runoff and projected trend.

Source: Koutsoyiannis (2024).
See additional evidence about the inappropriateness of trends in 
Iliopoulou and Koutsoyiannis (2020).

Not known at the time 
of the drought



Rejected approach 2: Based on climate-models
◼ Outputs from 3 climate models for 2 future scenarios were examined (Koutsoyiannis et al., 2007).

◼ The original climate model outputs (not shown) had no relation to reality (highly negative 
efficiencies at the annual time scale and above).

◼ After adaptations (or “cosmetic lifting”, also known as “downscaling”) the climate model outputs 
improved with respect to reality, thus achieving about zero efficiencies at the annual time scale.

◼ For the past, despite adaptations, 
the proximity of models with reality 
was not satisfactory.

◼ For the future, the runoff obtained by 
adapted climate models was too stable.

◼ Conclusion: It is dangerous (too risky) 
to use climate model projections.
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In the 1990s people were not morons…
The Athens 
water supply 
system, 
completed 
during the 
long-lasting
drought
around 1990.
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Part G
Hydrologic design of 
hydraulic structures
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Approaches to the hydrologic design of hydraulic structures
◼ The estimation of design rainfall for hydraulic projects is typically based on the probabilistic 

analysis of observed rainfall depths (ℎ) or (time-averaged) intensities (𝑥), leading to the 
development of the intensity–timescale–return period relationships (also called ombrian 
relationships, or misnamed intensity-duration-frequency relationships, where duration and 
frequency are meant to be time scale (𝑘) and return period (𝑇) respectively).

◼ For large-scale projects, especially dams, the method of Probable Maximum Precipitation (PMP) 
used to dominate.

◼ For the past 25 years, it has been argued that the PMP concept is unscientific and that only 
probabilistic methods are scientifically valid (e.g., Koutsoyiannis, 1999, 2007).

◼ Recently, the new report by the American Committee on Modernizing Probable Maximum 
Precipitation Estimation (National Academies of Sciences, 2024) has essentially abolished PMP, 
retaining only the name. This is reflected in the new definition it provides:

❑ “Probable Maximum Precipitation — the precipitation depth for a specific duration, location, 
and geographical area, such as a catchment, with an extremely low annual exceedance 
probability, for a given climate period.”

❑ “The extremely low annual exceedance probabilities range from 10⁻⁴ to 10⁻⁷”.

◼ Therefore, the modern definition of the PMP method is in essence a probabilistic one.
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A scientific approach to extreme rainfall: The ombrian model
◼ An ombrian model (from the Greek ombros, meaning rainfall) describes the stochastic properties 

of the distribution of rainfall at any time scale.

◼ A stochastic ombrian model, theoretically consistent, detailed and simple, can readily be used to 
infer the ombrian relationships. 

◼ For small time scales a Pareto distribution with discontinuity at the origin is assumed:

𝐹 𝑘 𝑥 = 1 − 𝑃1
𝑘

1 + 𝜉
𝑥

𝜆(𝑘)

− Τ1 𝜉

 

◼ It is shown by theoretical reasoning (Koutsoyiannis, 2024) that the tail index 𝜉 is constant, while 

the probability wet, 𝑃1
𝑘

, and the state scale parameter, 𝜆(𝑘), are functions of the time scale 𝑘. 

◼ For large time scales the Pareto-Burr-Feller (PBF) distribution is assumed:

𝐹 𝑘 𝑥 = 1 − 𝑃1
(𝑘)

1 + 𝜉
𝑥

𝜆 𝑘

𝜁(𝑘)
− Τ1 𝜉

 

◼ In this case a new parameter 𝜁 𝑘  is introduced, which is again a function of time scale. The 
Pareto distribution is a special case of PFB for 𝜁 𝑘 = 1. In contrast to the Pareto distribution, 
whose density is a decreasing function of 𝑥, the PBF tends to be bell-shaped for increasing 𝜁 𝑘 . 
Here we sacrifice the constancy of tail index (= 𝜉/𝜁(𝑘)) to assure simplicity and ergodicity.
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◼ The recent methodological framework 
(Koutsoyiannis, 2024) enables the 
construction of ombrian curves across 
any time scale—large or small.

◼ The example shown is for Bologna, Italy 
(206 years of data), covering time scales 
from 1 hour to 16 years.

◼ This approach requires original high-
resolution data and becomes more 
complex when aiming for generalization 
over any temporal scale.
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The simplified framework

D. Koutsoyiannis & T. Iliopoulou, A cool look at hydroclimatic risk 49

◼ Under some simplifying assumptions the rainfall intensity 𝑥 for small timescales 𝑘 (of the order of 
minutes to a few days) and return period 𝑇 is given by the following relationships, resulting from 
the full-scale rainfall model:

o for return period estimated from a full series or of rainfall exceedances over threshold:

𝑥 =
𝑏(𝑇) 

𝑎(𝑘)
= 𝜆

Τ𝑇 𝛽 𝜉 − 1

1 + Τ𝑘 𝛼 𝜂
, 𝜉 > 0

o from series of annual maxima (where 𝛥 = 1 year):

𝑥 = 𝜆
− Τ𝛽 𝛥 ln 1 − Τ𝛥 𝑇 −𝜉 − 1

1 + Τ𝑘 𝛼 𝜂
, 𝜉 > 0

◼ The simplified model parameters are:

▪ 𝜆 a characteristic rainfall intensity (scale parameter) in units of 𝑥 (e.g., mm/h);
▪ 𝛽 a time parameter, related to the mean distance of wet periods, in units 

of the return period (e.g., years);
▪ 𝛼 a timescale parameter in units of timescale (e.g., h) with 𝛼 > 0;
▪ 𝜂 a dimensionless parameter, expressing persistence, with 0 < 𝜂 < 1;
▪ 𝜉 > 0 the tail index of the process distribution.

Theoretically equivalent 
for all T and for the 
same parameter values; 
giving virtually same 
values for T > 10 years

5 parameters 
with physical/
mathematical 
meaning



Greece’s rainfall network
◼ After extensive nationwide data 

collection, an initial set of 940 stations 
was compiled.

◼ Following quality control, the final 
dataset includes 783 stations across 
651 locations, including:

❑ 503 daily rain gauges (130 co-
located with rain recorders);

❑ 280 sub-daily rain recorders.

◼ The longest available record (in 
Athens) spans the period from 1860 to 
2022.
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Non-conventional rainfall data

51

❑ From satellite-based information, we investigated 
the usefulness of the IMERG data set (half hourly 
time step at 0.1° spatial resolution, period 2000-
today),

❑ From the reanalysis information we investigated the 
usefulness of the ERA5 data set (daily time step at 
0.25° spatial resolution; period 1950-today).

10

100

0.01 0.1 1 10 100

D
ai

ly
 r

ai
n

fa
ll 

d
ep

th
 (

m
m

)
Return period (years)

Rain gauge, empirical

Rain gauge, theoretical

IMERG, empirical

IMERG, theoretical

ERA5, empirical

ERA5, theoretical

❑ Both data sets (especially the IMERG) underestimate 
the highest rainfall depths (as seen in the example for 
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o using Koutsoyiannis’ (2024) new framework for rainfall intensity-timescale-return 
period relationships (else known as ombrian curves)

Regionalization using spatial models

At-site independent estimation of parameters

Evaluation of spatial variability of parameters: 

o Inverse Distance Weighted (IDW)
o Bilinear surface smoothing (BSS)
o Ordinary Kriging (OK)

Identification of common parameter values

❖ mostly random patterns
❖ mostly systematic patterns

o using simultaneous optimization methods
o and stochastic simulations
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Final product
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The following generalized form of ombrian curves is derived for rainfall intensity 𝑥 (mm/h), return period 𝑇 (years) 
and temporal scale 𝑘 (h):

𝑥 = 𝜆∗

Τ𝑇 𝛽∗
𝜉 − 1

1 + Τ𝑘 𝛼 𝜂∗

with the following five parameters:
▪ timescale parameter α = 0.18 h 
▪ tail index ξ = 0.18, 
▪ three spatially varying parameters 𝜂∗[−], 𝛽∗ (years) and 𝜆∗ (mm/h) available at a 5 km grid.
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Mapping characteristic design rainfall depths
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Rainfall depth maps for flood resilience assessment
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Spatial rainfall estimates are easily derived for timescales up to a few days and any return period.

T = 1000 years, k = 1 h T = 1000 years, k = 24 h



Design rainfall at the catchment scale

Following the new methodology, design rainfall 
estimates for any region or catchment in Greece 
are derived using:

▪ the two constant parameters

▪ three spatially varying parameters, 
calculated as a weighted average of the grid 
points within the area.
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Catchment λ = 36.30Catchment



Improvements in the spatial representation of design rainfall
◼ This is the first time a geographically distributed design rainfall model is available for the entire 

Greek territory with a 5 km spatial resolution.

◼ Previous design rainfall relationships were estimated on a point basis (2016) necessitating post-
processing and further interpolation assumptions to be applied on the regional scale.
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Parameters 
available for any 
grid point in the 
Greek territory 
(Koutsoyiannis et 
al., 2023)

Parameters available 
for specific gauged 
locations (Ministry of 
Energy and 
Environment, 2016)



Concluding remarks
◼ Hydrological data do not support the political doctrine of climate crisis.
◼ Change is Nature’s style. It occurs at all times and all time scales, and is unpredictable. 
◼ In the past, reason and adaptation have been the humans’ response to change.
◼ If we return to reason, this will also be the case in the future.
◼ Technology has augmented the human ability of adaptation. The results have been 

spectacular in the last century.
◼ Human adaptation requires human intelligence. In contrast, moronity results in 

devastation. 
◼ Human intelligence has produced the field of probability/stochastics to deal with problems 

that involve uncertainty and risk. 
◼ Recent advances in stochastics include consistent treating of extremes under temporal 

and spatial dependence, and changing climate, without resorting to inaccurate climate 
models. 

◼ Powerful stochastic tools, easy to apply for engineering tasks, have been developed and 
showcased in large areas (including the entire territory of Greece). 

◼ They can readily be applied to other countries or parts thereof.
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Additional 
information 
in the book
(Edition 4)

Free in 
open access
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Thanks for the invitation and attention!

感谢邀请和关注
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