

24 – 28 JUNE 2025 Palermo, Italy

of the European Water Resources Association

New challenges in understanding and managing water-related risks in a changing environment

Analysis of upper dam failure and cascade impacts in pumped-storage hydropower systems: a case study of Brava - Sfikia scheme, Aliakmon River, Greece

P. Dimas^{1*}, A. Lykou¹, A. Zarkadoulas¹, G.K. Sakki¹, A. Efstratiadis¹ and C. Makropoulos¹
¹Dept. of Water Resources and Environmental Engineering, School of Civil Engineering, NTUA, Athens, Greece

*Corresponding author email: <u>pdimas@mail.ntua.gr</u>

Presentation structure

- 1. Study objective
- 2. Study area technical data
- 3. Investigation of dam breach scenarios
- 4. Flood wave propagation between the upper and the lower reservoir
- Assessment of cascade impacts on the lower reservoir (Routing of the flood hydrograph & impulse wave/tsunami generation)
- 6. Conclusions
- 7. References

Study objective

- What **mechanisms** could cause the failure of the Brava dam (upper reservoir)?
- What are the critical parameters and assumptions involved in the failure of this dam, and how are they implemented in the corresponding models?
- How do we handle the uncertainty of the phenomenon?
- How is the propagation of the flood wave represented, and what impacts does it have along its path?
- What are the potential **adverse conditions for the Aliakmon complex?**
- What are the potential impacts of these scenarios on the **Sfikia reservoir**?
- Is there a **risk of overtopping of the Sfikia dam** and triggering of downstream cascading effects?

Study area - technical data (1)

Study area - technical data (2)

A) Upstream view of the Sfikia dam

B) Spillway gates of the Sfikia dam

Investigation of dam breach scenarios: Breaching mechanisms

EWRA 2025

expands, the

material above it

will start to

collapse and be

carried away by

the flowing water.

3

The process of

headcutting and

erosion continues to

progress both

backward through the

dam and downward.

4

The flow dynamics shift from a

pressure-driven flow to an open-air

weir flow.

The breach

may keep

expanding

downward nd widenin until it reaches the natural channel bed.

B) Piping

Investigation of dam breach scenarios: Piping scenarios

Scenario Nr. Methodology		Final breach width (m)	Side slopes of breach (H:V)	Breach formation time (h)	
1	MacDonald et al. (1984)	50	0.5	1.2	
2	Froehlich (1995)	29	0.9	0.5	
3	Froehlich (2008)	28	0.7	0.47	
Dam erodibility		Medium			
4a	Von Thun and Gillette (1990)	116	0.5	0.99	
5a	Xu and Zhang (2009)	28	0.6	1.32	
Dam erodibility		High			
4b	Von Thun and Gillette (1990)	116	0.5	0.56	
5b	Xu and Zhang (2009)	38	1.05	0.69	

Software: BASEbreach				
Macchione (2008)	6			
Peter (2017)	7			
Peter Calibrated (Peter et al. 2018)	8			

Ten piping scenarios are examined using different models and their respective assumptions, and the **corresponding flood hydrographs are generated** as a result of the dam failure.

Università degli Studi di Palermo

Investigation of dam breach scenarios: Validate with empirical equations

- Flood peaks from simulation models:
 - \Box Average: 6,744 m³/s
 - □ Maximum: 10,188 m³/s
- Flood peaks from empirical equations:
 - \Box Average: 7,908 m³/s
 - □ Maximum: 15,865 m³/s

Investigation of dam breach scenarios: Development of a representative dam-break flood hydrograph

- The scenarios reflect the high uncertainty of the failure mechanisms, their modeling, and the prevailing conditions.
- The objective is to develop a **representative scenario** that depicts a dam failure event of 'average' probability.
- The average of the discharge values (**mean scenario**) underestimates the peak due to the differing shapes of the individual hydrographs.
- A representative flood hydrograph is developed so as to reproduce both the average peak flow and the average temporal profile of the examined scenarios.

Università

deali Studi

di Palermo

Flood wave propagation between the upper and the lower reservoir

Università deali Studi

di Palermo

- Development of a 2D routing model using a Digital Elevation Model (DEM) with 2x2 m resolution **from the Cadastre**.
- The model was developed in the HEC-RAS software by the US Army Corps of Engineers, specifically in its latest version (6.6).
- Key model assumptions:
 - \circ Element discretization: 50 x 50 m
 - **Time step:** 1.0 s (CFL criterion)
 - **Manning's n** = 0.06
 - Upstream boundary condition: dam-break hydrograph
 - Downstream boundary condition:
 Sfikia Reservoir Water Surface
 Elevation (+146.00)

10

Flood wave propagation between the upper and the lower reservoir: Results

A) Maximum velocity

B) Arrival

time

Comparison of upstream and downstream hydrographs and volumes:

- Steep terrain slopes → short lag time (~5 min) → limited peak attenuation (adverse: 0.2%, best case: 0.4%, representative: 0.2%)
- The corresponding **flood volumes** range from 6.9 to 8.3 hm³ (volume released during the dam break: 10.5 hm³)

Routing of the flood hydrograph in the downstream reservoir

8000

7000

6000

4000

3000

2000 1000

> 10 20 30 40 50 60 70 80

> > Time (min)

0

(m³/s) 5000

Discharge

4 scenarios - Aliakmon Hydropower Complex: ٠ Combination of **2 upstream dam breach** hydrographs (representative & adverse) with 2 operational modes of the complex

Idle Mode: ٠

- □ No flow between reservoirs
- (Polyfyto \rightarrow Sfikia \rightarrow Asomata)
- All structures initially closed

Università deali Studi

di Palermo

- □ Turbines (600 m³/s) fully operational after 10 min
- □ Spillway gates (up to 1600 m³/s) open gradually over 30 min
- Flood Design Mode: ٠
 - □ Full operational capacity across all facilities
 - □ Constant inflow to Sfikia: **1,720 m³/s**
 - □ Outflow via turbines: **600** m³/s + fully open spillway

151.0

Impulse wave/tsunami generation: Theoretical approach

Università deali Studi

di Palermo

- Simulation of wave generation from the landslide.
- Wave attenuation due to bottom friction, radial dispersion, and diffraction:

$$\begin{aligned} c,t) &= 2 \frac{P}{\rho\beta(t)} \sqrt{\frac{h}{g}} \Big\{ A_i[Z(x+L,t)] - A_i\left[Z(x+L,t) + \frac{L}{\beta(t)}\right] \Big\} \\ &+ \int_0^{t_{imm}} \frac{LV(\tau)}{\beta(t-\tau)} A_i[Z(x,t-\tau)] d\tau \\ &+ \frac{P}{\rho} \int_0^t \frac{1}{\beta(\tau)} \frac{1}{\beta(t-\tau)} A_i[Z(x,t-\tau)] \{A_i[Z(2L,\tau)] \\ &+ A_i[Z(0,\tau)]\} d\tau \end{aligned}$$

Results of wave height differential equation solution.

Bottom friction coefficient, f_w	Initial wave height at the dam (m)	Wave height after diffraction (m)	Run- up, <i>R</i> (m)	Maximum water level (m)	Distance from dam crest (m)
0.05	3.5	1.5	3.7	149.7	1.0
0.50	1.9	0.8	2.0	148.0	2.7
1.00	1.3	0.5	1.4	147.4	3.3

Key results of theoretical analysis for three bottom friction coefficient values.

$$R = 2 \ a \ exp(0.4\varepsilon) \left(\frac{90^0}{\beta}\right)^{0.20}$$

Impulse wave/tsunami generation: Semi-empirical approach (1/2)

Geometry of Sfikia reservoir and characteristics points illustrating the route of the wave produced by the water volume arriving at point A

- Application of the methodology proposed by the Laboratory of Hydraulics, Hydrology and Glaciology of ETH Zurich (Evers et al., 2019).
- Use of **empirical relationships** for the estimation of wave generation, propagation (2D/3D), and run-up calculation.
- Part of the computational process is supported by a tool implemented in Excel, available at <u>https://zenodo.org/records/3492000</u>

Impulse wave/tsunami generation: Semi-empirical approach (2/2)

Layout of cross-sections AB, AC, CD, and DE (from top to bottom).

- **Significant wave attenuation** observed along the propagation path due to **radial dispersion** and **bottom friction**.
- Wave crest amplitudes at key locations:
 - **Location B** (660 m, 0° angle): 6.4 m
 - **Location C** (1392 m, 48° angle): 1.9 m
 - **Location E** (dam site, 4440 m): 0.55 m
- Wave run-up (R) estimates:
 - **Location B**: ~18 m
 - **Location E**: ~1.41 m
- Consistent with the theoretical scenario
- Wave arrival times at critical points:
 - From Location A to B: 31 seconds
 - □ From A to dam (E): 208 seconds
- Much earlier than the peak of the routed flood hydrograph (~27 minutes)
- Critical implications avoided:
 - Potential overlap of tsunami and routed flood peaks could trigger overtopping at Sfikia Dam
 - Risk of cascading failures in the downstream hydrosystem

Conclusions

- Exploration of multiple failure scenarios and identification of a representative flood hydrograph.
- 2D hydrodynamic flow simulation for the favorable, adverse, and representative scenarios.
- Assessment of impacts on the Sfikia reservoir:
 - a) Routing of flood discharges through hydraulic structures (under various operational conditions of Polyfyto and Sfikia),
 - b) Tsunami-like wave generation and propagation.
- **No overtopping risk** for Sfikia dam from routed flood peaks:
 - Maximum water level rises 2.3 m above normal operating level and remains 2.4 m below the dam crest in the worst-case scenario.
- Tsunami-induced run-up estimated between 1.4 and 3.7 m, leaving a safety margin of 3.3 to 1.0 m below the dam crest (significant uncertainties due to the high complexity of the hydrodynamic problem).
- The two processes do not coincide in time: Flood peak occurs ~30 min after breach, Tsunami wave reaches the dam in ~3–5 minutes.
- Need for the preparation of measures:
 - a) Maintenance and monitoring.
 - b) Preparedness and training.
 - c) Emergency Action Plan (EAP) by the General Secretariat for Civil Protection in collaboration with Public Power Corporation S.A. (PPC S.A.)

References

- i. Ackerman, C. T., M. J. Fleming, and G. W. Brunner (2008). Hydrologic and hydraulic models for performing dam break studies. In *World Environmental and Water Resources Congress 2008*, 1–11. Honolulu, Hawaii, United States: American Society of Civil Engineers. doi:10.1061/40976(316)285.
- ii. Albu, L.-M., A. Enea, M. Iosub, and I.-G. Breabăn (2020). Dam breach size comparison for flood simulations: A HEC-RAS based, GIS approach for Drăcșani Lake, Sitna River, Romania. *Water*, 12(4), 1090. doi:10.3390/w12041090.
- iii. Amini, A., J. Bahrami, and A. Miraki (2022). Effects of dam break on downstream dam and lands using GIS and HEC RAS: A decision basis for the safe operation of two successive dams. *International Journal of River Basin Management*, 20(4), 487–498. doi:10.1080/15715124.2021.1901728.
- iv. Butt, M. J., M. Umar, and R. Qamar (2013). Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan. *Natural Hazards*, 65(1), 241–54. doi:10.1007/s11069-012-0361-8.
- v. Dean, R. G., and R. A Dalrymple (1991). Water Wave Mechanics for Engineers and Scientists. Vol. 2. World Scientific Publishing Company.
- vi. Di Risio, Marcello, and Paolo Sammarco (2008). Analytical Modeling of Landslide-Generated Waves. *Journal of Waterway, Port, Coastal, and Ocean Engineering* 134 (1): 53–60.
- vii. Dyer, K. R. (1986). Coastal and Estuarine Sediment Dynamics.
- viii. Efstratiadis, A., I. Tsoukalas, D. Koutsoyiannis (2021). Generalized storage-reliability-yield framework for hydroelectric reservoirs. *Hydrological Sciences Journal*, 66(4), 580–599, doi:10.1080/02626667.2021.1886299.
- ix. Evers, F. M. (2019). Computational tool for "Landslide-generated Impulse Waves in Reservoirs Basics and Computation" (1.0). Zenodo. doi:10.5281/zenodo.3492000
- x. Evers, F. M., V. Heller, H. Fuchs, W.H. Hager, and R.M. Boes (2009). Landslide-generated Impulse waves in reservoirs: Basics and computation. Mitteilungen 211, *Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW)*, R. Boes, Hrsg., ETH Züri
- xi. Goda, Y. (2010). Random Seas and Design of Maritime Structures. World Scientific.
- xii. Goodell, C. R. (2005). Dam break modeling for Tandem reservoirs A case study using HEC-RAS and HEC-HMS. In *Impacts of Global Climate Change*, 1–11. Anchorage, Alaska, United States: American Society of Civil Engineers. doi:10.1061/40792(173)402.
- xiii. Hardisty, J. (1990). Beaches: Form and Process. Springer Science & Business Media.
- xiv. Howarth, L. (1979). One hundred years of Lamb's Hydrodynamics. Journal of Fluid Mechanics, 90(1), 202–207.
- xv. Institut de Mécanique des Fluides de Toulouse (1977). Rapport No 328-9, Toulouse.

URBAN WATER MANAGEMENT AND HYDROINFORMATICS GROUP

Thank you!

