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Abstract 

A general formula for the rainfall intensity-duration-frequency (idf) relationship, consistent 

with the theoretical probabilistic foundation of the analysis of rainfall maxima is proposed. 

Specific forms of this formula are explicitly derived from the underlying probability 

distribution function of maximum intensities. Several appropriate distribution functions are 

studied for that purpose. Simple analytical approximations of the most common distribution 

functions are presented, which are incorporated in, and allow mathematically convenient 

expressions of idf relationships. Also, two methods for a reliable parameter estimation of idf 

relationships are proposed. The proposed formulation of idf relationships constitutes an 

efficient parameterisation, facilitating the description of the geographical variability and 

regionalisation of idf curves. Moreover it allows incorporating data from non-recording 

stations, thus remedying the problem of establishing idf curves in places with a sparse 

network of rain-recording stations, using data of the denser network of non-recording stations. 

Case studies, based on data of a significant part of Greece, briefly presented in the paper, 

clarify the methodology for the construction and regionalisation of the idf relationship.  

Keywords Hydrologic statistics, Rainfall intensity, Flood design, Flood risk 

1. Introduction 

 The rainfall intensity-duration-frequency (idf) relationship is one of the most commonly 

used tools in water resources engineering, either for planning, designing and operating of 

water resource projects, or the protection of various engineering projects (e.g., highways, etc.) 

against floods. The establishment of such relationships goes back to as early as 1932 
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(Bernard, 1932). Since then, many sets of relationships have been constructed for several 

parts of the globe. Since the 60s, the geographical distribution of intensity-duration-frequency 

relationships has been studied in several developed countries and maps have been constructed 

to provide the rainfall intensities or depths for various return periods and durations. For 

example, in USA such maps have been developed since 1961 by the U. S. Weather Bureau 

(Hershfield, 1961) and more recently by NOAA (Miller et al., 1973 for the western USA; 

Frederick et al., 1977, for the eastern and continental USA). These maps have been 

reproduced in many hydrological handbooks and textbooks (e.g., Chow, 1964, p. 9.51-9.56; 

Linsley et al., 1975, p. 358; Chow et al., 1988, pp. 446-451; Viessman et al., 1989, p. 337; 

Wanielista, 1990, p. 59; Smith, 1993). In the UK and Ireland, maps have been constructed by 

the Institute of Hydrology (NERC, 1975) and reproduced in various textbooks (e.g., Wilson, 

1990, pp. 278-338). Similar maps have been constructed in other countries or parts of 

countries, e.g., Australia (Canterford et al., 1987); India (UNESCO, 1974; see also 

Subramanya, 1984, p. 40); Sri Lanka (Baghirathan and Shaw, 1978); SWA-Namibia (Pitman, 

1980); region of Tuscany, Italy (Pagliara and Viti, 1993). In some cases such as for Nigeria 

(Oyebande, 1982) and Pennsylvania (more detailed analysis than the above referenced for 

USA; Aron et al., 1987) instead of constructing maps with contours, the regions of interest 

were divided into homogeneous subregions and one set of curves was devised for each 

subregion.  

 However, in most other countries such maps with rainfall intensity contours have not 

been constructed until now, and one has to retrieve the original intensity records of a nearby 

rain-recording station to construct the intensity-duration-frequency relationship, when needed. 

However, nowadays, due to the great usefulness of the map delineated information of rainfall 

idf curves, and the convenience provided by the expanded use of computerised databases (in 

storage and processing of hydrometeorological data) and geographical information systems 

(in regionalisation of information), it is anticipated that the development of maps will 

propagate to other less developed countries in the near future.  

 In the last decades, significant progress has been made in the statistical and stochastic 

modelling of hydrological time series. However, this progress is not reflected in the 
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procedures for formulating and constructing idf curves, which remain semi-empirical. This 

may be a direct consequence of the fact that construction of idf curves and related issues do 

not at all constitute a hot research topic; the established methodologies are adequate for the 

developed countries, that have gone to a conclusion for such issues decades ago. 

Nevertheless, the less developed countries, that are now proceeding to these issues can take 

advantage of the advances in statistical modelling of time series and develop new more 

refined methodologies.  

 Such methodologies must also take into account the specific problems of less developed 

countries, which are mainly related with data availability. A typical problem that is met in 

many countries is the very sparse network of rain-recording stations, whose data are the 

natural basis for idf calculations. As a solution to this problem, additional information from 

the denser network of non-recording stations can be utilised. To this aim, an appropriate 

methodology for incorporating data from non-recording stations must be developed.  

 This paper proposes a new approach to the formulation and construction of the idf 

curves using data from both recording and non-recording stations. More specifically, it 

discusses a general rigorous formula for the idf relationship whose specific forms are 

explicitly derived from the underlying probability distribution function of maximum 

intensities. Also, it proposes two methods for a reliable parameter estimation of the idf 

relationship. Finally, it discusses a framework for the regionalisation of idf relationships by 

also incorporating data from non-recording stations. The paper includes a brief presentation of 

an application of the developed methodology to a significant part of Greece. 

 The paper is organised in five sections, the first being this introduction. In section 2 we 

give the mathematical formulation of the idf relationship. Section 3 is devoted to parameter 

estimation issues and section 4 deals with the geographical variation of idf curves and 

regionalisation issues. In both sections 3 and 4 the proposed procedures are illustrated with 

applications using real-world data. Conclusions are drawn in section 5. 
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2. Mathematical formulation of the idf relationship 

 It is self-evident that the intensity-duration-frequency relationship is a mathematical 

relationship among the rainfall intensity i, the duration d, and the return period T (or, 

equivalently, the annual frequency of exceedance, typically referred to as “frequency” only). 

However, these terms may have different meaning in different contexts of engineering 

hydrology and this may lead to confusion or ambiguity. For the sake of a comprehensive 

presentation and inambiguousness in the material that follows we include in subsections 2.1 

and 2.2 definitions, clarifications, and description of the general properties of the idf 

relationships. The reader familiar with these issues may proceed directly to subsection 2.3. 

2.1 Definition of variables, notation and clarification 

 Let ζ(t) denote the instantaneous rainfall intensity process, where t denotes time. Let d 

be a selected (arbitrary) time duration (typically from a few minutes to several hours or few 

days), which serves as the length of a time window over which we integrate the instantaneous 

rainfall intensity process ζ(t). Moving this time window along time we form the moving 

average process, given by 

  ζd(t) = 
 1 
d ⌡⌠

t−d 

 t
 ζ(s) ds (1) 

In reality, because we do not know the instantaneous intensity in continuous time, but rather 

have measurements of the average intensity ζδ(t) for a given resolution δ (typically 5-10 min 

to 1 hour), (1) becomes 

  ζd(t) = 
 δ 
d  ∑

i = 0

N – 1

 ζδ(t – i δ)  (2) 

where it is assumed that the duration d is an integer multiple of the resolution δ, i.e., d = N δ. 

Given the stochastic process ζd(t) we can form the series of the maximum average intensities 

(or simply maximum intensities) il(d) (l = 1, …, n), which consists of n values, where n is the 

number of (hydrological) years through which we have available measurements of rainfall 
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intensities. This can be done in two ways. According to the first way, we form the series of 

annual maxima (or annual maximum series) by 

  il(d) : = max
l − < t < l +

  {ζd(t)}  (3) 

where l − and l + are the beginning and end time of the lth year. According to the second way, 

we form the series above threshold (also known as partial duration series or annual 

exceedance series) by selecting those values of ζd(t) that exceed a certain threshold φ, selected 

in a manner that the series {il(d)} includes exactly n values. To ensure stochastic 

independence among il(d), we also set a lower time limit τ (e.g., one or more days) for 

consecutive values, thus defining the series by  

  {il(d)‚ l = 1‚ …‚ n} := 
⎩
⎨
⎧

⎭
⎬
⎫

ζd(tl)
 
| ζd(tl) > φ‚    tl > tl−1 + τ‚    ζd(tl) = max

tl − τ < t < tl + τ
{ζd(t)}  (4) 

where the three conditions of the right-hand part must hold all together, otherwise the point tl 

and the respective intensity ζd(tl) are not selected for the series {il(d)}. 

 In practice, the construction of the series of maximum intensities is performed 

simultaneously for a number k of durations dj, j = 1, …, k, starting from a minimum duration 

equal to the time resolution δ of observations (e.g., from 5-10 min to 1 hour depending on the 

measuring device) and ending with a maximum duration of interest in engineering problems 

(typically 24 or 48 hours). Normally, all k series must have the same length n but, due to 

missing values, it is possible to have different lengths nj for different durations dj. 

 The above description of the construction of the maximum intensity allows us to 

observe that the duration d is not a random variable but, rather, a parameter for the intensity. 

It is not related to the actual duration of rainfall events, but is simply the length of the time 

window for averaging the process of intensity. On the contrary, the series of maximum 

intensities il(d) is considered as a random sample of a random variable Ι(d).  

 The return period T for a given duration d and maximum intensity i(d) is the average 

time interval between exceedances of the value i(d). It is well known (see, e.g., Kottegoda, 

1980, p. 213) that for the annual series, under the assumption that consecutive values are 
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independent, the return period of an event is the reciprocal of the probability of exceedance of 

that event, i.e.,  

 T = 
1

1 − F  (5) 

where F denotes the probability distribution function of I(d) which of course is evaluated at 

the particular magnitude of interest. It is also known (see, e.g., Raudkivi, 1979, p. 411) that 

the return period T ΄ for the series above threshold is related to that of the series of annual 

maxima by  

 T = 
1

1 − exp(−1 / T ΄)
  ⇔ T ΄ = 

1
 −ln(1 −1 / T)  (6) 

(A good approximation of (6) with an accuracy of two decimal digits is given by the very 

simple relation Τ = Τ΄ + 0.5). Thus, the return period is always related to the distribution 

function of the series of annual maxima.  

 Given the above clarifications we observe that the problem of the construction of idf 

curves is somehow idiosyncratic. It is not a problem of statistical analysis of a single random 

variable, as it includes two variables i and d. Nor it is a problem of two random variables, 

because d is not a random variable. In fact, it consists of the study of a family of random 

variables I(d), where d takes (theoretically an infinite number of) values from a real interval. 

This family of random variables I(d) does not form a typical stochastic process as Ι does not 

represent an intensity at a certain time, nor d represents time but, rather, a time interval. 

Nevertheless, invoking the theory of stochastic processes is not necessary in this problem 

because we are not interested in a multidimensional (i.e., of order greater than 1) distribution 

of I(d). We are rather interested in the first-order distribution of I(d), i.e., the function F(i; d) 

= P(I(d) < i), which is the target of the construction of the idf curves. Indeed, the function 

F(i; d) can be directly transformed into a relationship among the quantities i, d, T.  

2.2 The idf relationship for a specified return period 

 All typical idf relationships of the literature for a specific return period are special cases 

of the generalised formula 
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 i = 
ω

(d ν + θ)η   (7) 

where ω, ν, θ, and η are non-negative coefficients with ν η ≤ 1. The latter inequality is easily 

derived from the demand that the rainfall depth h = i d is an increasing function of d. Equation 

(7) is not obtained by any theoretical reasoning, but is an empirical formula, encapsulating the 

experience from several idf studies. In the bibliography, we find simplified versions of (7), 

which are derived by adopting one or two of the restrictions ν = 1, η = 1, and θ = 0. 

 It should be noted that considering ν ≠ 1 and η ≠ 1 results in overparameterisation of 

(7). Indeed, the quantity 1 / (d ν + θ) can be adequately approximated by 1 / (d + θ΄)η* where θ΄ 

and η* are coefficients depending on ν and θ, which can be determined numerically in terms 

of minimisation of the root mean square error. Consequently, 1 / (d ν + θ)η is approximated by 

1 / (d + θ΄)η΄, where η΄ = η η*. Α numerical investigation was done to show how adequate the 

approximation of 1 / (d ν + θ) by 1 / (d + θ΄)η* is. The duration d was restricted between the 

values dmin = 1/12 hours (= 5 min) and dmax = 120 hours, an interval much wider than the one 

typically used. The parameter θ varied between 0 and θmax = 12 dmin (= 1 hour), and the 

parameter ν between 0 and 1. The root mean square standardised error (rmsse) of the 

approximation took a maximum value of 2.3% for ν = 0.55 and θ = θmax; the corresponding 

maximum absolute standardised error (mase) was 4.3%. For the most frequent case that θ ≤ 

dmin, the corresponding errors are 0.7% (rmsse) and 1.3% (mase). These errors are much less 

than the typical estimation errors and the uncertainty due to the limited sizes of the typical 

samples available. In conclusion, the parameter ν in the denominator of (7) can be neglected 

and the remaining two parameters suffice. Hence, hereafter we will assume that ν = 1. 

 Initially, the coefficients ω, θ, and η can be considered as dependent on the return 

period. However, their functional dependence cannot be arbitrary, because the relationships 

(7) for any two return periods T1 and T2 < T1 must not intersect. If {ω1, θ1, η1} and {ω2, θ2, 

η2} are the two parameter sets for T1 and T2, respectively, then it can be shown that there exist 

at least two sets of constraints leading to feasible (i.e., not intersecting) idf curves. These are 
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 θ1 > 0,     θ2 > 0,    
 ç1 
 ç2  ≤ 1,    

 è1 
 è2  ≥ 

 ç1 
 ç2 ,     

 ù1 
 ù2  > 

 è1
ç1

 

 è2 
ç2

 (8) 

and 

 θ1 ≥ 0,     θ2 ≥ 0,    ç1 = ç2 = n,     
 ù1 
 ù2  > 1,     

 è1
ç1

ù1 
 ≤ 

 è2 
ç2

ù2 
 (9) 

To both these sets, the following obvious inequalities are additional constraints 

 ω1 > 0,    ω2 > 0,     0 < η1 < 1,     0 < η2 < 1 (10) 

The essential difference between the sets of constraints (8) and (9) is that the former does not 

allow θ to take zero value, while the latter does allow this special value. Furthermore, it can 

be shown that, if θ is allowed to take zero value, then the exponent η in (7) must be constant 

and independent of the return period. Because the case θ = 0 must not be excluded, it is 

reasonable to adopt the set of constraints (9) for the subsequent analysis. For convenience, it 

is reasonable to consider θ independent of the return period, as well, thus leading to the 

following final set of restrictions 

 θ1 = θ2 = θ ≥ 0,     0 < η1 = η2 = n < 1,     ω1 > ω2 > 0 (11) 

In this final set of restrictions, the only parameter that is considered as an (increasing) 

function of the return period T is ω. This leads, indeed, in a strong simplification of the 

problem of construction of idf curves. This theoretical discussion is empirically verified, as 

numerous studies have shown that real world families of idf curves can be well described with 

constant parameters θ and η.  

2.3 The general idf relationship  

 After the above discussion we can formulate a generalised idf relationship in the form  

 i = 
a(T)
b(d) (12) 

which has the advantage of a separable functional dependence of i on T and d. The function 

b(d) is  
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 b(d) = (d + θ)η  (13) 

where θ and η are parameters to be estimated (θ > 0, 0 < η < 1). The function a(T) (which 

coincides with ω of the previous subsection) is given in the bibliography (e.g., Raudkivi, 

1979, p. 85; Shaw, 1983, p. 236; Subramanya, 1984, p. 205; Chow et al., 1988, p. 459; 

Wanielista, 1990, p. 61; Singh, 1992, p. 904) by the following alternative relations 

 a(T) = λ T κ (14) 

 a(T) = c + λ ln T (15) 

The first is the oldest (Bernard, 1932) yet the most common until recently (see, e.g. Kothyari 

and Garde, 1992; Pagliara and Viti, 1993). These relations are rather empirical and their use 

has been dictated by their simplicity and computational convenience rather than their 

theoretical consistency with the probability distribution functions which are appropriate for 

the maximum rainfall intensity. Chen (1983) applied a more theoretical analysis to obtain 

similar relationships. Koutsoyiannis (1994) reported that (14) is inappropriate for certain 

issues such as simulation (e.g., it tends to underestimate the variance). Koutsoyiannis (1996, 

p. 265) has demonstrated empirically that if the maximum rainfall intensity has Gumbel 

distribution then the parameters κ and λ of (14) are not in fact constant but they depend on the 

return period T (this is also demonstrated briefly below). 

 In fact, there is no need to introduce a(T) as an empirical function, as it can be 

completely determined, in a theoretically consistent manner, from the probability distribution 

function of the maximum rainfall intensity I(d). Indeed, if the intensity I(d) of a certain 

duration d has a particular distribution FI(d)(i; d), this will also be the distribution of the 

variable Y := I(d) b(d), which is no more than the intensity rescaled by b(d) (with the 

parameters of the latter distribution being properly rescaled). This has been also reported by 

Koutsoyiannis (1994, Appendix A) for the Gumbel distribution, but it can be generalised for 

any distribution. Mathematically, this is expressed by 

 P{I(d) ≤ i} = P{I(d) b(d) ≤ i b(d)} = P{Y ≤ y} (16) 
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where P{ } denotes probability, or 

 FI(d)(i; d) = FY(yT) = 1 − 
 1 
T   (17) 

Hence, if yT is the (1 − 1/T)-quantile of the distribution function FY, then 

 yT ≡ a(T) = F −1
Y (1 − 1/T)  (18) 

which proves our claim that a(T) is completely determined from the distribution function of 

intensity.  

 We point out that the inverse of a distribution function F −1
Y ( ) appearing in (18) 

generally does not have as simple expression as those of the empirical functions (14) and 

(15), and in some cases F −1
Y ( ) cannot be expressed with an explicit analytical equation. 

However, as we show below, we can always get approximate analytical expressions 

adequately simple and more accurate than the empirical functions (14) and (15).  

 In the next subsection, we examine the most typical distribution functions of maximum 

intensities and obtain for each distribution function the corresponding function a(T). Notably, 

we show that the empirical functions (14) and (15) can be obtained by our general 

methodology, but they correspond to distribution functions that may not be appropriate for 

maximum rainfall intensities. 

2.4 Alternative distribution functions  

To better serve our purpose, the mathematical expressions of the alternative distribution 

functions FY(y) given below may have been written intentionally in a slightly different form 

from that typically used in the literature. In all distributions, κ and ψ denote dimensionless 

parameters whereas λ and c denote parameters having same dimensions as the random 

variable y (or ln y in case of logarithmic transformation of the variable).  

a. Gumbel distribution function 

 The type I distribution of maxima, also termed the Gumbel distribution function 

(Gumbel, 1958), is the most widely used distribution for idf analysis due to its suitability for 
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modelling maxima. Given that the rainfall intensity I(d) has Gumbel distribution for any 

duration d, so will have Y and thus 

 FY(y) = exp(−e−y / λ + ψ) (19) 

where λ and ψ are the scale and location parameters, respectively, of the distribution function. 

Combining (18) and (19) we directly get 

 yT ≡ a(T) = λ 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ψ − ln ⎣⎢
⎡

⎦⎥
⎤−ln ⎝⎜

⎛
⎠⎟
⎞1 − 

1
T    (20) 

which is an exact yet simple expression of a(T).  

b. Generalised extreme value (GEV) distribution 

 This general distribution, which incorporates type I, II, and III extreme value 

distributions of maxima can be written in the form 

 FY(y) = exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– ⎣⎢
⎡

⎦⎥
⎤1 + κ ⎝⎜

⎛
⎠⎟
⎞ 

 y 
λ  – ψ  

–1 / κ

                y ≥ λ (ψ – 1 / κ) (21) 

where κ > 0, λ > 0, and ψ are shape, scale, and location parameters, respectively. For κ = 0 the 

GEV distribution turns into the Gumbel distribution; the case where κ < 0 is not considered 

here because it implies an upper bound of the variable, which is not the case in maximum 

rainfall intensity. We directly obtain from (21) that 

 yT ≡ a(T) = λ 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ψ + 
⎣⎢
⎡

⎦⎥
⎤−ln ⎝⎜

⎛
⎠⎟
⎞1 − 

1
T

 –κ

 – 1

κ
 
 
 

  = λ΄ 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ψ΄ + ⎣⎢
⎡

⎦⎥
⎤−ln ⎝⎜

⎛
⎠⎟
⎞1 − 

1
T

 –κ

 (22) 

where for simplification we have set λ΄ = λ / κ and ψ΄ = κ ψ – 1. Again we have an exact 

expression of a(T) for the GEV distribution that remains relatively simple. 

c. Gamma distribution 

 The two parameter gamma distribution function, sometimes used for idf analysis, is 

given by 

F y x dxxy

Y ( )
( )

/= − −∫
1 1

0 λ κκ
κ λ

Γ
e ,    y ≥ 0 (23)  
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where κ and λ are the shape and scale parameters of the distribution, respectively. Due to the 

complicated form of (23) it is not possible to get an exact explicit relationship of a(T) for this 

specific distribution. Approximations such as the Wilson-Hilferty and the modified Wilson-

Hilferty (Kirby, 1972) do not help in this case because they transform the gamma variate into 

a normal variate, which is still complicated and inappropriate to yield a(T). Another 

approximation, proposed by Koutsoyiannis (1996, pp. 171-173) is more appropriate, as it 

leads directly to the relatively simple formula  

a T
T T

( )≈ −
⎛
⎝⎜

⎞
⎠⎟ + −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

λµ
α

λν
β

ξ
α β

1
1 1

 yT ≡ ,     κ ≠ 1 (24) 

(In case that κ = 1, the Gamma distribution turns into the simpler exponential distribution 

which is studied below.) In the above formula, µ, ν, α, β and ξ are coefficients dependent on 

the shape parameter κ (i.e., not independent parameters), given by the following equations 

( ) ( )µ κ κ= − − −0 6 1 1 1. /  (25) 

 ( ) ( )ν κ κ= − + − +0 6 1 0 01 1 1. .  (26) 

α κ= +0 6 0 08. / .  (27) 

 β κ= 0 0234. ln  (28) 

  (29) ( )ξ
κ
κκ=

<
>

⎧
⎨
⎩

− − −
1 1
31 111 6 1 0 25

e . .

Equation (24) has resulted from the approximation of the derivative of the inverse gamma 

distribution y(u) = F −1
Y (u) by  

 y´(u) = 
dy
du ≈ ë ì uá − 1 + ë í (1 − u)â − 1 (30) 

and a systematic numerical investigation was performed to establish (25)-(29). For 0.2 ≤ κ 

≤100 (or, equivalently, 0.2 ≤ Cs
 ≤ 4.5, where Cs is the coefficient of skewness) and 1.0001 ≤ T 

≤ 10 000, the approximation error of (24), defined as e = |yT
 − ŷT| / σY, does not exceed the 

value 0.11 in any point of the space defined by these inequalities. This error is smaller than 
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that of Wilson-Hilferty approximation, both the original and modified, for κ ≤ 4 (Cs
 ≥ 1) (see 

Figure 1). 

d. Log Pearson III distribution 

 A very common distribution for idf analysis is the Log Pearson III distribution, which is 

a logarithmic transformation of the gamma distribution, given by 

 ( )F y
x

x c dx
c

x c
y

Y = −∫ − − −1 1

λ κκ
κ

Γ( )
(ln ) (ln )/

e

e λ ,    y ≥ ec (31) 

where c is a scale parameter, and κ and λ are shape parameters. Making use of the 

approximation (24) of the gamma distribution function we get 

 yT ≡ a T c
T T

( ) exp≈ + −
⎛
⎝⎜

⎞
⎠⎟ + −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≠

λµ
α

λν
β

ξ
α β

1
1 1

1κ  (32) 

(In case that κ = 1, the Log Pearson III distribution turns into the simpler Pareto distribution 

which is studied below.) As in (24), µ, ν, α, β and ξ are coefficients dependent on the shape 

parameter κ, given by equations (25)-(29). 

e. Lognormal distribution 

 The two parameter lognormal distribution has been used sometimes for idf analysis. It is 

a logarithmic transformation of the normal distribution, given by 

 ( )F y
x

dx
Z

xy Z
Z

Y = ∫
−

−⎛
⎝
⎜

⎞
⎠
⎟1

20

1
2

πσ

µ
σe

ln

,    y ≥ 0 (33) 

where µZ and σZ are scale and shape parameters, respectively. Observing that the lognormal 

distribution is the limit of the log Pearson III distribution as κ → ∞, we can use an 

approximation similar with (32). This is given by  

 yT ≡ a T
T TZ Z Z( ) exp≈ + −⎛

⎝⎜
⎞
⎠⎟ − ⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

µ νσ νσ
α α

1
1 1

 (34) 
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(Koutsoyiannis, 1996, p. 168), where ν = 5.53 and α = 0.12. For 1.0001 ≤ T ≤ 10 000, the 

approximation error of (34), defined as the absolute value of the difference of standardised 

normal variates, does not exceed the value 0.03. The same approximate equation with 

coefficients ν = 1/0.1975 and α = 0.135, is obtained from a formula by Stedinger et al. (1993, 

p. 18.11). 

f. Exponential distribution 

 The two parameter exponential distribution function is given by 

 FY(y) = 1 − e
−y / λ + ψ

                y ≥ λ ψ  (35) 

where λ and ψ are scale and location parameters, respectively. We directly obtain from (35) 

that  

 yT ≡ a(T) = λ (ψ + lnΤ)  (36) 

which, notably, is functionally identical to the empirical function (15).  

 Although the exponential distribution is not so common for idf analysis, equation (36) 

can be somehow connected to the Gumbel distribution in two ways. First, it can be an 

adequately accurate approximation of (20) for large return periods, e.g., T ≥ 50. In that case 

we can write ln [1 − (1/T)] = −(1/T) − (1/T)2 − L ≈ −(1/T), and then (20) toggles into (36). 

However, in that case the estimation of parameters ψ and λ should be based on the appropriate 

estimators of the Gumbel distribution (e.g., those of the methods of maximum likelihood, 

moments, L-moments, or the Gumbel’s fitting method) rather than those of the exponential 

distribution. Second, if we analyse an annual data series using the Gumbel distribution and we 

want an estimate of intensity versus the return period T ΄ for the series over threshold, then 

combining (20) and (6) we find the logarithmic expression (36) again, in the form 

 yT ΄ ≡ a΄(T ΄) = λ (ψ + ln Τ ΄)  (37) 

Again the parameters ψ and λ should be estimated by the appropriate estimators of the 

Gumbel distribution using the statistics of the annual series. 
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g. Pareto distribution 

 The generalised, three parameter, Pareto distribution function is  

 FY(y) = 1 – ⎣⎢
⎡

⎦⎥
⎤1 + κ ⎝⎜

⎛
⎠⎟
⎞ 

 y 
λ  – ψ  

–1 / κ

                y ≥ λ ψ  (38) 

where κ > 0, λ > 0, and ψ are shape, scale, and location parameters, respectively (for κ = 0 the 

GEV distribution turns into the exponential distribution; the case κ < 0 is not considered 

because it implies an upper bounded variable). We directly obtain from (38) that 

 yT ≡ a(T) = λ ⎝⎜
⎛

⎠⎟
⎞ψ + 

T κ – 1
κ   = λ΄ (ψ΄ + Τ κ) (39) 

where for simplification we have set λ΄ = λ / κ and ψ΄ = κ ψ – 1. Although the Pareto 

distribution is not so common for idf analysis, it is connected to the GEV distribution in the 

way exponential distribution is connected to the Gumbel distribution. That is, (22) is very 

well approximated by (39) when T ≥ 50; furthermore combining (22) and (6) we find the 

power expression (39) for the return period T ΄ for the series above threshold, i.e., 

 yT ΄ ≡ a΄(T ΄) = λ ⎝⎜
⎛

⎠⎟
⎞ψ + 

T ΄ κ – 1
κ   = λ΄ (ψ΄ + Τ ΄ κ) (40) 

In both those cases the parameters ψ, κ, and λ should be estimated by the appropriate 

estimators of the GEV distribution using the statistics of the annual series, rather than the 

estimators of the Pareto distribution. 

 Notably, in case that ψ΄ = 0 (or κ ψ = 1) equation (39) becomes identical to the 

empirical expression (14).  Although one cannot exclude the contingency that the Pareto 

distribution is appropriate for idf analysis of a specific data set with its location parameter 

being ψ = 1 / κ (so that ψ΄ = 0), the literature does not provide such evidence. Thus, the 

widespread use of (14) is not justified theoretically. 

3. Parameter estimation methods 

 The parameters of the general idf relationship (12) fall into two categories: those of the 

function a(T) (i.e., κ, λ, ψ, etc., depending on the distribution function adopted) and those of 



16 

the function b(d) (i.e., η and θ). In this section we discuss some procedures for the estimation 

of parameters of both categories. We start discussing the typical procedure of the literature 

(subsection 3.1) and then we propose two other methods of parameter estimation (subsections 

3.2 and 3.3). Finally, we give a real world application in which we test and compare the 

different methods (subsection 3.4). In all procedures we assume that we are given k groups 

each holding the historical intensities of a particular duration dj, j = 1, …, k. We denote by nj 

the length of the group j, and by ijl the intensity values of this group (samples of the random 

variables Ij := I(dj)) with l = 1, …, nj denoting the rank of the value ijl in the group j arranged 

in descending order.  

3.1 Typical procedure  

 The typical parameter estimation procedure for idf curves (Raudkivi, 1979, p. 85; Chow 

et al., 1988, p. 458; Wanielista, 1990, p. 61; Singh, 1992, p. 904) consists of three steps. The 

first step consists of fitting a probability distribution function to each group comprised of the 

data values for a specific duration dj. In the second step the rainfall intensities for each dj and 

a set of selected return periods (e.g., 5, 10, 20, 50, 100 years, etc.) are calculated. This is done 

by using the probability distribution functions of the first step. In the third step the final idf 

curves are obtained in two different ways: either (a) for each selected return period the 

intensities of the second step are treated and a relationship of i as a function of d (i.e., i = 

iT(d)) is established by (bivariate) least squares, or (b) the intensities of the second step for all 

selected return periods are treated simultaneously and a relationship of i as a function of both 

d and T (i.e., i = i(T, d)) is established by (three-variate) least squares. In case (a) different 

values of the parameters ω, θ and η are obtained for each T. In case (b) unique values of the 

parameters θ and η are obtained while ω is determined as a function ω = a(T). The form of 

this function (typically (14) or (15)) is selected a priori. In case a(T) is given by the power 

relationship (14), the estimation procedure is simplified, because (12) becomes linear by 

taking logarithms of both sides. 

 The main advantage of this parameter estimation procedure is its computational 

simplicity, which in fact imposes the separation of the calculations in three steps, so that the 
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calculations of each step are as simple as possible. However, the procedure has some flaws, 

which are not unavoidable. First, it bears the weakness of using an empirically established 

function a(T) (step 3) instead of the one consistent with the probability distribution function 

(step 1). This has been already discussed in the previous section. Second, it is subjective, in 

the sense that the final parameters depend on the selected return periods in step 2. This 

dependence may be essential if the selected empirical function a(T) departs significantly from 

that implied by the probability distribution function (Koutsoyiannis, 1996, p. 265). Third, it 

treats the three involved variables (i, d, T) as having the same nature, in spite of the fact that 

they are fundamentally different in nature, i.e., i represents a random variable, d is a (non-

random) parameter of this random variable, and T is a transformation of the probability 

distribution function of the random variable.  

 In the following two subsections we propose two different parameter estimation 

methods that are free of the flaws of the above described typical procedure and harmonise 

with the general formulation of idf curves given in the previous section. These procedures 

need more complicated calculations than the typical procedure, yet remaining 

computationally simple. Both can be applied using a typical spreadsheet package and do not 

require the development of specialised computer programs.  

3.2 Robust estimation 

 The first proposed method estimates the parameters in two steps, the first concerning 

the parameters of function b(d) and the second those of a(T). This method is based on the 

identity of the distribution functions of the variables Yj = Ij b(dj) of all k groups, regardless of 

the duration dj of each separate group. This identity leads us to the Kruskal-Wallis statistic, 

which is used to test whether several sample groups belong to the same population.  

 Let us assume that the parameters η and θ of b(d) are known. Then we can find all 

values yjl = ijl b(dj). The overall number of data values is 

 m = ∑
j = 1

 k
 nj  (41) 
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We assign ranks rjl to all of the m data values yjl (using average ranks in the event of ties). For 

each group we compute the average rank r−j of the nj values of that group. If all groups have 

identical distribution then each r−j must be very close to (m + 1) / 2. This leads to the 

following statistic (Kruskal-Wallis) which combines the results of all groups 

 kKW = 
12

m (m + 1) ∑j = 1

k

 nj ⎝⎜
⎛

⎠⎟
⎞r−j − 

m + 1
2

2

  (42) 

 The smaller the value of kKW, the greater the evidence that all groups of y values belong 

to the same population. Obviously, the ranks rjl (and hence kKW) depend on the parameters η 

and θ that were assumed as known. Consequently, the estimation problem is reduced to an 

optimisation problem defined as 

 minimise kKW = f1(η, θ) (43) 

Apparently, it is not possible to establish an analytical optimisation method for our case. A 

numerical search technique for optimisation that makes no use of derivatives (see Pierre, 

1986, p. 264; Press et al., 1992, p. 394), is appropriate. However, it may be simpler to use a 

trial-and-error method based on a common spreadsheet computer program.  

 The advantages of the Kruskal-Wallis statistic are its non-parametric character and its 

robustness, i.e., its ability not to be affected by the presence of extreme values in the samples. 

We clarify, however, that the minimum value of kKW determined by the minimisation process 

cannot be used further to perform the typical Kruskal-Wallis statistical test (actually, the 

testing is not really needed). The reason is that this test assumes that all k groups are mutually 

independent. In our case, the intensities Ij of the different groups are stochastically dependent 

variables, as is evident from their construction (see subsection 2.1). Thus, we do not know the 

distribution function of the statistic kKW to perform any statistical test. Nevertheless, the 

minimisation of its value is achievable because the distribution function does not need to be 

known. 

 For the sake of improving the fitting of b(d) in the region of higher intensities (and also 

to simplify the calculations) it may be preferable to use in this first step of calculations a part 
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of the data values of each group instead of the complete series. For example, we can use the 

highest 1/2 or 1/3 of intensity values for each duration.  

 Given the values of η and θ, we proceed to the second step of calculations, which is 

very easy. Assuming that, with these values, all groups have identical distribution, we append 

all k groups of values yjl thus forming a unique (compound) sample. For this sample we 

choose an appropriate distribution function, such as those described in subsection 2.4, and 

estimate its parameters using the appropriate for that distribution estimators (e.g., those 

obtained by the methods of maximum likelihood, moments, L-moments, etc.; for a concise 

presentation of such estimators see Stedinger et al., 1993). This defines completely the form 

and the parameters of a(T).  

3.3 One-step least squares method 

 The second method estimates all parameters of both functions a(T) and b(d) in one step, 

minimising the total square error of the fitted idf relationship to the data. To this aim, to each 

data value ijl we assign an empirical return period using, e.g., the Gringorten formula,  

 Tjl = 
nj + 0.12
l − 0.44   (44) 

So, for each data value we have a triplet of numbers (ilj, Tlj, dj). On the other hand, given a 

specific form of a(T), chosen among those of subsection 2.4 from preliminary investigations 

of the type of the distribution function of intensity, we obtain the modelled intensity  

 î jl= 
a(Tjl)
b(dj)  (45) 

and the corresponding error 

 ejl = ln ijl − ln î jl = ln 
⎝
⎜
⎛

⎠
⎟
⎞ ijl 

î jl
 (46) 

where we have applied the logarithmic transformation to keep balance among the errors of the 

intensities of greater durations (which are lower) and those of lower ones. The overall mean 

square error is  
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 e2 = 
 1 
k  ∑

j = 1

k
   1 

nj
 ∑
l = 1

nj

 e2
jl  (47) 

 Again the estimation problem is reduced into an optimisation problem, defined as 

 minimise  e = f2(η, θ, κ, λ, ψ, …) (48) 

 A numerical search technique for optimisation that makes no use of derivatives, such as 

the Powell method (see Pierre, 1986, p. 277; Press et al., 1992, p. 412), is appropriate for this 

problem. However, it may be simpler to perform the optimisation using the embedded solver 

tools of common spreadsheet packages.  

 We note that the least squares method in fitting a theoretical to an empirical distribution 

function is not a novelty of the proposed method. Rather, the innovative element of the 

proposed method is the simultaneous estimation of the parameters of both the distribution 

function and the duration function b(d). 

3.4 An application  

 To illustrate the above described methodology we present a real-world application. A 

thirty year (1957-58 to 1986-87) data record of the Helliniko recording station (located at the 

Helliniko airport, Athens) was used. The selected durations dj range from 5 min to 24 hours, 

as shown in Table 1. Due to missing values, the sample size for some durations is lower than 

30. In Table 1 are also shown some summary statistics of the data. 

 Preliminary investigation showed that the Gumbel distribution is suitable for all groups 

with durations dj. Thus, we adopted the idf relationship 

 i = 
a(T)
b(d) = λ  

ψ − ln ⎣⎢
⎡

⎦⎥
⎤−ln ⎝⎜

⎛
⎠⎟
⎞1 − 

1
T 

(d + θ)η   (49) 

An interpretation of this equation is that the variable I(d) has a Gumbel distribution with its 

dimensionless parameter ψ constant and independent of duration d, and its scale parameter 

varying with d as 1/(d + θ)η. This is (approximately) verified by fitting a Gumbel distribution 
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independently to each group of duration dj. (These independently fitted Gumbel distributions 

are shown in Figure 2 with dotted lines.) 

 The application of the robust estimation method was done in two steps, as described in 

subsection 3.2. In the first step (estimation of η and θ) we used the highest 1/3 intensities of 

each group (i.e. 10 data values for durations 5 min - 12 hours and 7 data values for duration 

24 hours). The minimisation of the Kruskal-Wallis statistic kKW (equation (42)) was easily 

performed by the MS-EXCEL spreadsheet (by a trial-and-error procedure) and resulted in a 

minimum value of kKW = 3.33 and parameter values η = 0.796 and θ = 0.189. (The 

corresponding values when we use all data values of each group are η = 0.776 and θ = 0.139.)  

 For the second step, i.e., the estimation of the distribution function parameters λ and ψ, 

we adopted the more robust method of L-moments, which unlike the other methods does not 

overemphasise an occasional extreme event, as it does not involve squaring or cubing of the 

data. This method results in the following estimators (Stedinger et al., 1993, p. 18.17): 

 λ = λ̂2 / ln 2        ψ = y− / λ − 0.577 (50) 

Here λ̂2 is the estimate of the second L-moment given by 

 λ̂2 = 2 ∑
l = 1

n

 (n − l) yl

n(n − 1) − y− (51) 

where the sample of the observations yl is arranged in decreasing order, so that l is the rank of 

yl. Other parameter estimation methods, such as those reviewed (among others) by Kite 

(1988, p. 96) and Koutsoyiannis (1996), could be used here instead of the L-moments method. 

 Transforming all intensities i into y values and unifying all groups (228 values in total) 

we find that y− = 25.701 and λ̂2 = 5.761. With these values, (50) results in ψ = 2.515 and λ = 

8.31 (the estimates of the method of moments for sY = 10.208 are ψ = 2.652 and λ = 7.96). 

Thus, the idf relationship is  

 i = 8.31  
2.515 − ln ⎣⎢

⎡
⎦⎥
⎤−ln ⎝⎜

⎛
⎠⎟
⎞1 − 

1
T 

(d + 0.189)0.796      (d in h, i in mm/h) (52) 
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 The one-step least squares method, aiming at the minimisation of the total error e 

(equation (47)) was also easily performed using the MS-EXCEL spreadsheet. More 

specifically, the embedded Solver utility of this spreadsheet performed the optimisation 

directly (writing no code at all) and resulted in a minimum value of e = 0.078 and parameter 

values η = 0.778, θ = 0.143, ψ = 2.615 and λ = 7.59. The idf relationship is slightly different, 

i.e., 

 i = 7.59  
2.615 − ln ⎣⎢

⎡
⎦⎥
⎤−ln ⎝⎜

⎛
⎠⎟
⎞1 − 

1
T 

(d + 0.143)0.778      (d in h, i in mm/h) (53) 

 Graphical comparisons of (52) and (53) are shown in Figure 2 and Figure 3. Figure 2 is 

a plot of the idf curves (52) and (53) in the form of probability distribution functions, i.e., i 

versus the Gumbel reduced variate k = −ln[−ln(1 − 1/T)]. Each curve corresponds to a 

particular duration dj. Apart from the curves resulting from equations (52) (continuous lines) 

and (53) (dashed lines) we have also plotted the empirical distribution functions of the 

samples using the Gringorten plotting position (points), and the Gumbel distributions for the 

intensities of each duration dj fitted independently of the other durations (dotted lines). We 

observe that all three sets of curves of (52), (53), and the independently fitted Gumbel 

distributions are in good agreement with each other (in most cases indistinguishable from 

each other). They also agree with the empirical distribution functions. 

 Figure 3 is a logarithmic plot of idf curves (52) and (53) in the form of i versus d for a 

wide range of return periods, T = 5, 50, 500 and 5000 years. Apart from the curves resulting 

from (52) (continuous lines) and (53) (dashed lines), we have also plotted (points) the 

intensities obtained directly from the independently fitted Gumbel distribution of each 

duration. Both sets of curves are practically indistinguishable from each other and from the 

corresponding series of points. For comparison, a third set of curves (dotted lines), obtained 

using the empirical equation (14) are also shown. The idf relationship in this case was 

obtained by the typical procedure of the literature described in subsection 3.1 using returns 

periods 2, 5, 10, 20 and 50 years (second step of the typical procedure), and is given by 

 i = 
20.978 T 0.237 

(d + 0.167)0.784    (d in h, i in mm/h) (54) 
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We observe that for return periods T = 5 and 50 years (which belong to the interval used for 

the fitting of (54)) these curves are indistinguishable from the other two sets. However, for T 

= 500 and 5000 the curves obtained by (54) (marked as Empirical in the figure) depart 

significantly from the other two sets and from the points obtained directly from the 

independently fitted Gumbel distribution of each duration. This verifies our claim (subsection 

2.3) that the parameters κ and λ of (14) are not in fact constant but they depend on the return 

period T. In other words, this demonstrates that one cannot use the Gumbel distribution to 

model the maximum rainfall intensities and simultaneously use approximation (14) for idf 

curves. 

4. Geographical variation of idf curves 

 The above general framework provides a good basis for studying the geographical 

variation of idf curves and, more specifically, the construction of maps that can be used to 

infer idf curves at any point of a particular area. The general idea is to study the variation of 

the parameters of the idf relationships, instead of the variation of rainfall intensities. The 

study of parameters can be separated in two phases: first, study of the parameters of the 

function b(d), and second, study of the parameters of the function a(T). This separation makes 

possible the incorporation of data from the more dense network of non-recording stations 

(e.g., 24 or 48 hour depths) in the second phase, thus providing more detailed information of 

the geographical variation of idf curves. Such data are not appropriate for the first phase 

because, apparently, the determination of b(d) requires intensities of small durations to be 

available. The application of these ideas using an extensive data set of a large part of Greece 

is demonstrated below.  

 The study area for this demonstration is the Sterea Hellas region (central Greece) with 

an area of approximately 25 000 km2 (about 1/5 of the total area of Greece; Figure 4). This 

region includes five important and many smaller rivers providing water for hydropower, 

irrigation, and water supply. The Pindus mountain chain on the west side of this region causes 

heavy orographic rainfall and therefore a wetter rainfall regime, as compared to that of the 
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east side. Thus, the annual rainfall varies from about 2000 mm in the northwestern part of the 

region to about 400 mm in the southeastern part (Athens). 

 Records of maximum intensities at 13 recording stations uniformly distributed in the 

study area were used. The time resolution in most of the records was 1 hour and thus the 

durations examined were 1, 2, 6, 12, 24 and 48 hours. In addition, annual series of maximum 

daily and 2-day rainfall depths were available for the 13 above stations and other 58 non-

recording rain gauges (71 stations in total; Kozonis, 1995). Summary data of the rain gauges 

are shown in Table 2. To the values of the daily and 2-day series, adjustments were made to 

account for the fact that they are fixed-interval rainfall amounts. The adjusting factors of the 

bibliography (e.g., Linsley et al., 1975, p. 357) were used, which are 1.13 and 1.04 for the 

daily and 2-day maxima, respectively. (A more recent research by Dwyer and Reed, 1994, has 

resulted in a slightly higher value 1.167 for the daily rainfall in UK). 

 At the first phase we have used the records of maximum intensities of the 13 recording 

stations, to which we fitted equations of the form (49). This form was suitable for all stations, 

as the Gumbel distribution was found (using the χ2 test) to be appropriate for all records. 

Because the minimum duration was 1 hour, accurate estimation of the parameter θ was not 

possible, and thus we assumed that θ = 0. As shown in Figure 3, the idf curves become 

approximately straight lines in the logarithmic plot for d ≥ 1 hour, even if θ ≠ 0. This indicates 

that the assumption θ = 0 is adequate, if we are interested in durations greater than 1 hour. 

Consequently, for each station we have three unknown parameters, namely the η, ψ and λ, 

which have to be estimated. Using the one-step least squares method, we found that the 

geographical variation of parameters η and ψ is very slight and that of λ is significant. More 

specifically, η and ψ can be considered as constant within each of three “homogeneous” 

subregions of the study area. The boundaries of these subregions almost coincide with the 

divides of the water districts of Western Sterea Hellas, Eastern Sterea Hellas, and Attica, 

which had been defined in the past using several topographical, climatological and 

hydrological factors.  

 At the end of this first phase we compared the series of 24-hour and-48 hour intensities, 

derived from the recording devices at each of the 13 stations, with the 1-day and 2-day 
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intensities derived from the daily observations at the same stations. To this aim we fitted 

Gumbel distributions to the latter series and compared these distributions with those of the 

former series. Remarkably, in most cases the series of the daily observations resulted in 

higher intensities for each recording station, even if their data values were not corrected with 

the above mentioned adjusting factors. This is possibly explained by the different features of 

the two measuring devices. It seams that the recording devices with their vulnerable 

mechanisms are more sensible to erroneous recordings, whereas the standard non-recording 

rain gauges are more reliable due to their simpler structure. This leads us to the conclusion 

that the daily observations of non-recording devices must never be ignored, even in the case 

of coexistence of recording devices at the same station. 

 At the second phase we entered into the calculations the 24-hour and 48-hour maximum 

intensities of the 71 non-recording stations. As mentioned above, the estimation of the 

parameters of η and θ of the function b(d) is unattainable using these data. However, if we 

adopt some values of those parameters, inferred from the previous estimation phase (using 

data of the recording stations), then we can estimate the parameters ψ and λ of the function 

a(T) using the data of the non-recording stations. The results of the first estimation phase, 

which point out that η can be considered as constant for each of the three subregions (and θ = 

0 for the entire study area), facilitate the second estimation phase. The analysis of this phase 

affirmed the outcome of the first phase that ψ is approximately constant for each subregion 

and allowed a more detailed representation of the variation of λ (71 points).  

 As a result of the above analysis, only one parameter (λ) has significant geographical 

variation, whereas the other parameters are constant within subregions. Consequently, one 

map with contours of λ (also indicating the values of the other parameters per subregion) 

suffices for the representation of regional analysis. Equivalently, instead of the λ contours, the 

map may be compiled in terms of any other variable related with λ. This is the case in the map 

of Figure 4, which contains isohyets of the 5-year 24-hour rainfall depth (h5(24) in mm). This 

type of contours was preferred to increase interpretability, as the values of the 5-year 24-hour 

rainfall depth are more familiar to the user that those of parameter λ. At any point, given the 
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value of h5(24), the value of λ is estimated from the following relationship, which is 

consequence of (49): 

 ë = 
h5(24)

241 − ç [ø − ln(−ln 0.8)] = 
h5(24)

 241 − ç (ø + 1.5)       (h5(24) in mm) (55) 

For the compilation of this map we used the ARC/INFO geographical information system; the 

contours were drawn using the TINCONTOUR method (ESRI, 1992). 

 For the verification of the method we used the map of Figure 4 to determine values of 

all parameters of the idf relationships at the locations of certain recording or non-recording 

stations. With these values we reconstructed the idf curves and compared them to the direct 

idf curves, i.e., those obtained from the historic data. Such a comparison is shown in Figure 5 

for the Helliniko station, whose direct idf curves were constructed in the application presented 

in subsection 3.4. We found that the curves constructed indirectly using the map agree well 

with the direct idf curves. 

 In recent studies of the geographical variation of idf curves (e.g., Kothyari and Garde 

1992), it was attempted to express the regional variation of the parameters of idf curves by 

introducing climatic descriptors such as the annual rainfall or the maximum monthly rainfall. 

In this study such links of idf curves to aggregated properties of rainfall were not identified. 

On the contrary, it was found that parts with very different climate regime may have similar 

idf curves. For example, in Figure 4 we observe that near Athens, where the annual rainfall is 

about 400 mm, the 24-hour 5-year rainfall depth is about 80 mm. The same contour of 80 mm 

appears also in the middle of the Sterea Hellas area, where the annual rainfall is double that of 

the Athens value, i.e. 800-900 mm. Similarly, the contour 140 mm for the 24-hour 5-year 

rainfall depth appears both in the eastern and the western Sterea Hellas, although the annual 

rainfall in the eastern part (about 900 mm) is half that of the western part (about 1800 mm). In 

conclusion, we did not detect a link between the variability of maximum rainfall intensities 

and that of the mean annual rainfall. In fact, there no need to do so, as the developed 

methodology is simple and can be easily performed without considering any annual or 

monthly properties of rainfall, which are sometimes used for scaling purposes to reduce the 

computations of regionalisation . 
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 In addition, an attempt was made to relate for each subregion the 24-hour, 5-year depth 

to the station elevation. It resulted in no significant correlation. This does not mean that the 

orography does not affect the intense rainfall. Rather, the effect of the orography on 

maximum intensities is better represented by the geographical location rather than the 

elevation of the station. Also, we remind that the orography was already considered to divide 

the area into subregions.  

 The assumption of constant parameters η, θ and ψ is not a structural constraint of the 

proposed methodology. Generally, we can allow more than one parameter to vary 

geographically and we need to construct one map with contours for each varying parameter. 

For the completeness of the case study examined, we have also used the assumption that both 

parameters ψ and λ vary geographically, whereas η remains constant for each subregion and θ 

= 0. For this case a set of two maps giving contours of h5(24) and h10(24) was constructed 

(Kozonis, 1995), which can be used to determine both parameters ψ and λ at any point. 

However, it was found that the use of two sets of contours (and two variable parameters) does 

not add significant information to that obtained by a single set of contours. This, however, 

may not be the case if we apply the methodology to other regions. 

 We emphasise that the objective of the above analysis was the establishment and test of 

a general methodology for idf curve construction and regionalisation. More analyses and 

more data are needed for the construction of final maps for Greece, suitable for operational 

use. 

5. Conclusions 

 The existing typical framework of rainfall idf analysis and synthesis is not free of 

empirical considerations, which are inconsistent, to some extent, with the theoretical 

probabilistic foundation of the idf relationships. This paper is an attempt to formulate a more 

consistent approach to that issue. More specifically, it proposes a general rigorous formula for 

the idf relationship whose specific forms are explicitly derived from the underlying 

probability distribution function of maximum intensities. Also, it proposes two methods for a 

reliable parameter estimation of the idf relationship. The general formulation and parameter 
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estimation methods are clarified with an application using real-world data. The resulting idf 

curves incorporate in the same relationship the distribution function of maximum intensity 

and its functional dependence on duration, and are superior to typical semi-empirical 

relationships. For a mathematically convenient yet consistent expression of idf relationships, 

simple approximations of certain complicated distribution functions are presented. 

 The proposed formulation of the idf relationship constitutes an efficient 

paramaterisation of this relationship using three to five parameters (depending on the type of 

the distribution function and the type of the functional dependence of the intensity on 

duration). An investigation of the geographical variability of the idf relationships performed 

with data of a large part of Greece, shows that the proposed framework offers a good basis for 

the regionalisation of idf relationships. Moreover it allows incorporating data from non-

recording stations, thus remedying the problem of establishing idf curves in places with a 

sparse network of rain-recording stations, using data of the denser network of non-recording 

stations. We emphasise that the objective of the above analysis was the establishment and test 

of a general methodology for idf curve construction and regionalisation. More analyses and 

more data are needed for the construction of final maps for Greece, suitable for operational 

use. 
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Tables 

Table 1 Summary of maximum intensity data (in mm/h) of the Helliniko station. 

Duration (dj) 5 min 10 min 30 min 1 h 2 h 6 h 12 h 24 h

Sample size (nj) 29 29 30 30 30 30 30 20

Minimum value 36.00 24.60 16.40 10.20 6.550 2.400 1.567 0.833

Maximum value 141.60 120.00 74.00 40.90 26.900 11.933 7.242 3.846

Average value 76.22 58.41 35.17 22.04 13.325 5.823 3.520 2.058

Std deviation 29.14 20.32 13.88 8.89 5.660 2.433 1.464 0.786

 

Table 2 Summary data of rain gauges used in the application of geographical variation of idf 

curves. 

Subregion 
Western 

Sterea Hellas

Eastern 

Sterea Hellas
Attica Total area 

Number of recording stations 5 4 4  13 

Number of non-recording stations 33 18 7 58 

Total number of stations 38 22 11 71 

Station elevation (range; m) 2-1160 4-830 10-333 2-1160 

Station elevation (average; m) 726 313 138 507 

Record length (range) 15-37 10-39 10-33 10-39 

Record length (average) 25.5 26 24.4 25.5 
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List of Figures 

Figure 1 Comparison of three approximations of the gamma distribution function with scale 

parameter λ = 1 and shape parameter (a) κ = 0.25 (Cs = 4), and (b) κ = 16 (Cs = 0.5) (adapted 

from Koutsoyiannis, 1996). 

Figure 2 Empirical (points) and Gumbel (lines) distribution functions of maximum intensities 

at Helliniko for durations (a) 5 min - 1 hour and (b) 2-24 hours. The continuous and dashed 

lines (in most cases indistinguishable from each other) correspond to the Gumbel distributions 

fitted by the robust estimation method, and the one-step least squares method, respectively. 

The dotted lines (also indistinguishable from the other lines in most cases) correspond to the 

Gumbel distribution fitted separately to the data of each duration. 

Figure 3 Idf curves of Helliniko for return periods 5-5000 years, as obtained using both the 

robust estimation method (continuous lines) and the one-step least squares method (dashed 

lines; almost indistinguishable from continuous lines). The points correspond to the intensities 

obtained directly from the Gumbel distribution of each duration. Dotted lines represent curves 

obtained using empirical equation (14) (see text).  

Figure 4 Map of the Sterea Hellas: (a) morphology; (b) isohyets of the 5-year 24-hour rainfall 

depth in mm (continuous lines). Dashed lines in (b) are boundaries of the three subregions 

each having approximately constant parameters η and ψ (see text) whereas circles and squares 

indicate locations of recording and non-recording stations, respectively (the triangle is the 

Helliniko station). 

Figure 5 Idf curves of Helliniko for duration ≥ 1 hour and return periods 5-5000 years, as 

inferred from Figure 4 (continuous lines), in comparison with the idf curves obtained from 

(53) (dashed lines; also shown in Figure 3). 
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Figure 1 Comparison of three approximations of the gamma distribution function with scale 

parameter λ = 1 and shape parameter (a) κ = 0.25 (Cs = 4), and (b) κ = 16 (Cs = 0.5) (adapted 

from Koutsoyiannis, 1996).  
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Figure 2 Empirical (points) and Gumbel (lines) distribution functions of maximum intensities 

at Helliniko for durations (a) 5 min - 1 hour and (b) 2-24 hours. The continuous and dashed 

lines (in most cases indistinguishable from each other) correspond to the Gumbel distributions 

fitted by the robust estimation method, and the one-step least squares method, respectively. 

The dotted lines (also indistinguishable from the other lines in most cases) correspond to the 

Gumbel distribution fitted separately to the data of each duration. 
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Figure 3 Idf curves of Helliniko for return periods 5-5000 years, as obtained using both the 

robust estimation method (continuous lines) and the one-step least squares method (dashed 

lines; almost indistinguishable from continuous lines). The points correspond to the intensities 

obtained directly from the Gumbel distribution of each duration. Dotted lines represent curves 

obtained using empirical equation (14) (see text).  
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Figure 4 Map of the Sterea Hellas: (a) morphology; (b) isohyets of the 5-year 24-hour rainfall 

depth in mm (continuous lines). Dashed lines in (b) are boundaries of the three subregions 

each having approximately constant parameters η and ψ (see text) whereas circles and squares 

indicate locations of recording and non-recording stations, respectively (the triangle is the 

Helliniko station). 
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Figure 5 Idf curves of Helliniko for duration ≥ 1 hour and return periods 5-5000 years, as 

inferred from Figure 4 (continuous lines), in comparison with the idf curves obtained from 

(53) (dashed lines; also shown in Figure 3). 


