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A1. Derivation of the rule for the restriction of losses 

 Given that the losses due to leakage and evaporation from reservoir i are li(Si), to 

minimize the total system losses we demand that 

 minimize   L = ∑
i = 1

N
 li(Si)  (A1) 

under the constraints 

 Si ≥ 0, i = 1, …, N            ∑
i = 1

N
 Si = V (A2) 

We remind that Si denotes the storage of the reservoir i and V denotes the total storage of the 

system. 

 To incorporate the first constraint in the objective function we use the auxiliary 

variables xi such as Si = x2
i . The handling of the second constraint can be done either by a 

Lagrange multiplier or by expressing one of the variables, say x1, in terms of the other 

variables. In the latter case, which we have adopted, the objective function becomes 

 min h(x2, …, xN) = ∑
i = 2

N
 li(x

2
i ) + l1(V − ∑

i = 2

N
 x2

i ) (A3) 
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Taking the partial derivatives of h with respect to xi (for i = 2, …, N) and equating them to 

zero, we get 

 
∂h
∂xi

 = 2 xi 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

li΄(x
2
i ) − l1΄(V − ∑

i = 2

N
 x2

i )  = 0 (A4) 

where li΄( ) denotes the first derivative of the function li( ). The second derivatives of h are  

 
∂2h

∂x2
i

 = 2 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

l i΄(x
2
i ) − l1΄(V − ∑

i = 2

N
 x2

i )  + 4 x2
i  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

li΄΄(x
2
i ) + l1΄΄(V − ∑

i = 2

N
 x2

i )  (A5) 

 
∂2h

∂xi ∂xj
 = 4 xi xj l1΄΄(V − ∑

i = 2

N
 x2

i ) (A6) 

where li΄΄( ) denotes the second derivative of the function li( ). 

 To continue our proof, we observe that generally the functions li(Si) are increasing and 

concave (or equivalently increasing with first derivative decreasing). To justify this, we 

assume that the area - elevation relationship of a reservoir is approximated by power relation 

A ∝ zβ , where A and z denote the area and elevation (above reservoir bottom), respectively, 

and β is a parameter, typically greater than 2 (the value 2 corresponds to a shape of the area 

scaling linearly with z). Then the storage - elevation relationship will be S ∝ z β + 1. Thus, we 

can write z ∝ S 1 / (β + 1) and A ∝ S β / (β + 1). The first result means that, under the commonly met 

condition that the loss due to leakage is proportional to z, or even to a power of z up to z β + 1 

(e.g., for β = 2, up to z3), this loss will be a concave function of z. The second result means 

that the evaporation loss, which is proportional to A, is always a concave function of z (note 

that 0 < β / (β + 1) < 1). Hence the sum of these two concave functions will be a concave 

function, too.  Clearly, (A4) has two solutions for xi, the first being xi = 0 and the second xi 

≠ 0. From (A5) we obtain that the second solution corresponds to  
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∂2h

∂x2
i

 = 0 + 4 x2
i  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

li΄΄(x
2
i ) + l1΄΄(V − ∑

i = 2

N
 x2

i )  < 0 (A7) 

since both terms in the square brackets are negative because of the concavity of the functions 

li( ). Thus, this solution corresponds to a maximum, rather than a minimum of the objective 

function (A3). For a geometrical explanation of this consider that h is a (N − 1)-dimensional 

hypersurface defined as the intersection of the N-dimensional hypersurface L (Equation (A1)) 

and a hyperplane (second restriction in (A2)). As the hypersurface L is concave, so will be h, 

which means that both cannot have minima at any point except for some of the corners of the 

hypercube they are defined on. Indeed, let us consider the corner (S1 = V, S2 = L = SN = 0), 

which corresponds to (x2, x3, …, xN) = (0, 0, …, 0). We assume that the indexes i are assigned 

so that reservoir 1 is that corresponding to the minimum value of the loss rate at the origin, 

that is  

 l1΄(0) ≤ li΄(0), i = 2, …, N  (A8) 

Moreover, given that l1( ) is concave we will have 

 l1΄(V) ≤ l1΄(0) ≤ li΄(0), i = 2, …, N  (A9) 

From (A4) we obtain that all first derivatives at the point (0, 0, …, 0) are zero and from (A5) 

and (A6) we obtain that the second derivatives are 

 
∂2h

∂x2
i

 = 2 [(l i΄(0) − l1΄(V)] ≥ 0        
∂2h

∂xi ∂xj
 = 0 (A10)  

where we have combined (A9) to obtain the above inequality. Moreover, because of the zero 

derivatives with respect to xi and xj, all Hessian determinants at the origin, related to the 

optimization, are 

 

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞∂2h

∂x 
i ∂x 

j
k × k

 = 
∂2h

∂x2
2

 
∂2h

∂x2
3

 L 
∂2h

∂x2
k + 1

 ≥ 0 (A11)  
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for any k = 2, …, N − 1. All the above inequalities ensure that the point (0, 0, …, 0) 

corresponds to a local minimum of the function h. Hence the function L has a local minimum 

at the point (V, 0, 0, …, 0), which equals l1(V).  

It is possible that assignment of the index 1 to another reservoir may result in a local 

minimum at the point (0, 0, …, 0) as well, since it can be l1΄(V) ≤ li΄(0) for all i and thus (A10) 

be still valid. Thus, we have to examine all possible minima, i.e., the values of li(V) for all i, 

and keep the smallest. Theoretically, for different values of V, it is possible that a different 

reservoir i may have the minimum losses li(V). In practice, however, it is expected that the 

reservoir with the smallest loss rate at the origin will also have less losses for any volume V.  

 To further generalize the above result, we observe that, in order to prove that the origin 

is a point of local minimum, we needed only the condition l1΄(V) ≤ li΄(0) to be valid. This does 

not necessarily require that all li( ) are concave. However, at least l1( ) should be concave, 

because otherwise it can be proved that there may be a local minimum for nonzero S1 with a 

value of L smaller than l1(V).  

 Finally, we observe that in the limit case where the loss is proportional to storage, i.e., 

li(Si) = λi Si the above analysis remains valid. Obviously, in that case the total loss is minimum 

when we store all water at the reservoir with the minimum loss rate λi.  

A2. Explanations for the adjusting procedure of the linear rule 

 Having modified the linear rule from form (4) to form (12), in order to obey the 

physical constraints, the S´*
i  no longer add up to V, as they should. To reestablish the additive 

property we must distribute the departure V − ∑i = 1
N

 S´*
i  among the different S´*

i  and get some 

new target storages S´´*
i  satisfying ∑i = 1

N  S´´*
i  = V. The transformation S´*

i  → S´´*
i  must not 

affect the full or empty reservoirs. That is, (S´*
i  = 0) should map to (S´´*

i  = 0), and (S´*
i  = Ki) 

should map to (S´´*
i  = Ki). The easiest way to do so this is to distribute the departure 

V − ∑i = 1
N

 S´*
i  in proportion to the quantity S´*

i  (1 − S´*
i /Ki), that is  

 S´´*
i  − S´*

i  = φ S´*
i  (1 − S´*

i /Ki) (A12) 
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where φ is constant for all reservoirs. Adding equations (A12) for all i, equating ∑i = 1
N

 S´´*
i  = V

, and solving for φ we get 

 φ  =  

V − ∑
i = 1

N

 S´*
i

 ∑
i = 1

N

 S´*
i (1 − S´*

i /Ki)
 (A13) 

 It is easily shown that as long as −1 ≤ φ ≤ 1 the adjusted target storage  

 S´´*
i  = S´*

i  + φ S´*
i  (1 − S´*

i /Ki) = S´*
i  ⎣⎢

⎡
⎦⎥
⎤1 + φ (1 − S´*

i /Ki)   (A14) 

remains within the interval [0, Ki], as it should. Indeed, for φ ≥ −1, since 0 ≤ 1 − S´*
i /Ki ≤ 1, we 

will have φ (1 − S´*
i /Ki) ≥ −1 + S´*

i /Ki, and 1 + φ (1 − S´*
i /Ki) ≥ 0, which proves that S´´*

i  ≥ 0. 

Similarly, for φ ≤ 1, since 0 ≤ S´*
i /Ki ≤ 1 we will have φ S´*

i  ≤ Ki and φ S´*
i

 (1 − S´*
i /Ki) ≤ 

Ki (1 − S´*
i /Ki) = Ki − S´*

i , which proves that S´´*
i  = S´*

i  + φ S´*
i

 (1 − S´*
i /Ki) ≤ Ki.  

 However, (A13) does not ensure that the value of φ will be within the interval [−1, 1], 

which means that possibly the new target storage S´´*
i  may violate the physical constraint 0 ≤ 

S´´*
i  ≤ Ki. If this happens, the following iterative algorithm fixes the problem: 

1. Calculate φ using (A13). 

2. Calculate S´´*
i  using (A14) for all i. 

3. If (−1 ≤ φ ≤ 1) or (0 ≤ S´´*
i  ≤ Ki) for all i, then go to step 7, otherwise continue with step 4. 

4. For those i with S´´*
i  < 0 replace S´*

i  with 0. 

5. For those i with S´´*
i  > Ki replace S´*

i  with Ki. 

6. Go to step 1. 

7. Done. 

 For the complete presentation of the algorithm, we note that the denominator in (A13) 

can be zero if all S´*
i  are either zero or equal to Ki. If the nominator is also zero, then there is 

no problem, because the target storages do already add up to V. Otherwise, we can arbitrarily 

modify S´*
i  (e.g., by setting S´*

i  = Ki / 2) and let the iterative adjusting algorithm determine the 

final target storages.  
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A3. Quadratic, linear, and homogeneous linear rules 

 In this section we explore a quadratic rule of the form  

 S*
i  = ai΄ + bi΄ V + c΄i V2  (A15) 

where ai΄, bi΄, ci΄ are parameters for each reservoir i, and compare it with the linear rule of 

equation (4) in both its complete and homogeneous (ai = 0) form. The quadratic rule 

comprises 3N parameters for a system of N reservoirs. Because of (2) we have three 

constraints on the parameters, i.e., 

 ∑
i = 1

N
 ai΄ = 0,       ∑

i = 1

N
 bi΄ = 1,      ∑

i = 1

N
 ci΄ = 0 (A16) 

and thus the number of unknown parameters is finally 3(N − 1). Furthermore, in order for the 

rule to have physical meaning, all S*
i  in (A15) must be increasing functions of V in the interval 

[0, K], where K = ∑i = 1
N  Ki. Taking the first derivatives of (A15) and constraining them to be 

nonnegative we get 

 bi΄ ≥ 0,       ci΄ ≥ −bi΄ / 2K (A17) 

Combining (A16) and (A17) we get 

  0 ≤ bi΄ ≤ 1,     −bi΄ / 2K ≤ ci΄ ≤ (1 − bi΄) / 2K (A18) 

Hence, the curvature of the quadratic low cannot be arbitrary high, as the maximum value of 

ci΄ is 1 / 2K (for bi΄ = 0) and the minimum value is −1 / 2K (for bi΄ = 1).  

 Let us experiment numerically with the quadratic rule in our study reservoir system. To 

get the highest possible departure from the linear rule we set for one reservoir, say reservoir 3 

(Iliki), c3΄ = 1 / 2K = 3.75 × 10−4 hm−3 and b3΄ = 0. For each of the other two reservoirs we set 

ci΄ equal to its lower bound, i.e. −bi΄ / 2K. Choosing one of parameters bi΄ and two of ai΄, in a 

manner that all three quadratic laws have reasonable and rather extreme appearance, we got 

the curves shown in Figure A1(a). The parameter vectors for these curves are a΄ = 
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(−148.1, 321.5, −173.4)T hm3, b΄ = (0.444, 0.556, 0)T, and c΄ = (−1.67 × 10−4, −2.08 × 10−4, 

3.75 × 10−4)T hm−3. 

 It is clear from Figure A1(a) that the quadratic rules with the above parameters violate 

the physical constraints 0 ≤ S*
i  ≤ Ki in large parts of their domain. Thus, we have applied the 

correction procedure described above (which, notably, can also be used for any rule, linear or 

nonlinear) and obtained the final adjusted curves shown in Figure A1(b).  

 Now, let us compare the above quadratic rule to the linear rule of equation (4) with 

parameters ai and bi. Experimenting with different sets of parameters ai and bi we determined 

a parameter set of this linear rule such that the final laws (after introducing corrections for 

constraints) of both the linear and quadratic rules are very close to each other. This parameter 

set is a = (−58.0, 438.2, −380.2)T hm3 and b = (0.199, 0.244, 0.558)T. These linear laws are 

plotted in Figure A1(a) together with the quadratic laws. We observe that the linear laws 

depart somehow from their corresponding quadratic laws, with their overall root mean square 

error, based on the departures between all pairs of curves after normalization by the 

respective reservoir capacity, being 22%. However, when we applied the correction procedure 

and got the final curves shown in Figure A1(b), this error became as low as 0.1%. In Figure 

A1(b) the curves originating from the linear rule are practically indistinguishable from those 

originating from the quadratic rule.  

 It is interesting to compare the above quadratic rule with the homogeneous linear rule, 

i.e., that with ai = 0. Experimenting, as above, with different sets of parameters bi we resulted 

in a parameter set of this homogeneous rule such that the final laws (after introducing 

corrections for constraints) of both the homogeneous and quadratic form are close to each 

other. This parameter set is b = (0.049, 0.951, 0)T (note the zero value of b3). The 

homogeneous lines are plotted in Figure A2(a) together with the quadratic curves. We 

observe that the homogeneous laws depart significantly from their corresponding quadratic 

laws, with their overall root mean square error (as previously defined) being 52%. However, 

when we applied the correction procedure and got the final curves shown in Figure A2(b), 

this error became 6.8%. We observe in Figure A2(b) that the curves originating from the 

homogeneous rule agree well with those originating from the quadratic rule.  
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 As a final experiment, we have attempted to approximate the space rule (shown in 

Figure 4(c) of the paper) with a homogeneous rule. We remind that the space rule results in a 

law for the Evinos reservoir (reservoir 1) that passes very far from the origin (intersects the V 

axis at V = 1010 hm3). This is expected to create inaccuracy in approaching the law with a 

homogeneous line. Working as above, we fitted the vector b = (0.018, 0.583, 0.399)T 

describing the homogeneous rule. The lines of the homogeneous rule are plotted in Figure 

A3(a) together with those of the space rule. We observe that the homogeneous lines depart 

significantly from their corresponding complete linear forms, with the overall root mean 

square error (as previously defined) being 92%. However, when we applied the correction 

procedure and got the final curves shown in Figure A3(b), this error became 9.2%. In Figure 

A3(b) the curves originating from the homogeneous rule agree well with those originating 

from the complete linear rule.  

 In conclusion, the above results indicate that, given a quadratic rule, it can be 

approximated almost perfectly by a linear rule. Furthermore, we can obtain good 

approximations of either a quadratic and a linear rule by a homogeneous rule. 
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Figure A1 Approximation of a quadratic rule with a linear rule for the reservoir system of the 

Athens water supply: (a) initial forms of rules, and (b) final adjusted (corrected) forms of 

rules. Rhombi, squares and circles correspond to reservoirs 1, 2 and 3 (Evinos, Mornos and 

Iliki), respectively. Empty and solid symbols correspond to the quadratic and the linear rules, 

respectively. In (b) the curves corresponding to both rules are indistinguishable. 
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Figure A2 Approximation of a quadratic rule with a homogeneous linear rule for the 

reservoir system of the Athens water supply: (a) initial forms of rules, and (b) final adjusted 

(corrected) forms of rules. Rhombi, squares and circles correspond to reservoirs 1, 2 and 3 

(Evinos, Mornos and Iliki), respectively. Empty and solid symbols correspond to the 

quadratic and the homogeneous rules, respectively. 
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Figure A3 Approximation of the space rule with a homogeneous linear rule for the reservoir 

system of the Athens water supply: (a) initial forms of rules, and (b) final adjusted (corrected) 

forms of rules. Rhombi, squares and circles correspond to reservoirs 1, 2 and 3 (Evinos, 

Mornos and Iliki), respectively. Empty and solid symbols correspond to the space rule and the 

homogeneous rule, respectively. 


