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Abstract The single-site dynamic disaggregation model developed 
and presented in this paper is a generalized step-by-step approach 
to stochastic disaggregation problems. The forms studied concern 
low-level variables with Markovian structure and normal or 
gamma marginal distributions. Combined with a rainfall model, 
the disaggregation scheme gives a rainfall generator transforming 
monthly rainfall into events and hourly amounts. A particular 
application of the generator, based on historical data, is used to 
illustrate and test the model. 

Un modèle dynamique de désagrégation de pluies à courte échelle 

Résumé Le modèle de désagrégation dynamique mono-site 
présenté ici, est une approche généralisée pas à pas des problèmes 
de désagrégation stochastique. Les formes étudiées concernent des 
variables de niveau inférieur avec une structure Markoviènne et 
une distribution marginale normale ou gamma. Combiné avec un 
modèle de pluie, le schéma de désagrégation a fourni un 
générateur de pluie, transformant les pluies mensuelles en 
événements et pluies horaires. Une application de ce générateur, 
basée sur les données historiques, est donnée afin d'illustrer et 
tester le modèle. 

INTRODUCTION 

The linear disaggregation model developed by Valencia & Schaake (1972, 
1973), along with the contributions of Mejia & Rousselle (1976), Tao & 
Delleur (1976), Hoshi & Burges (1979), Todini (1980) and Stedinger & Vogel 
(1984) is the most important scheme for stochastic disaggregation problems, 
and has been widely used in hydrological applications. However, as first 
pointed out by Valencia & Schaake (1972), their model is not suitable for the 
disaggregation of rainfall in time scales shorter than monthly (e.g. daily); this 
is due to the skewed distributions and the intermittent aspect of the rainfall 
process in short time scales. Other disaggregation models have been proposed 
and used, particularly for the disaggregation of rainfall, but they do not 
exhibit the generality of the Valencia-Schaake linear scheme. Grace & 
Eagleson (1966) proposed an urn model for the disaggregation of storm depth 
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into shorter durations. Schaake et al. (1972) developed a Markov chain model 
for the disaggregation of monthly rainfall into daily amounts. Woolhiser & 
Osborn (1985) presented a scheme for the disaggregation of an individual 
storm depth into fractional depths, each corresponding to one tenth of the 
storm's duration; their scheme was based on a non-dimensionalized Markov 
process resulting from successive transformations of the real rainfall process. 
The problem of the simulation of the internal time distribution of a storm 
was also studied by Marien & Vandewiele (1986), where the disaggregation 
scheme developed applies to properly defined fractional variables with gamma 
distributions. 

The single-site dynamic disaggregation model developed and presented in 
this paper is a generalized step-by-step approach to stochastic disaggregation 
problems. The model development was intended for application to short-scale 
rainfall disaggregation problems. Combined with a rainfall model, the 
disaggregation scheme gives a rainfall generator disaggregating monthly rainfall 
into events and hourly amounts. 

THE DYNAMIC DISAGGREGATION MODEL 

The essential elements of the dynamic disaggregation model, described in 
detail by Koutsoyiannis (1988), are the following: 
(a) The disaggregation of a high-level variable, Z, into its k components 

(low-level variables, Xt, i = 1, .., k), is performed in k - 1 sequential 
steps. 

(b) At the beginning of the z'th step, the amount-still-to-go, S^ is known, 
and Xi is generated. The remaining quantity ,S;.+1 = St - Xi is transferred 
to the next step. 

(c) In each step the distribution function of (Z2-, S-), conditional on 
previously generated information, is determined or approximated via 
conditional moments. It is assumed that the sequence of X. has certain 
properties allowing the calculation of conditional moments, e.g. it is an 
autoregressive sequence. 

(d) The generation of Xt is performed by the so called bisection 
procedure, which can take several forms depending on the particular 
marginal distribution of the low-level variables. 
The realization of the model includes two parts, the conditional 

moments determination and the bisection procedure, which can be studied 
separately. The former is influenced by the type of the stochastic structure of 
the successive low-level variables, while the latter is affected mainly by its 
marginal distribution type. 

Though the model is general in its formulation, the configurations 
studied concern only single-site problems, described by Markov sequences, 
with Gaussian or gamma marginal distributions. Therefore it may be used in 
any single-site hydrological application with variables fulfilling or 
approximating these conditions; its applicability to short-scale rainfall 
disaggregation, characterized by intermittence and J-shaped distributions, is 
emphasized. 
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A brief presentation follows of the model equations, oriented towards 
model application. The relevant proofs may be found partly in Koutsoyiannis 
(1988). 

Conditional moments determination 

Let the low-level variables Xv i = 1, .., k, add up to the high-level variable, Z, 
that is: 

x1+x2 +... + xk = z (i) 

The low-level variables are considered as a sub-set of an infinite stochastic 
sequence, i.e. (..., X_v XQ, Xv ..., Xk, Xk+1, ...); this particular sub-set 
characterizes the current stage of disaggregation. It is assumed that the 
disaggregation procedure has already been completed at the previous stages; 
thus all previous X!s have known values: (XQ = xQ> X_x = x_v ...). 

Consider, as initial parameters of the model, at the current stage, the 
first and second moments of the low-level variables, forming the following 
groups: 
(a) mean values of Xv iif, 
(b) variances of X(, a2; 
(c) covariances between Xt, X- (i, j > 0), a..; and 
(d) covariances between Xt (i > 0) with variables X. (j « 0) of previous 

stages. 
The number of independent parameters of groups (a), (b) and (c) is k, 

k, and k(k - l)/2, respectively, and in total, (k2 + 3k)/2. If k previous 
variables are considered as affecting the current stage, then the number of 
parameters of group (d) is k2. Thus the total number of initial parameters is 
3(k2 + k)!2. 

Consider now the rth disaggregation step of the current stage, 
concerning the generation of the low-level variable X{ based on: 

Xt * SM - St (2) 

where the amount still to go: 

Si = Xi + Xi,x + - + Xk = Z ~ Xl ~ - ~ Xi-l (3) 

has a known value, given that previous steps have been completed. Consider 
next, as intermediate parameters of the rth step, the first and second 
moments of the remaining low-level variables X,, i $ j $ k, conditional on the 
previously generated information, i.e. ù.^ = (X^ = xiV ..., Xt = xv XQ = xQ, 
x.i = x-i> •••)• These parameters form groups similar to the groups (a), (b) and 
(c) of the initial parameters. 

Finally, consider, as final parameters of the ith step at the current stage 
of the model, the first and second moments of the variables Xt, and Sp 

conditional on the previously generated information. These final parameters 
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are: 

MX= E[Xjn J , 4 = VarfZjn J , ns = E[Sjû J , 

o2
s=Var[Sjn,1] )ox s=Cov[Z î ,5 ! . |n,1] 

and they are fully determined by linear combinations of the intermediate 
parameters. These parameters are the link with the bisection procedure; at 
the z'th step, their values (as well as the known value of S.) are passed to the 
bisection procedure, which proceeds to the generation of the Xf value (as well 
as Si+l). 

Take now the case in which the sequence of low-level variables is "wide 
sense" Markov (first order autoregressive, Papoulis, 1965, p.420). The relevant 
analysis may be easily extended to higher order autoregressive sequences. The 
following relation is a consequence of the Markovian property: 

Covpr., Xj] Cov[Xj, X{] = Cov[Z., X{) Varp^.] i <j <l (4) 

This property reduces the number of the initial parameters. Thus the 
initial parameters of group (c) can be determined in terms of the parameters 
of group (b) and the (k - 1) lag-one correlation coefficients: 

prCon[Xi,Xi_1]=oi^(opi_1) (5) 

with i = 2, ..., k. Similarly, the independent parameters of group (d), are 
reduced to one, since the covariances with the low-level variables of previous 
stages can be determined in terms of the parameters of groups (b) and (c) of 
the current and previous stages, and the lag-one correlation coefficient pv 

given by (5) for i = 1. Therefore the total number of parameters in this case 
is 3k. Any covariance between low-level variables is given by: 

aij = Pj - Pi+iajai i<j $ k (6) 

which is a consequence of equations (4) and (5). 
The intermediate parameters of the ith step are easily derived, 

considering that the wide sense Markov sequence Xt satisfies the difference 
equation (Papoulis, 1965, p.421): 

Xi-aiXhl=Vi (7) 

where Vt is a sequence of uncorrelated random variables and ai is a sequence 
of constants. The resulting equations are: 

E[XjXhl = xhl] = nj + Pj ... PfO-x.^ (8) 

Var [X.|XM= x . J = o?(l - p) ... p]) (9) 

CovtX^.IX^ = xn] = P / ... p (1 - p) ... p7i)oloj (10) 
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where 1 $ i < j < I $ k; and x {l = (x^ - M,-.1)/o,-.1. 
The final parameters of the ith step, calculated by using equations (3) 

and (8) to (10), are: 

E[XjZM = x M ] = ^ + P ( . a ! i i , 1 (11) 

Var[X.|X._1 = x i , 1 ] = a 2 ( l - p 2 ) (12) 

E[SjXH « x H ] = Z* ; My • * H 2$., P;- - P ̂  (13) 

Var[Sj*M = xfJ = I^= .a/(1 - pjLp?) + 

2 I « I ^ . + l P / - P;.+1(l - P / ... P i
2 ) a ^ . (14) 

C o v p , . ^ - ^ J = c,(l - pf) [a, + I * = M p . ... pMo}] (15) 

where 1 « i S fc. The above equations may also be used in the first step of 
the first stage, or any other similar case, where no condition is known, by 
setting p . = 0. For application purposes, the following computational 
equations, equivalent to equations (13) to (15), are suggested, as reducing the 
required computational time, by avoiding repetitions. 

E[St\xn = x..J = E. + pi(ai + D .)x M (16) 

VarfSJX^ = * . J = ^ . - 5 f (17) 

Cov[5.,X.|XM=xM] = (1 - pfro-io.+D,) (18) 

where: 

£ . = it, + £ / + 1 (19) 

^ • P M ^ I ^ M ) (20) 

^ • = ^ 2 + 2 c W ^ . + 1 (21) 

Brpf(af + 2api + Bhl) (22) 

with 1 « / $ k, and £A+1 = D ^ = Ak+1 = Bk+1 = pk+1 = 0. Equations 
(19) to (22) are applied successively for i = k to / = 1, at the start of 
each stage, and the resulting values are stored. Then, at each step, 
equations (11), (12) and (16) to (18) are used to calculate the final 
parameters. 
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Bisection procedures 

The bisection problem, i.e. the generation of variables X and Y, such that 

X + Y = 5 (23) 

where S has a known value, s, can be studied independently of the other part 
of the model. What is required here is to determine the conditional 
distribution of X\S. The variable X can then be generated by this conditional 
distribution, and Y is obtained by equation (23). Due to the difficulties of the 
determination of conditional distributions, a simpler moments-based approach 
is preferable. This is done by assuming a proper auxiliary random variable W, 
and an explicit form R(5, W), such as: 

X = R(S, W) (24) 

with parameters being determined via the marginal and joint moments of 
(X, S). 

The linear bisection scheme: 

X = R(S, W) = a S + W (25) 

where W is a random variable independent of S, is ideal for jointly normal 
variables. If W is assumed normal, then the bisection scheme preserves 
completely the distribution function of (X, Y, S). Moreover, when this 
scheme is combined with the other part of the model (conditional moments 
determination), the complete joint distribution function of low-level variables 
is preserved, if it is multidimensional normal. However, this bisection scheme 
is not proper for skewed distributions, since it cannot preserve non-zero 
skewness coefficients. 

Another simple bisection scheme, the so-called proportional one, is 
defined by: 

X= R(S, W) = W-S (26) 

where W is a random variable, generally dependent on S, referred to as 
proportional variable. The degree of correlation between W and S is much 
lower than that between X and S, and this simplifies the problem. The 
proportional scheme is ideal for gamma distributed variables, since it has been 
shown that when X and Y are independent gamma distributed, having equal 
scale parameters, and W is assumed independent of S and beta distributed, 
the complete distribution F^j^Q is preserved. This preservation expands to 
the whole sequence of low-level variables under the same assumptions. In the 
general case of dependent gamma marginal variables, with different scale 
parameters, the proportional scheme still gives satisfactory approximations of 
the gamma marginal distributions. 

The parameters of the proportional scheme, i.e. the moments of 
W conditional on S, for the general gamma case are given by: 
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The above equations have been obtained under the assumption of a linear 
dependence between S and W. When X and Y are independent with common 
scale parameter, S and W should be assumed independent; thus n = 0 and 
equations (27) and (28) are apparently simplified. It is noted that equations 
(28) and (30) have different forms for non-gamma distributions (generalized 
equations are in Koutsoyiannis, 1988). 

It must be emphasized that in the above analysis and the relevant 
equations, all variables are in their initial form (no differences from means). 
Hence, if the variables are positive, W should be bounded in [0,1]. The 
two-parameter beta distribution is a proper representation for the distribution 
of W\S. Finally, if X and 5 have three parameter gamma distributions, they 
can be replaced in the above analysis with the respective differences from 
their lower bounds, and the same bisection procedure used. 

RAINFALL MODEL 

The rainfall model used in the present study, in combination with the 
dynamic disaggregation model, was based on the historical data of two rain 
recorder stations in the Aliakmon river basin, northern Greece. It represents 
the rainfall process in discrete time, from an hourly to a monthly time scale, 
using as a base the intermediate scale of a rainfall event. The main parts of 
the rainfall model are summarized as follows. 

Rainfall event - rainfall occurrence 

A rainfall event is considered as an individual entity which can be identified 
in a historical rainfall record as in the studies of Grace & Eagleson (1966) 
and Restepo-Posada & Eagleson (1982). Successive rainfall events were 
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defined as statistically independent, with starting points forming a Poisson 
process. Values of the separation time (c), i.e. the minimum dry time interval 
for two successive rainfall pulses to be considered as independent events, 
were obtained by a developed criterion, based on the Kolmogorov-Smirnov 
test, and were found to lie in the range c = 5-7 h. 

The complete description of the rainfall occurrence process requires that 
the joint distribution function F ^ ^ v , d, b) is known, where V is the rainfall 
inter-arrival time, D is the duration of the event and B is the time between 
events (dry interval). This was based on: 
(a) the obvious relation: 

D + B = V (31) 

(b) the consequence of the event definition (a property of the Poisson 
process) that the marginal distribution of V - c is exponential, that is: 

fy(y) = u e ^ v - c) v > c (32) 

(c) the assumption that the conditional distribution of D, given V, 
comprises two additive parts, an exponential part independent of V, and 
a triangular part dependent on V, that is: 

W(rf>v) 
'5 e"5d + 2d e ""5(v" c)/(v -cf 0 « d « v - c 

(33) 
.0 elsewhere 

The marginal densities of the distributions of event duration, D, and 
time between storms, B, derived theoretically from these assumptions are: 

fjfd) = (S + 2w) e<5 + w>d - 2w(5 + u))d e[(6 + u) d] 

d > 0 (34) 

^ S + w 

2u[l + (6 + w) (b - c)] e [(8 + u) (b - c)] 

b ï c (35) 

where: 

e(x) (^11) • dÇ (36) 

As illustrated in Figs 2 and 3, fD(d) is quite similar to the exponential 
distribution, but f^b) deviates, mainly in its lower tail, from the exponential, 
Weibull and gamma distributions. 

The distribution of the event rain depth, H, conditional on D, has been 
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Fig. 1 Distribution function of rainfall event inter-arrival time, V. 
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Fig. 2 Distribution function of rainfall event duration, D. 
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assumed gamma, with mean and standard deviation linearly depending on the 
duration, i.e.: 

E[H\D] = (d + a) nç - b 

{Vax[H\D]f = (d + a) c^ 

(37) 

(38) 

where a, b, n^ and a^ are constants. This is a modification of a scheme 
widely used in rainfall analysis and synthesis (e.g. Bras & Rodriguez-Iturbe, 
1976; Eagleson, 1978), which assumes that conditional mean and standard 
deviation are proportional to the duration. 

Internal rainfall event structure 

Given a specific rainfall event, with duration D (considered as an integer 
multiple of A = 1 h), and total depth H, the sequence of hourly depths X., in 
the interior of the event, is related with H by: 

X1+X2 + ...+XD/A = H (39) 

The following main assumptions concerning the structure of the hourly depths 
have been used: 
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(a) The sequence of hourly rain depths is non-stationary; the statistics of a 
specific X. depend on the duration of the event, as well as on its time 
position in the event. It is accepted that these two influences are 
separable, and can be described by: 

X i =k( J D).g(6. ) .Z . (40) 

where 8. is the non-dimensionalized time position (t./D); Zt is a 
sequence of dependent, identically distributed random variables, 
referred to as homogenized hourly rain depths, with mean nz and 
standard deviation o z ; k(), and g() are properly defined functions. 

(b) The covariance structure of Z{, in a specific event is assumed to be 
stationary Markovian: 

Cov[Z.,Z.+ .] = ( P i y a f (41) 

The lag-one correlation coefficient, pv generally depends on duration. 
The covariance between variables of different events is zero. 
Secondary assumptions concern the form of g(8), which has been 

assumed linear, i.e.: 

g(8) = g0 + 8^ (42) 

where gQ and g1 are constants, and the distribution of Z, which is J-shaped 
and has been considered as gamma or Weibull, depending on the fit to 
historical data. 

The distribution of X^ marginal or conditional on D, may be 
approximated by the same type as the one of Z. The conditional mean and 
standard deviation are: 

E\X.\D=d\ = k(d) g(9.) MZ; and (43) 

{Var[Xj£>=d]}H = k(d) g(8.) az (44) 

kid) is completely determined by using equations (37), (39), (42) and (43): 

k(d) = 1 + (a - b/n^/d (45) 

The following equation estimating the correlation coefficient, pJd), can 
be derived from equations (38) to (41) and (44): 

z'f-1^*) • [PiWr'^oW (46) 

where: 

(d + afoJ 
Ço(d) = ÏL _ ( 1 / 2 ) ifJf g2(e .) (47) 

2k2 (d) a / 
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X i (d) = If/f-1 g(9j) g(8 /+1) i = 1,2,.... dlL - 1 (48) 

Thus, pt(d) may be computed numerically from equation (46); it is an 
increasing function of d (see Fig. 6), and this has been confirmed by the 
historical data. 

Monthly rainfall 

The three variables describing the monthly rainfall are the number of rainfall 
events, N, the monthly rainfall depth, 5, and the monthly rain duration, U. 

The marginal distribution of N is a modified Poisson, the modification 
caused by the lower bound (c) of the inter-arrival time; given the month 
duration, T, the probability function is accurately approximated by: 

(X - Kti)n 

P = Pr(JV = «IT) = (1 + K) e"(x"Kw) n = 0,1, ...jn (49) 
" n\ 

where: 

X = UT = T/(nv- c) (50) 

K = or = cl{\iv- c) (51) 

m = [Tic] = [X/K] (52) 

As a satisfactory approximation for simulation purposes, confirmed by 
the data, the gamma distribution was used for both S and U; their moments 
are completely determined by the corresponding moments of V, D and H. 

Model parameters 

All the rainfall model parameters can be expressed in terms of four main 
independent parameters, namely the separation time (c), and the mean values 
of rainfall inter-arrival time (nv), event duration (iiD) and event depth (liH), 
and five secondary independent parameters, namely a, b, a^, az and gr 

Three more secondary parameters may be introduced concerning the mean 
and standard deviation of events with duration equal to 1 h, (liH1, om) 
because it was found that equations (37) and (38) may not apply to these 
events, and the probability that hourly depth equals zero (p0), a possibility 
permitted by the event definition. This probability may be represented by the 
value of the continuous distribution function of X or Z (gamma or Weibull) 
at the point x = 0.05 mm, since, in fact, values less than 0.05 mm are 
interpreted as zero (see Fig. 5). However, if this representation is not 
satisfactory, then pQ should be used as an independent parameter. 
Conclusively, the maximum number of independent parameters is 12, and this 
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Distribution function FHjCl(h,d) [X] 

Fig. 4 Distribution function of rainfall event depth, H, conditional 
on duration, D. Continuous lines represent the gamma distribution 
function, and dashed lines the empirical distribution functions of the 
synthetic sample. 

number may be reduced to 4, by omitting secondary parameters. All 
parameters are season-dependent. 

RAINFALL DISAGGREGATION 

Consider now the problem of disaggregation of monthly rainfall into hourly 
depths. Because of the intermittent nature of the rainfall process, a two-phase 
disaggregation procedure has been adopted. The first phase, external 
disaggregation, is to generate the rainfall events, while the second, internal 
disaggregation, generates hourly depths within each event. 

The disaggregation in both phases is a combination of the dynamic 
disaggregation model and the rainfall model. The latter calculates the 
initial parameters for the former which performs the generation. The 
Markovian configuration of the model studied, with the proportional 
bisection scheme, is satisfactory for both phases; for cases in which 
low-level variables are independent, the correlation coefficients are set to 
zero. Particular additional procedures, causing proper side effects on the 
generated variables, have been designed and used along with the 
disaggregation model. The step-by-step course of the model permits the 
use of such side procedures. 
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Fig. 5 Distribution Junction of hourly rainfall depth, X. 

It is supposed that, at the start of use of the model, monthly rainfall 
variables, i.e. the number of rainfall events, N, the monthly depth, S, and the 
monthly rain duration, U, have known values. Nevertheless, the implemen­
tation was designed to include a separate part, generating, if needed, one or 
more of these values, in order to be a complete rainfall generator, from 
monthly through hourly time scales. 

Below is a coded description of each disaggregation phase. 

1(a) External disaggregation - section a 
Input: Number of events, N = n 
Output: Inter-arrival times V{ (= low-level variables) determining the 
starting points of events. 
Basic relation: 

IU {Vt - c) = T* (53) 

where T* = T - nc - A + B, is the high-level variable, A is the time 
distance of the starting point of the first event of the current month, 
and B is the same quantity for the next month. 
Remarks: The distribution of <y. - c) is exponential, a particular case 
of the gamma. Successive low-level variables are independent. 
Side procedures: A and B are generated separately, using the same 
exponential distribution of Vr 

1(b) External disaggregation - section b 
Input: Number of events, N = n, monthly duration, U = u (= high-level 
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variable), event inter-arrival times F. = vv 

Output: Event durations Di (= low-level variables). 
Basic relation: 

I"„i Dt=U (54) 

Remarks: The disaggregation model uses only the exponential part of 
the conditional distribution of equation (33), while the triangular part 
is left to a side procedure. Successive low-level variables are 
independent. 
Side procedures: If the value, d^ generated by the disaggregation model 
is greater than v. - c, it is rejected and a new one is generated in the 
range (0, v. - c), using the triangular distribution. 

1(c) External disaggregation - section c 
Input: Number of events, N = n, monthly rain depth, S = s (= high-
level variable), event durations, Di = d.. 
Output: Event rain depths Hi (= low-level variables). 
Basic relation: 

Remarks: Distribution of Ht, conditional on Dt, is gamma, with 
moments depending on d.. Successive low-level variables are independent. 
Side procedures: None. 

2 Internal disaggregation 
Input: Event rain depth, H. = h{ (= high-level variable), event duration, 
Drdr 

Output: Hourly rain depths XH (= low-level variables). 
V 

rf./A 
XA XrHt (56) 

Remarks: Distribution of X~, conditional on D., is gamma or Weibull, 
with moments depending on d. and ;'. Both distribution types are treated 
with the proportional bisection scheme, and the adjustment of the 
Weibull distribution is left to a side procedure. The covariance structure 
of low-level variables is Markovian. The correlation coefficients depend 
on d-. 
Side procedures: An empirical procedure, based on the generation of 
uniform random numbers, handles the probability of zero depth, pQ; 
also it adjusts the short interval tail of F^*..), when it is Weibull. 
Moreover, the side procedure handles the number of successive zero 
rain depths, disallowing exceedance of the value (c/A). 

The rainfall generating model has been coded in the Pascal programming 
language. Conventional microcomputers were used to develop and run the 
model. 
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RESULTS AND TESTING OF THE MODEL 

To illustrate the model and test its reliability, a complete application with 
observed rain data will be presented. The illustration is for testing the 
disaggregation model as a rainfall generator, and not of the rainfall model 
(for testing of the latter see Koutsoyiannis, 1988). Thus, all tests are 
formulated as comparisons of the generator results with the quantities 
theoretically anticipated by the rainfall model. 

The 12 parameters of the rainfall model, shown in Table 1, were derived 
from a 13 year historical rainfall record. Adopting these parameters, 50 years of 
monthly, synthetic events and hourly rainfall depths were generated. Charac­
teristic sizes of this sample are shown in Table 2. Various statistics and empirical 
distribution functions, obtained from the sample, were then compared to the 
theoretically expected ones. In particular, the test results are the following: 

(a) Preservation of mean values and variances (standard deviations) 
Table 3 shows good agreement between theoretical and empirical values. 

Table 1 Parameters used for the application of the model (values 
computed from a historical sample: rain gauge station: Chalara, 
Aliakmon River basin; month: April) 

Parameter 

Main parameters: 

Separation time 
Mean inter-arrival time 
Mean event duration 
Mean event depth 

Secondary parameters: 
Parameters of the expression 

ofH, conditional on D 

Standard deviation of Z 
Parameter of the linear 

expression of non-stationarity 

Additional parameters: 
Moments of lh rainfall events 

Probability that hourly depth 
equals zero 

c 

V-V 

a 
b 

az 
«2 

po 

Value 

7 
95.51 
10.84 
7.02 

3.00 
1.02 
0.326 

0.872 

-0.417 

1.830 
2.330 

0.177 

h 
h 
h 
mm 

h 
mm _j 
mm h' 
mm 

mm 
mm 

Table 2 Characteristic sizes of the synthetic sample obtained as an 
output of the model 

Years of simulation 
Number of rainfall events 
Hourly rain depths 

(a) total 
(b) with duration > 1 h 

50 
371 

4079 
4033 
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Statistical tests (where possible) at a 5% significance level showed that the 
equality hypotheses could not be rejected. Even the seemingly large difference 
17.5% in o^ (Table 3) is not significant at the 5% level; note that it refers to 
the non-disaggregation part of the model, and the sample size is relatively 
small (n = 50). 

Table 3 Comparison of empirical values of various statistics with their 
corresponding theoretical values 

Variable 

Mean Standard deviation 

Statistic Theoretical Sample Deviation Statistic Theoretical Sample Deviation 
value value value value 

Monthly rainfall 
Number of events 
Rain depth 
Rain duration 

Event rainfall 
Inter-arrival time 
Rain duration 
Time between 
events 

Rain depth 

N 
S 

u 
V 
D 

B 
H 

Hourly rainfall (events 
Rain depth 
Homogenized 

rain depth 

X 

Z 

v-v 
V-D 

HB 

with d 

v.x 

n7 

7.53 
52.92 
81.71 

95.51 
10.84 

83.67 
7.02 

> 1 h) 
0.635 

0.575 

7.42 
S3.31 
81.58 

100.64 
10.99 

89.65 
7.18 

0.641 

0.582 

-1.5% 
0.7% 
-0.2% 

5.4% 
1.4% 

7.1% 
2.3% 

0.9% 

1.2% 

,N 

JD 

•'H 

2.54 
29.57 
41.03 

88.51 
11.07 

87.39 
8.58 

0.975 

0.872 

2.54 
30.70 
48.21 

91.57 
11.98 

90.56 
8.79 

0.970 

0.881 

0.0% 
3.8% 
17.5% 

3.5% 
8.2% 

3.6% 
2.4% 

-0.5% 

1.0% 

(b) Preservation of distribution functions Figs 1, 2, and 3 demonstrate 
the preservation of the marginal distributions of the time intervals V, D, and 
B, respectively. The curves corresponding to the limits of the Kolmogorov-
Smirnov test at a 10% significance level are drawn; all points of the empirical 
distributions lie inside the relevant bands. Similarly the empirical distributions 
of hourly depth, X, lie inside the 5% Kolmogorov-Smirnov bands in Fig. 5. 
Note the shifting (by a side procedure) of the empirical distribution function 
towards the Weibull. Figure 4 illustrates the preservation of the distribution 
of the event depth, H, conditional on duration, D. Empirical distributions 
were computed from separate classes of the synthetic sample, defined by 
certain bounds of the duration; the plotted theoretical distributions refer to 
the mean duration of each class. 

(c) Preservation of correlation coefficients Significant correlation 
coefficients appear only between hourly depths in the interior of an event. 
Exact statistical tests are not possible due to the variation of correlation 
coefficients with the event duration. Nevertheless, Fig. 6 is an indication of 
the preservation of the lag-one correlation coefficient of the homogenized 
hourly depth. The same sample classes mentioned above were used to 
compute empirical values. Figure 7 is similar, depicting the preservation of 
higher lag coefficients (here only two samples classes were used). 
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Fig. 6 Functional dependence- of lag-one autocorrelation coefficient 
of the homogenized hourly rainfall depth, plz, on rain duration, d. 
Empirical values were calculated from separate classes of the 
sample. 
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Fig. 7 Autocorrelation function of the homogenized hourly rainfall. 
Empirical values were calculated from two separate classes of the 
synthetic sample. 

(d) Approximation of probabilities of zero hourly depths Without the 
use of the side procedure affecting the number of zero rainfall depths (in 
theory values less than 0.05 mm) lying inside rainfall events, their frequency 
would be equal to p^ = 0.267, as resulted from the gamma distribution. The 
final frequency, obtained with the side procedure, was p^ = 0.201, which 
approximates the desired frequency p0 = 0.177. While a statistical test gave the 
result that pQ and pfi differed significantly, the approximation achieved is 
considerable. 
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CONCLUSIONS 

The single-site dynamic disaggregation model developed is a generalized 
step-by-step approach to stochastic disaggregation problems. Forms studied 
concern low-level variables with Markovian structure and normal or gamma 
marginal distributions. Important features of the model are: (a) the modular 
structure (composed of two parts studied separately) allowing various 
configurations of the model; (b) the flexible step-by-step approach allowing the 
use of side procedures, adjusting properly the generated values in each step 
without loss of the additive property; and (c) the simple analytical equations 
allowing a varying number of low-level variables and varying time scales. 

A combination of the dynamic disaggregation model with a developed 
rainfall model gave a point rainfall generator, performing with monthly 
through hourly time scales. The rainfall model can incorporate a varying 
number of parameters (4 to 12), depending on the desired accuracy. 

An advantage of the combined model is that the same disaggregation 
procedure is used for four different purposes: the determination of the 
starting points of rainfall events, the generation of rain durations and event 
rain depths, and the disaggregation of the latter into hourly depths. 

The application of the combined model using all 12 parameters derived 
from historical records gave satisfactory results. Various statistics, as well as 
marginal distribution functions of the associated variables computed from 
synthetic samples derived by the model, exhibited agreement with the 
theoretical expectations; the relevant statistical tests at 5% or 10% significance 
levels were positive. 

The rainfall generator models the total rainfall regardless of intensity. 
The internal disaggregation part of the model (phase 2) may be applied 
independently to severe storms in order to simulate their time profiles. Thus 
the model may be useful for the simulation of severe flood-producing storms 
and the estimation of design floods. 

Finally, the dynamic disaggregation model may be combined with other 
rainfall models. Moreover it can perform with other time scales, larger than 
monthly (e.g. from annual into seasonal or monthly depths) or shorter than 
hourly. 
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