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Abstract The Hurst phenomenon, which characterizes hydrological and other geo-
physical time series, is formulated and studied in an easy manner in terms of the 
variance and autocorrelation of a stochastic process on multiple temporal scales. In 
addition, a simple explanation of the Hurst phenomenon based on the fluctuation of a 
hydrological process upon different temporal scales is presented. The stochastic 
process that was devised to represent the Hurst phenomenon, i.e. the fractional 
Gaussian noise, is also studied on the same grounds. Based on its studied properties, 
three simple and fast methods to generate fractional Gaussian noise, or good 
approximations of it, are proposed. 
Key words  Hurst phenomenon; fractional Gaussian noise; persistence; climate change 

Le phénomène de Hurst et le bruit fractionnel gaussien rendus 
faciles dans leur utilisation 
Résumé On formule et étudie d’une manière simple le phénomène de Hurst, qui 
caractérise des séries chronologiques en hydrologie et en géophysique, en termes de 
variance et d’autocorrélation d’un processus stochastique considéré selon des échelles 
temporelles multiples. De plus, on présente une explication simple du phénomène de 
Hurst sur la base de la fluctuation d’un processus hydrologique dans des échelles 
temporelles multiples. On étudie également d’une manière analogue le bruit 
fractionnel gaussien qui constitue le processus stochastique construit pour représenter 
le phénomène de Hurst. En se basant sur les propriétés étudiées de ce processus, on 
propose trois méthodes simples et rapides pour générer du bruit fractionnel gaussien, 
voire une bonne approximation. 
Mots clefs phénomène de Hurst; bruit fractionnel gaussien; persistance; changement climatique 

 
 
INTRODUCTION 
 
While investigating the discharge time series of the Nile River in the framework of the 
design of the Aswan High Dam, Hurst (1951) discovered a special behaviour of 
hydrological and other geophysical time series, which has become known as the “Hurst 
phenomenon”. This behaviour is essentially the tendency of wet years to cluster into 
wet periods, or of dry years to cluster into drought periods. The term “Joseph effect” 
introduced by Mandelbrot (1977) has been used as an alternative for the same 
behaviour. Since its discovery, the Hurst phenomenon has been verified in several 
environmental quantities, such as wind power variations (Haslett & Raftery, 1989), 
global mean temperatures (Bloomfield, 1992), flows of the River Nile (Eltahir, 1996), 
flows of the River Warta, Poland (Radziejewski & Kundzewicz, 1997), monthly and 
daily inflows of Lake Maggiore, Italy (Montanari et al., 1997), annual streamflow 
records across the continental United States (Vogel et al., 1998), and indexes of North 
Atlantic Oscillation (Stephenson et al., 2000). In addition, the Hurst phenomenon has 
gained new interest today due to its relationship to climate changes (e.g. Evans, 1996).  
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 Several types of models, such as fractional Gaussian noise (FGN) models 
(Mandelbrot, 1965; Mandelbrot & Wallis, 1969a,b,c), fast fractional Gaussian noise 
models (Mandelbrot, 1971), broken line models (Ditlevsen, 1971; Mejia et al., 1972), 
fractional autoregressive integrated moving-average models (Hosking, 1981, 1984), 
and symmetric moving average models based on a generalized autocovariance struc-
ture (Koutsoyiannis, 2000), have been proposed to reproduce the Hurst phenomenon 
when generating synthetic time series (see also Bras & Rodriguez-Iturbe, 1985). 
 Although hydrologists may agree that the Hurst phenomenon is inherent to 
hydrological time series, generally they prefer to use other, more convenient models to 
generate synthetic hydrological time series, such as autoregressive (AR) models, 
moving average (MA) models, or combinations of the two (ARMA). For example, 
widespread stochastic hydrology packages, such as LAST (Lane & Frevert, 1990), 
SPIGOT (Grygier & Stedinger, 1990), and CSUPAC1 (Salas, 1993), have not 
implemented any of the above listed types of models that respect the Hurst 
phenomenon, but rather they use AR, MA and ARMA models, which cannot 
reproduce the Hurst phenomenon. It is known that this reproduction may be essential 
in reservoir studies, especially in reservoirs performing over-year regulation with draft 
close to the mean annual inflow (Bras & Rodriguez-Iturbe, 1985, p. 265). 
 There must be several reasons explaining this unwillingness to reproduce the Hurst 
phenomenon in hydrological practice. First, it is difficult to understand and explain, at 
least in comparison to typical statistical behaviour of everyday life processes. 
Stochastic hydrology texts (e.g. Yevjevich, 1972; Haan, 1977; Kottegoda, 1980; Bras 
& Rodriguez-Iturbe, 1985; Salas et al., 1980; Salas, 1993) adopt the original Hurst’s 
mathematical formulation. This is in terms of the so-called rescaled range and, as 
shown in the Appendix, it involves complexity and estimation problems. In addition, 
the nature of the Hurst phenomenon has been the subject of debate, as discussed by 
Bras & Rodriguez-Iturbe (1985, p. 214). Second, the algorithms that are used to 
generate synthetic data series respecting the Hurst phenomenon are complicated. 
Third, the typical models of this category have several weak points such as narrow 
type of autocorrelation functions that they can preserve, and difficulties to preserve 
skewness and to perform in multivariate setting. 
 In contrast, this paper attempts to show that the Hurst phenomenon is essentially 
very simple to formulate, understand and reproduce in synthetic series—in some 
aspects much simpler than the typical AR processes, which, in addition, are not 
consistent with long historical hydroclimatic records. A mathematical formulation is 
offered, based on the relationship of the process variance with the temporal scale of the 
process. In addition, a simple explanation of the Hurst phenomenon is offered, based 
on the fluctuation of a hydrological process at different time scales. Three original 
simple methods are provided to generate fractional Gaussian noise or good approxi-
mations of it. Throughout this paper, use of the range concept is totally avoided. To 
explain the reasons for this and also to link with the existing approaches of the Hurst 
phenomenon, the Appendix is devoted to range-related topics.  
 The presentation of all issues is made as simple as possible throughout, because 
the purpose of the paper is not to review the state of the art of the research related to 
the Hurst phenomenon, nor to give the complete mathematical details of it (for the 
latter see the comprehensive monograph by Beran, 1994), but rather (a) to assemble an 
easy-to-understand mathematical basis and physical explanation of the phenomenon 
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and (b) to provide means for an easy implementation (e.g. using a spreadsheet 
package) of the methods, both for estimation and simulation.  
 
 
MULTIPLE TIME-SCALE PROPERTIES OF TYPICAL STOCHASTIC 
PROCESSES 
 
Hydrological processes such as rainfall, runoff, evaporation, etc. are often modelled as 
stationary stochastic processes in discrete time. Let such a process be denoted as Xi 
with i = 1, 2, …, denoting discrete time (e.g. years). Further, let its mean be µ = E[Xi], 
its autocovariance γj = cov[Xi, Xi+j] and its autocorrelation ρj = corr[Xi, Xi+j] = γj/γ0  
(j = 0, ±1, ±2, …). 
 In fact, i represents the continuous time interval [(i – 1)δ, iδ] where δ is the time 
scale of interest. Very often, several scales that are integer multiples of a basic time 
scale δ are of interest. For example, when investigating the firm yield of a reservoir 
that performs over-year regulation, the basic time scale could be one year, but time 
scales of several years are also of interest. Similarly, in short-scale rainfall modelling 
the basic time scale could be 5 or 10 min, but time scales of several hours are of 
interest, too. Let kδ be a time scale larger than δ where k is a positive integer (for 
convenience δ will be omitted and time scale k referred to). The aggregated stochastic 
process on that time scale is denoted as Z

(k)
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The autocovariance is related to the power spectrum of the process, which in the 
general case is the discrete Fourier transform (DFT; also termed the inverse finite 
Fourier transform) of γj, i.e.: 
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It is assumed in equation (4) that the frequency ω is in the interval [0, 1/2], so γj is 
determined in terms of sγ(ω) by the finite Fourier transform: 

( ) ( )� ωωπω=γ γ
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 Before studying the process known as fractional Gaussian noise (FGN), which 
respects the Hurst phenomenon, two of the simplest stochastic models will be referred 
to. The first is the white noise, in which different Xi are independent identically 
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distributed random variables, so that γj = 0 (and ρj = 0) for j ≠ 0. Then, the aggregated 
process has variance: 

[ ] 0
)()(

0 var: γ==γ kZ k
i

k  (6) 

autocovariance γ
(k)
j  = 0, autocorrelation ρ

(k)
j  = 0, and power spectrum independent of the 

frequency ω: 
( ) )(

0
)( 2 kks γ=ωγ  (7) 

 As a second example, the simplest possible process with some memory, i.e. 
dependence of the current value on previous ones, is assumed. This is the AR(1) 
process and the dependence in the basic time scale is expressed by: 

Xi = ρXi – 1 + Vi (8) 
where ρ is the lag-one autocorrelation coefficient (–1 < ρ < 1) and Vi (i = 1, 2, …) are 
independent, identically distributed, random variables with mean (1 – ρ)µ and variance 
(1 – ρ2)γ0. The process is Markovian because the dependence of the current variable Xi 
on the previous variable Xi-1 suffices to express completely the dependence of the 
present on the past. The autocorrelation of Xi is: 

[ ] j
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Combining equations (9) and (3) and carrying out algebraic manipulations, it can be 
found that the aggregated process has variance: 
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and autocorrelation: 
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 By comparing equation (11) with equation (9) one may conclude that Z
(k)
i  is no 

longer a Markovian process but a more complicated one (in fact equation (11) 
corresponds to an ARMA(1,1) process; Box et al., 1994, p. 81). In other words, the 
simple AR(1) process is an AR(1) process only on its basic time scale, whereas it 
becomes more complicated on aggregated time scales. 
 The power spectrum of the aggregated process Z

(k)
i  can be found by adapting the 

power spectrum of the AR(1) process (Box et al., 1994, p. 58). After algebraic manipu-
lations one obtains: 
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For relatively small k, this gives a characteristic inverse S-shaped power spectrum that 
corresponds to a short memory process. 
 For a large aggregated time scale k, the numerator of equation (10) is dominated 
by the first term and the variance of the aggregated process becomes: 

0
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i.e. it becomes proportional to the time scale k, similarly as in the white noise process. 
Also, from equation (11) one may observe that ρ

(k)
1  becomes small, as does ρ

(k)
j . 

Consequently, from equation (12) one concludes that the power spectrum becomes  
s(k)
γ (ω) = γ

(k)
0 . Thus, if the process of interest is Markovian on the basic time scale, it 

tends to white noise for progressively increasing time scales. (In fact, this happens 
with higher order AR and ARMA processes as well.) 
 
 
SOME REAL-WORLD EXAMPLES 
 
Empirical evidence suggests that long historical hydroclimatic series may exhibit a 
behaviour very different from that implied by simple models such as those described 
above. To demonstrate this, two real-world examples are used. The first is the most 
intensively studied series, which also led to the discovery of the Hurst phenomenon (Hurst, 
1951): the series of the annual minimum water level of the Nile River for the years 622–
1284 AD (663 observations), measured at the Roda Nilometer near Cairo (Toussoun, 
1925; Beran, 1994). The data are available from http://lib.stat.cmu.edu/S/beran. The 
second example is an even longer record: the series of standardized tree-ring widths from a 
palaeoclimatology study at Mammoth Creek, Utah, for the years 0–1989 (1990 values; 
year 0 in fact stands for 1 BC, as the calendar does not contain year 0). The data, 
originated from pine trees at elevation 2590 m, latitude 37°39′N, longitude 112°40′W 
(Graybill, 1990), are available from: 
ftp://ftp.ngdc.noaa.gov/paleo /treering/chronologies/asciifiles/usawest/ut509.crn.  
 In Fig. 1 the data values are plotted vs time for both example data sets. In addition, 
the 5-year and 25-year averages are shown, which represent the aggregated processes 
at time scales k = 5 and 25, respectively. For comparison, a series of white noise with 
statistics identical to those of standardized tree rings is also shown. It is observed that 
fluctuations of the aggregated processes, especially for k = 25, are much greater in the 
real-world time series than in the white noise series. These fluctuations could be taken 
as nonstationarities, that is, deterministic rising or falling trends that last 100–200 or 
more years. For example, if one had available only the data of the period 700–800 of 
either of the two time series, one would refer to it as a deterministic falling trend. 
However, the complete pictures for both series suggest that this is part of a large-scale 
random fluctuation rather than a deterministic trend. 
 Figure 2 shows the standard deviation of the aggregated processes vs time scale k 
for the two example data sets (logarithmic diagrams). For comparison theoretical 
curves for the white noise and AR(1) models (equations (6) and (10), respectively) are 
also shown. Clearly, the plots of both series are almost straight lines on the logarithmic 
diagram with slopes 0.75–0.85. Both the white noise and the AR(1) models result in a 
slope equal to 0.5, significantly departing from the historical data. 
 Furthermore, Fig. 3 shows the autocorrelation coefficients of the aggregated 
processes for lag one and two, plotted vs the time scale k, for the example data sets. 
For comparison, theoretical curves for the AR(1) model are also plotted. The empirical 
autocorrelation coefficients are almost constant for all time scales, whereas AR(1) 
results in autocorrelations that drop down to zero for large time scales. 
 Finally, in Fig. 4, the autocorrelation functions of the example time series on the 
basic (annual) time scale are plotted along with the theoretical curves of the AR(1)  



Demetris Koutsoyiannis 
 
 

 

578 

 
 
model. Clearly, the curves of AR(1) vanish off for lags 4–10, whereas the curves of 
the historical series are fat-tailed and do not vanish for lags as high as 50. In 
conclusion, this discussion provides some further evidence, using a multiple-time 
scale approach, to the well-known fact that the AR(1) model is inconsistent with 
hydroclimatic reality (a similar conclusion can be drawn for more complex processes 
of the ARMA type).  
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Fig. 1 Plots of the two example time series: (a) annual minimum water level of the 
River Nile; (b) standardized tree rings at Mammoth Creek, Utah; and, for comparison, 
(c) a series of white noise with statistics the same as those of standardized tree rings. 
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Fig. 2 Standard deviation of the aggregated processes Z
(k)
i  vs time scale k (logarithmic 

plots) for the two example data sets: (a) annual minimum water level of the River 
Nile; and (b) standardized tree rings at Mammoth Creek, Utah. For comparison 
theoretical curves for the white noise and AR(1) models are also shown. 
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Fig. 3 Lag-one and -two autocorrelation coefficients of the aggregated processes Z

(k)
i  

vs time scale k for the two example data sets: (a) annual minimum water level of the 
River Nile; and (b) standardized tree rings at Mammoth Creek, Utah. For comparison 
the theoretical curves of the AR(1) model are also plotted.
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THE FRACTIONAL GAUSSIAN NOISE PROCESS 
 
To restore consistency with reality, Mandelbrot (1965) introduced the process known 
as fractional Gaussian noise (FGN). Fractional Gaussian noise can be defined in 
discrete time (which is the scope here) in a manner similar to that used in continuous 
time (e.g. Saupe, 1988, p. 82). Specifically, FGN can be defined as a process satisfying 
the condition: 
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where the symbol =
d
 stands for equality in (finite-dimensional joint) distribution and H 

is a positive constant (0 < H < 1) known as the Hurst exponent (or coefficient). 
Equation (14) is valid for any integer i and j (that is, the process is stationary) and any 
time scales k and l. As a consequence, for i = j = l = 1 one obtains: 
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Thus, the standard deviation is a power law of k with exponent H, which agrees with the 
observation on the real-world cases described above. The extremely simple equation 
(15) can serve as the basis for estimating H (Montanari et al., 1997).  
 It is easy then to show that, for any aggregated time scale k, the autocovariance 
function is independent of k, i.e. (Koutsoyiannis, 2002): 
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Fig. 4 Autocorrelation functions of the two example time series on the basic (annual) 
scale: (a) annual minimum water level of the River Nile; and (b) standardized tree 
rings at Mammoth Creek, Utah. For comparison the theoretical curves of the AR(1) 
model are also plotted. 
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again agreeing with the observation in the previous section. Apart from small j, this 
function is very well approximated by: 

( ) 22)( 12 −−=ρ=ρ H
j

k
j jHH  (17) 

which shows that autocorrelation is a power function of lag. 
 Notably, equation (16) can be obtained from a continuous time process Ξ(t) with 
autocorrelation cov[Ξ(t), Ξ(t + τ)] = aτ2H–2 (with constant a = Η(2Η – 1)γ0), by 
discretizing the process using time intervals of any length δ and taking as Xi the 
average of Ξ(t) in the interval [(i – 1)δ, iδ]. This enables an approximate calculation of 
the power spectrum of the process as: 
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which results in the approximation s
(k)
γ (ω) ≈ a′ω1-2H. To find the constant a′ so as to 

preserve exactly the process variance γ0, equation (5) is used to obtain γ
(k)
0  =  

a′/[(2 – 2H)22-2H], and, finally:  
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which is a power law of the frequency ω. 
 Similarly to AR(1), which uses one parameter ρ to express the correlation 
structure, FGN also uses one parameter, the Hurst exponent H. Therefore, one can 
characterize FGN as a simplified model of reality, noting that it is much more effective 
in representing hydroclimatic series than AR(1). A generalized and comprehensive 
family of processes, which can have a larger number of parameters and incorporates 
both FGN and ARMA processes, has been introduced by Koutsoyiannis (2000). 
 Comparing FGN to AR(1) in terms of basic statistical properties on multiple time 
scales, one may observe that the former is simpler than the latter. Thus, the expression 
of the process variance on any scale k (equation (15)) is much simpler that that of 
AR(1) (equation (10)). Similarly, the expression of autocorrelation on any scale k 
(equations (16)–(17)) is simpler that that of AR(1) (equation (11)). 
 
 
A PHYSICAL EXPLANATION 
 
A white noise process, e.g. a sequence of outcomes of consecutive throws of dice, is a 
very familiar concept. Under the assumption of a stable climate, the maximum flood 
peaks of consecutive years may be regarded as a white noise process as well, as there 
is no dependence between flood events in different hydrological years. Processes that 
have some memory are less familiar, but a Markovian (e.g. AR(1)) process is not 
difficult to explain. For example, Yevjevich (1972, p. 27) explained that the annual 
flow series is dependent and follows a Markovian process. To show this, he assumed 
that the catchment is stimulated by an effective precipitation process being white noise 
and that the water carry-over from year to year is ruled by a groundwater recession 
curve expressed as an exponential function of time. 
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 The Hurst phenomenon and the related FGN process are more difficult to 
understand. Mesa & Poveda (1993) classify the Hurst phenomenon as one of the most 
important unsolved problems in hydrology and state that “something quite dramatic 
must be happening from a physical point of view”. FGN is very different from a 
Markovian process in that it implies a fat-tailed autocorrelation function. For instance, 
if the Hurst exponent is 0.85, as in the Nile example, then the autocorrelation for lag 
100 (years) is as high as 0.15, whereas if the process were Markovian the 
autocorrelation would be practically zero even for lags 10 times less. Does the 
explanation of this behaviour of natural systems, such as the Nile water level or the 
Mammoth Creek tree-ring widths, rest on the self-organized criticality principle (e.g. 
Bak, 1996), i.e. a cooperative behaviour, where the different items of large systems act 
together in some concerted way? Or, does it rest on monotonic deterministic trends 
(Bhattacharya et al., 1983), which can explain this behaviour mathematically? Or, is 
there any natural mechanism inducing a long memory to the system, which is 
responsible for the high autocorrelation for a lag of 100 years or more? 
 The author’s explanation is much simpler and relies upon an “absence of memory” 
concept rather than a “long-term memory” concept. That is, the hypothesis is proposed 
that not only does the system “disremember” what was the value of the process  
100 years (or more) ago, but it further “forgets” what the process mean at that time 
was. This explanation is consistence with the assertion of the National Research 
Council (1991) that climate “changes irregularly, for unknown reasons, on all 
timescales”. The idea of irregular sporadic changes in the mean of the process 
appeared also in Salas & Boes (1980), but not in connection with FGN and not in the 
setting of multiple time scales. The idea of composite random processes with two time 
scales of fluctuation appeared in Vanmarcke (1983). For more mathematical explana-
tions of FGN, the reader is referred to Beran (1994, pp. 14–20). 
 To demonstrate the proposed explanation, a Markovian process Ui is initially 
assumed (see Fig. 5(a)), with mean µ = E[Ui], variance γ0 and lag-one autocorrelation 
coefficient ρ = 0.20. The autocorrelation function (given by equation (9)) for lags up to 
1000 is shown in Fig. 6(a) along with the autocorrelation function for the FGN process 
with the same lag-one autocorrelation coefficient (0.20). One may observe the large 
difference of the two autocorrelation functions: that of the Markovian process 
practically vanishes off at lag four whereas that of FGN has positive values for lags as 
high as 100. 
 Now, a second process Vi is constructed by subtracting from the process Ui its 
mean E[Ui] = µ and superimposing the result to a new random process M that has 
again mean µ and some variance var[M] (see explanatory sketch on Fig. 5(b)). From a 
practical point of view, Vi could be considered similar to Ui but with time varying 
mean M. For the latter it is assumed that (a) any realization m of M lasts N years and is 
independent from previous realizations, and (b) N is a random variable exponentially 
distributed with mean λ. (This means that N can take non-integer values.) In other 
words, M takes a value m(1) that lasts n1 years, then it changes to a value m(2) that lasts 
n2 years, etc. (where the values m(1), m(2), … can be generated from any distribution). 
The exponential distribution of N indicates that the points of change are random points 
in time (Papoulis, 1991). If Mi denotes the instance of the M process at discrete time i 
(or continuous time iδ), it can be shown that Mi is also Markovian with lag-one 
autocorrelation φ = e-δ/λ. The process Vi can be expressed in terms of Ui and Mi as: 
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µ−+= iii MUV  (20) 

For a conceptualization of Vi one can consider the simpler case that Mi is a 
deterministic component, rather than a random process, with known value mi at any 
time i, in which case Vi = Ui + mi – µ. Then Vi would be identical in distribution with 
Ui except that its mean would be mi rather than µ. That is, Vi would be nonstationary 
with a time-varying mean mi and all other moments constant in time. Returning to the 
initial assumption that Mi is a random process, one may infer from equation (20) that, 
since Vi is the sum of two stationary processes (Ui and Mi), it is itself a stationary 
process with mean µ.  
 It can be easily shown from equation (20) that the autocorrelation of Vi for lag j is: 

[ ] ( ) jj
jii ccVV ϕ+ρ−=+ 1,corr  (21) 

where c := var[Mi]/(var[Mi] + var[Ui]). Setting, for instance, λ = 7.5 years and c = 
0.146, one obtains the autocorrelation function shown in Fig. 6(b), which has departed 
from the AR(1) autocorrelation and approached the FGN autocorrelation. 
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Fig. 5 Illustrative sketch for multiple time scale random fluctuations of a process that 
can explain the Hurst phenomenon: (a) a time series from a Markovian process with 
constant mean; (b) the same time series superimposed to a randomly fluctuating mean 
on a medium time scale; and (c) the same time series further superimposed to a 
randomly fluctuating mean on a large time scale.
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 Further, one may take another step to construct a third process Wi by subtracting 
from the process Vi its mean E[Vi] = µ and superimposing the result to a new random 
process P with mean µ again (see explanatory sketch on Fig. 5(c)). Similar 
assumptions are made as in the previous step denoting by ν the mean time between 
changes of the value of P and setting ξ = e-δ/ν. The resulting composite process is: 

µ−++=µ−+= 2iiiiii PMUPVW  (22) 

Working as in the previous step one finds: 

[ ] ( ) jjj
jii ccccWW ξ+ϕ+ρ−−=+ 21211,corr  (23) 

where c1 and c2 are positive constants (with c1 + c2 < 1). Setting, for instance, 
λ = 7.5 years, ν = 200 years, c1 = 0.146 and c2 = 0.036, one obtains the autocorrelation 
function shown in Fig. 6(c), which has now become almost indistinguishable from the 
FGN autocorrelation for time lags from 1 to 1000. 
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Fig. 6 Plots of the example autocorrelation functions of (a) the Markovian process U 
with constant mean; (b) the process U superimposed to a randomly fluctuating mean 
on a medium time scale (process V); and (c) the process V further superimposed to a 
randomly fluctuating mean on a large time scale (process W). The superposition of 
fluctuating means increases the lag-one autocorrelation (from ρ1 = 0.20 for U to ρ1 = 
0.30 and 0.33 for V and W, respectively) and also shifts the autocorrelation function 
from the AR(1) shape (also plotted in all three panels) towards the FGN shape (also 
shown in all three panels). 
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 This example illustrates that a Markovian underlying process can result in a 
process very similar to FGN if random fluctuations of the process mean occur on two 
different scales (e.g. 7.5 and 200 years), yet the resulting composite process being 
stationary. If one considers that fluctuations occur on a greater number of time scales, 
the degree of approximation of the composite process to the FGN process will be even 
better and can cover time lags greater than 1000 (although such lags may not be of 
practical interest in hydrology). In conclusion, the irregular changes of climate, that 
according to National Research Council (1991, p. 21) occur on all time scales, can be 
responsible for, and explain, the Hurst phenomenon. 
 In the above example, the process U, which represents the random fluctuations on 
the finest time scale, was considered as taking different values at each time step, 
whereas processes M and P, which represent random fluctuations on an intermediate 
and a large time scale, may have the same value for several time steps. This 
assumption was done for the sake of a simpler demonstration and indeed one could 
assume that M and P take different values at each time step, provided that their 
covariance structure remains Markovian with the same autocorrelation. 
 The above explanation may seem similar (from a practical point of view) to that by 
Klemeš (1974), who attributed the Hurst phenomenon to nonstationary means. 
However, there is a fundamental difference here. As shown in the above analysis, it 
was not assumed that means are nonstationary, but rather, that they are randomly 
varying on several scales. Nonstationarity of the mean would be the case if there 
existed a deterministic function expressing the mean as a function of time. In some 
hydrological texts (e.g. Kottegoda, 1980, p. 26), falling or rising trends, traced in 
hydrological time series, have been characterized as “deterministic components” and 
expressed as, say, linear functions of time; such a characterization would be justified if 
it were conditioned by a physical explanation and predictability, which has not been 
the case. Therefore, these trends should be more consistently regarded as large-scale 
random fluctuations. For example, (as already discussed above) the 25-year moving 
averages on the time series of Fig. 1 indicate that there exist falling and rising trends 
that follow an irregular random pattern rather than a regular deterministic one.  
 The conclusion of the above demonstration is that the nonstationarity notion is not 
necessary to explain the Hurst phenomenon. A stationary process can capture the Hurst 
effect and this agrees with Mandelbrot’s notion. However, the explanation given herein 
is contrary to the concept of long memory; the high autocorrelations appearing for high 
lags do not indicate long memory, but are a consequence of the multi-scale random 
fluctuations as demonstrated with this simple example.   
 
 
SIMPLE ALGORITHMS TO GENERATE FRACTIONAL GAUSSIAN NOISE 
 
As discussed in the introduction, several algorithms have been proposed to generate 
time series that respect the Hurst phenomenon. For some of these, the source code is 
widely available (e.g. the Splus programs by Beran, 1994). However, some of the 
known algorithms are not so simple, either in understanding or implementation. In the 
following, three much simpler algorithms are proposed that can be applied even in a 
spreadsheet environment. These are based on the properties of FGN discussed above 
and can be used to provide approximations of FGN being adequate for practical 
hydrological purposes. In principle, all three algorithms can be tuned to become as 
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accurate as demanded. However, emphasis is given here to simplicity rather than 
accuracy. Although two of the algorithms work for any value of the Hurst exponent H 
in the interval (0, 1), all three have been tested on the subinterval (0.5, 1), which 
corresponds to the Hurst phenomenon (when H < 0.5 the autocorrelation function 
becomes negative for any lag, a case that is not met in hydrological practice). 
 
 
A multiple time-scale fluctuation approach 
 
In the previous section it was shown that the weighted sum of three exponential 
functions of the time lag (equation (23)) can give an acceptable approximation of the 
FGN autocorrelation function on the basic time scale. This observation leads to a 
(rather “quick and dirty”) algorithm to generate FGN. An extensive numerical 
investigation showed that the values of parameters ρ, φ, and ξ that appear in equation 
(23), which provide the best (in terms of mean square error) approximation of equation 
(16), are given by the following:  

( ) ( )

�
�
�

>+
≤+

=ξ

−−=ϕ−=ρ

76.0007.0993.0
76.0087.0932.0

,169.7953.0,5.052.1 85.332.1

HH
HH

HH
 (24) 

The remaining parameters, c1 and c2, can be estimated such that the approximate 
autocorrelation function (equation (23)) matches the exact function (equation (16)) for 
two lags, e.g. lags 1 and 100. (Their values are obtained by solving two linear 
equations.) Comparison plots of approximate autocorrelation functions based on 
equations (23) and (24) vs the exact autocorrelation functions of FGN for various 
values of the Hurst exponent H are shown in Fig. 7. 
 In the previous section it was also shown how a process could be synthesized with 
the autocorrelation function (equation (23)) by assuming random changes of the mean 
on two time scales. However, there is a simpler way to utilize equation (23) for 
generation of a time series. Specifically, equation (23) represents the sum of three 
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Fig. 7 Approximate autocorrelation functions based on equations (23) and (24) vs the 
exact autocorrelation functions of FGN for various values of the Hurst exponent H.
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independent AR(1) processes like that in equation (8), with lag one correlation 
coefficients ρ, φ, and ξ, and variances (1 – c1 – c2)γ0, c1γ0, and c2γ0, respectively. 
 It must be mentioned that this algorithm is based essentially on the same principle 
as the fast fractional Gaussian noise (FFGN) algorithm (Mandelbrot, 1971); the 
differences are that it uses only three AR(1) components, much less than the FFGN, 
and the parameters of the algorithm are determined by the much simpler equation (24). 
Although the achieved approximation with the three AR(1) components is sufficient in 
practice for lags as high as 1000, it can be improved by increasing the number of the 
AR(1) components to four, five, etc. However, equation (24) will be not applicable 
then and the variances and lag-one autocorrelations of the components must be 
estimated by minimizing the mean-squared departure of the composite autocorrelation 
function from that of the FGN process.  
 
 
A disaggregation approach 
 
The simple expressions of the statistics of the aggregated FGN process make possible 
a disaggregation approach for generating FGN. Here it is assumed that the desired 
length n of the synthetic series to be generated is 2m, where m is an integer; if not, one 
can increase n to the next power of 2 and then discard the redundant generated items. 
First, the single value of Z

(n)
1  is generated knowing its variance n2Hγ0 (from equation 

(15)). Then Z
(n)
1  is disaggregated into two variables on the time scale n/2, i.e. Z

(n/ 2)
1  and 

Z
(n/ 2)
2  and this process is continued until the series Z

(1)
1  ≡ X1, …, Z

(1)
n ≡ Xn is generated 

(see explanatory sketch on Fig. 8). 
 The proposed disaggregation algorithm is similar to the midpoint displacement 
method (Saupe, 1988, p. 84), but is more accurate. It is based on a disaggregation 
technique introduced by Koutsoyiannis (2001). Since it is an induction technique it 
suffices to describe one step. Assume that the generation on the time scale k ≤ n has 
been completed and the time series is being generated on the next time scale k/2 (see 
Fig. 8). Consider the generation step in which the higher-level amount Z

(k)
i  (1 < i < n/k) 

is disaggregated into two lower-level amounts Z
(k/ 2)
2i–1  and Z

(k/ 2)
2i  such that: 
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Fig. 8 Explanation sketch of the disaggregation approach for generation of FGN. Grey 
boxes indicate random variables whose values have been already generated prior to 
the current step and arrows indicate the links to those of the generated variables that 
are considered in the current generation step.
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Thus, it suffices to generate Z
(k/ 2)
2i–1  and then obtain Z

(k/ 2)
2i  from equation (25). At this 

generation step, the already generated values of previous lower-level time steps, i.e. 
Z

(k/ 2)
1 , …, Z

(k/ 2)
2i–2  and of the next higher-level time steps, i.e. Z

(k)
i+1, …, Z

(k)
n/k are available 

(see explanatory sketch on Fig. 8). Theoretically, it is necessary to preserve the 
correlations of Z

(k/ 2)
2i–1  with all previous lower-level variables and all next higher-level 

variables. However, one can obtain a very good approximation if one considers 
correlations with only one higher-level time step behind and one ahead. Under this 
simplification, Z

(k/ 2)
2i–1  can be generated from the linear relationship: 

Z
(k/ 2)
2i–1  = a2Z

(k/ 2)
2i–3  + a1Z

(k/ 2)
2i–2  + b0Z

(k)
i  + b1Z

(k)
i+1 + V (26) 

where a2, a1, b0 and b1 are parameters to be estimated and V is innovation whose 
variance has to be estimated, too. All unknown parameters can be estimated in terms of 
correlations of the form corr[Z

(k/ 2)
2i–1 , Z

(k/ 2)
2i–1+j] = ρj where ρj is given by equation (16). 

Specifically, applying the methodology by Koutsoyiannis (2001) one finds: 
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and 

[ ] [ ][ ]( )Tk bbaaV 102132112
)2/(

0 ,,,,1,,1var ρ+ρρ+ρρ−γ=  (28) 

where the superscript T denotes the transpose of a vector. 
 All parameters are independent of i and k and therefore they can be used in all 
steps. When i = 1, the first two rows and columns of the above matrix and vectors are 
eliminated. Similarly, when i = n/k, the last row and column of the above matrix and 
vectors are eliminated. The sequences of previous and past variables that are 
considered for generating each lower-level variable, and the related parameters, can be 
directly expanded, to increase the accuracy of the method. However, this minimal 
configuration of the method gives satisfactory results. 
 
 
A symmetric moving average approach 
 
Koutsoyiannis (2000) introduced the so-called symmetric moving average (SMA) 
generating scheme that can be used to generate any kind of stochastic process with any 
autocorrelation structure or power spectrum. Like the conventional (backward) moving 
average (MA) process, the SMA scheme transforms a white noise sequence Vi into a 
process with autocorrelation by taking the weighted average of a number of Vi. In the 
SMA process, the weights aj are symmetrical about a centre (a0) that corresponds to 
the variable Vi, i.e.: 

�
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where q theoretically is infinity but in practice can be restricted to a finite number, as 
the sequence of weights aj tends to zero for increasing j. Koutsoyiannis (2000) also 
showed that the discrete Fourier transform sa(ω) of the aj sequence is related to the 
power spectrum of the process sγ(ω) by: 

( ) ( )ω=ω γssa 2  (30) 

This enables the direct calculation of sa(ω), which in the case of FGN, given equation 
(19), will be: 

( ) ( ) ( ) H
a Hs −ωγ−≈ω 5.0

0 2222  (31) 

Comparing equations (19) and (31) one may observe that sa(ω) is approximately equal 
to the power spectrum of another FGN process with Hurst exponent H′ = (Η + 0.5)/2 
and variance a0 shown in equation (32). Consequently, one can use equation (16) to 
approximate the inverse Fourier transform of sa(ω), i.e. the sequence of aj itself: 
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 In conclusion, the generation scheme (equation (29)) with coefficients aj 
determined from equation (32) can lead to a very easy algorithm for generating FGN. 
This method can also preserve the process skewness ξΧ by appropriately choosing the 
skewness of the white noise ξV. The relevant equations for the statistics of Vi, which 
are direct consequences of equation (29), are:  
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 There are q + 1 weights aj, so the model can preserve the first q + 1 terms of the 
autocovariance γj of the process Xi. Thus, the number q must be chosen at least equal 
to the desired number of autocorrelation coefficients m that are to be preserved. In 
addition, the ignored terms aj beyond aq must not exceed an acceptable tolerance βa0. 
These two conditions in combination with equations (17) and (32) result in:  
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The number q can be very high (thousands to hundreds of thousands) if H is large (e.g. 
>0.9) and β is small (e.g. <0.001). Approximate autocorrelation functions for lags up to 
10 000 based on equations (29) and (32) vs the exact FGN autocorrelation functions 
for various values of H and q are shown in Fig. 9.  
 The accuracy of the method depends on q. However, even when q → ∞ the 
method does not become exact because of the approximate character of equation (32). 
Although more accurate estimates of the aj series can be obtained numerically by a 
method by Koutsoyiannis (2000), the estimates given by equation (32) are sufficiently 
accurate for practice. This is verified in Fig. 9 where theoretical and approximate 
autocorrelation functions are almost indistinguishable. 
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Demonstration of the methods 
 
The three proposed methods for generating FGN are demonstrated by synthesizing 
records with length, mean, variance and Hurst exponent equal to those of the 
historical standardized tree-ring series at Mammoth Creek, Utah. The generated 
synthetic record using the method of multiple time-scale fluctuation is plotted in Fig. 
10. In comparison with the original series of Fig. 1(b) one can observe that this 
synthetic series exhibits a similar general shape with the same fluctuation amplitudes 
on all plotted time scales (1, 5 and 25 years). Figure 11 depicts the standard deviation 
of the aggregated processes Z

(k)
i  vs time scale k for this synthetic time series. The 

empirical curve is a straight line on the logarithmic plot with slope 0.75, i.e. equal to 
the assumed Hurst exponent. Figure 12 depicts the autocorrelation function of the 

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000
Lag, j

A
ut

oc
or

re
la

tio
n,

 ρ
j

Exact
Approximation

H  = 0.6, 
q = 10 000

H  = 0.7, 
q  = 10 000

H  = 0.8, 
q  = 50 124

H  = 0.9, 
q  = 250 000

 
Fig. 9 Approximate autocorrelation functions based on equations (29) and (32) vs the 
exact autocorrelation functions of FGN for various values of the Hurst exponent H and 
the number of weights q.
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Fig. 10 Plot of a synthetic time series generated using the statistics of standardized 
tree rings at Mammoth Creek, Utah, and implementing: the multiple time-scale 
fluctuation approach. 
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same synthetic time series on the basic (annual) scale for lags up to 50. The empirical 
autocorrelation function is close to the theoretical one of FGN with H = 0.75. Some 
departures are due to sampling errors, as the record length of 1990 values is too small 
to accurately estimate autocorrelations for lags as high as 50. To verify this, an 
additional synthetic record was generated with 64 000 values and their auto-
correlation functions were also plotted on Fig. 12. The empirical autocorrelation 
function of the latter series is almost indistinguishable from the theoretical one of the 
FGN process. The performance for the synthetic series generated using the other two 
methods—the disaggregation method and the symmetric moving average method—is 
similar (for legibility and brevity they are not shown in Figs 10–12, but may be found 
in Koutsoyiannis, 2002). In conclusion, this demonstration shows that all three 
methods are good for practical purposes. 
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Fig. 11 Standard deviation of the aggregated processes Z
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i  vs time scale k (logarithmic 

plot) for the synthetic time series generated using the multiple time-scale fluctuation 
approach. For comparison the theoretical curves of the white noise and FGN models 
are also plotted. 
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Fig. 12 Autocorrelation function of the synthetic time series on the basic (annual) 
scale generated using the multiple time-scale fluctuation approach. For comparison the 
theoretical curves of the AR(1) and FGN models are also plotted as well as the 
empirical functions of an additional series with large length (64 000) generated using 
the same method. 
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CONCLUSIONS AND DISCUSSION 
 
A first conclusion of this paper is that the Hurst phenomenon can be formulated and 
studied in an easy manner in terms of the variance and autocorrelation of a stochastic 
process on multiple time scales, thus avoiding the use of the complicated concept of 
rescaled range (see Appendix). In addition, the Hurst phenomenon may have a simple 
and easily understandable explanation based on the random fluctuation of a 
hydrological process upon different time scales. A second conclusion is that the 
generation of FGN, the process that reproduces the Hurst phenomenon, may be 
performed by one of three simple proposed methods that are based on (a) a multiple 
time-scale fluctuation approach, (b) a disaggregation approach, and (c) a symmetric 
moving average approach. 
 Of these three methods, (a) and (b) are very fast as the required computer time on a 
common PC is of the order of tens of milliseconds (for the applications presented 
here); this becomes of the order of seconds for method (c). Methods (b) and (c) can be 
directly extended to generate multivariate series as well (for a general framework of 
such adaptations for methods (b) and (c), see Koutsoyiannis, 2001 and 2000, 
respectively). Methods (a) and (c) can generate series with skewed distributions. 
Method (c) is the most accurate, but the other methods are sufficiently accurate and 
can be directly adapted to further improve accuracy, as discussed in the previous 
section. In general, all three methods are good for practical hydrological purposes. 
Method (a) may be preferable for single variate problems with symmetric or 
asymmetric distributions. Method (b) is best for single variate or multivariate problems 
with normal distribution. Finally, method (c) is good for any kind of problems, single 
variate or multivariate with symmetrical or asymmetric distributions, but it is slower 
than the other methods.  
 Obviously, FGN with its single parameter H is a simplified model of reality. 
Therefore, it may be not appropriate for all hydroclimatic series, even though it is 
much more consistent with reality, than the AR and ARMA process. A generalized and 
comprehensive family of processes, which can include a larger number of parameters 
and incorporates both the FGN and the ARMA processes, has been studied by 
Koutsoyiannis (2000). 
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APPENDIX 
 
Additional material related to the range concept 
 
In hydrological texts, the Hurst phenomenon and related topics are analysed in terms 
of several storage-related families of random variables (e.g. Yevjevich, 1972; 
Kottegoda, 1980, p. 184; Salas, 1993, p. 19.14) like the partial sum:  

Yn := X1 + X2 + … + Xn (A1) 

of the stochastic process Xi (i = 1, 2, …), for any integer n; the range 

Rn := max(Yi – i µ;1 ≤ i ≤ n) – min(Yi – iµ;1 ≤ i ≤ n) (A2) 

the adjusted range 

R*
n := max(Yi – i Yn/n;1 ≤ i ≤ n) – min(Yi – i Yn/n;1 ≤ i ≤ n) (A3) 

where the true mean µ has been replaced by the sample mean Yn/n; and the rescaled 
range 

R**
n  = R*

n /Sn (A4) 

where Sn is the sample standard deviation of X1, X2, …, Xn. The distributions of the 
random variables Rn, R*

n  and R**
n  depend on the distribution of Xi, the number n and the 

covariance structure of the process Xi; their determination is a very complicated task. 
Even their means are difficult to determine accurately (Yevjevich, 1972). For instance, 
in the simple case where Xi is an AR(1) Gaussian process with known µ and σ, the 
mean range is (Yevjevich, 1972, p. 158): 
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(Interestingly, equation (A5) is displayed on the cover of the book by Yevjevich 
(1972).)  
 For R*

n and R**
n  , only approximate relationships have been known. Generally, it is 

known that for all ARMA type processes, the rescaled range is asymptotically: 

E[R**
n  ] ≈ c  n   (A6) 

and for the FGN process: 

E[R**
n  ] ≈ c nH  (A7) 

where c is a constant (e.g. Bras & Rodriguez-Iturbe, 1985, p. 221).  
 Equation (A7) has been traditionally used to estimate the Hurst exponent. 
However, the uncertainty implied by equation (A7) is very high. It suffices to say that 
H can result in a value greater than one (for example, see Figs 7 and 8 in Vogel et al., 
1998), which is not allowed theoretically.  
 From a conceptual point of view, the range concept corresponds to the mass curve 
analysis of a reservoir (plot of cumulated inflows and outflows), a graphical method 
first developed by Ripple in 1883 and widely used in reservoir design since then. In 
this regard, Rn represents the required storage of a reservoir operating without any spill 
or other loss and providing a constant outflow equal to the mean flow. Obviously, this 
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is an oversimplification of a real reservoir. Therefore, this method needs to be 
abandoned today and the range concept needs to be replaced by probability-based 
design methods.  
 Because of the complications in definition and conceptualization of range 
indicators, the complex relationships of their statistical properties, and the estimation 
problems, their use has been avoided in this paper. It is shown that the concept of 
variance on multiple time scales is a much simpler and more accurate approach, which 
does not require the range concept at all. However, for the sake of compatibility with 
previous studies Fig. A1 is shown, in which the mean rescaled range R**

n  has been 
plotted as a function of length n for the two real-world example historical time series 
discussed earlier. It is observed that equation (A7) is validated with H = 0.88 for the 
Nile time series and H = 0.74 for the Utah time series. These values are close to the 
already estimated values, H = 0.85 and H = 0.75, respectively (Fig. 2).  
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Fig. A1 Mean rescaled range E[R**

k  ] vs time length k (logarithmic plots) for the two 
example historical data sets: (a) annual minimum water level of the River Nile; and 
(b) standardized tree rings at Mammoth Creek, Utah. For comparison approximate 
theoretical curves for the white noise and FGN models are also plotted. 



 
 
 

 

 

 


