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Abstract The evolutionary annealing-simplex algorithm is a probabilistic heuristic global 
optimisation technique that joins ideas from different methodological approaches, enhancing 
them with some original elements. The main concept is based on a controlled random search 
scheme, where a generalised downhill simplex methodology is coupled with a simulated 
annealing procedure. The algorithm combines the robustness of simulated annealing in 
rugged problems, with the efficiency of hill-climbing methods in simple search spaces. The 
following-up procedure is based on a simplex-searching scheme. The simplex is reformulated 
at each generation going either downhill or uphill, according to a probabilistic criterion. In the 
first case, it moves towards the direction of a candidate local minimum via a generalised 
Nelder-Mead strategy. In the second case, it expands itself along the uphill direction, in order 
to escape from the current local minimum. In all possible movements, a combination of 
deterministic as well as stochastic transition rules is applied. The evolutionary annealing-
simplex algorithm was first examined in a variety of typical benchmark functions and then it 
was applied in two global optimisation problems taken from water resources engineering, the 
calibration of a hydrological model and the optimisation of a multiple reservoir systems' 
operation. The algorithm has been proved very reliable in locating the global optimum, 
requiring reasonable computational effort.  

Keywords global optimisation, evolutionary algorithms, simulated annealing, downhill 
simplex, controlled random search, effectiveness, efficiency.  

Introduction 
A wide number of hydroinformatics applications are formulated as nonlinear unconstrained 
programming problems, commonly referred as global optimisation problems. Given that 
most of such problems are intrinsically nonconvex and multimodal, they do not exist 
deterministic optimisation methods that can guarantee the determination of the globally 
optimum solution. During the last decades, a variety of probabilistic schemes have been 
developed for solving such problems. These methods involve the evaluation of the objective 
function at a usually random sample of points, followed by subsequent evolutions of the 
sample using a combination of random and deterministic rules. 

In many of the applications that are met in practice, a highly accurate solution is neither 
possible nor feasible. Particularly, it may be impossible because of uncertainties and 
inaccuracies in the underlying model or data, or it may be infeasible due to the unacceptable 
high computational effort required to attain it, especially when the evaluation of the objective 
function is time consuming. Hence, the performance of a global optimisation solver depends 
upon two characteristics, the effectiveness and the efficiency (Duan et al., 1992). The first 
one indicates the capability of locating the global optimum starting from any initial point (or 
population of points), whereas the second one indicates the convergence speed. 
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The scope of this paper is to review the most representative global optimisation 
techniques (section 2) and to propose a heuristic global optimisation scheme, the 
evolutionary annealing-simplex algorithm, which ensures both effectiveness and efficiency 
by combining mechanisms from different methodologies in an original manner (section 3). 
The algorithm is tested in some theoretical and real-world problems, by comparing its 
performance against that of a recent but already widespread method, the shuffled complex 
evolution algorithm (section 4). Last section summarises the main issues and presents the 
final conclusions. 

Overview of nonlinear optimisation algorithms 
Deterministic methods 
We assume a nonlinear unconstrained minimisation problem of n control variables. 
Historically, the first attempt to solve such problems was via deterministic descend methods 
(also called local optimisation methods), gradient-based as well as direct. Gradient methods 
require the partial derivatives of the function to be known, whereas direct search algorithms 
are derivative-free. Their concept is to employ subsequent line minimisations, starting from 
an initial feasible point. Although local search methods are very effective for simple, 
unimodal spaces, in real-world problems they easily get trapped in non-optimal regions due 
to the existence of many local optima, flat surfaces or ridges. 

Among a variety of local search algorithms, one should distinguish the downhill simplex 
method of Nelder and Mead (1965). The core of the method is an evolving pattern of n + 1 
points (the vertices of a simplex) that span the n-dimensional space. The simplex explores 
the feasible space either by reflecting, contracting or expanding away from the actually worst 
vertex, or by shrinking toward the best vertex. An appropriate sequence of such movements 
converges to the nearest local minimum. 

The shortcoming of deterministic local optimisation algorithms to cope with nonconvex, 
multimodal and even ill-posed functions leaded researchers to develop probabilistic schemes 
that use stochastic transition rules and do not impose any special requirement about the 
nature of the objective function. These methods are also called global, given that they 
guarantee asymptotic convergence to the global optimum of the function. 

Monte Carlo methods 
A primitive global optimisation method is the pure random sampling. In order to implement 
the generation of evaluation points in a more systematic way, adaptive random sampling 
(ARS) techniques have been developed. The general strategy of ARS consists of generating 
the next point as a perturbation around the actual one and accept it only if it improves the 
objective function (Rubinstein, 1986). An advanced ARS strategy is the controlled random 
search technique, proposed by Price (1965) in several versions. Price introduced the concept 
of an evolving population of feasible points that became the basis of most modern global 
optimisation methods. At each step, a simplex is formed from a sample of the population, 
which is reformed by reflecting one of its vertices through its centroid. 

A specific category of Monte Carlo methods is the multistart strategy, which consists of 
running several independent trials of a local search algorithm. In an ideal case, these methods 
aim at starting the local search once in every region of attraction of local optima that may be 
identified via clustering analysis (Solomatine, 1999). 
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Evolutionary algorithms 
The family of evolutionary algorithms (EAs), inspired from the mechanism of natural 
evolution, introduced some important modifications to random search. In EAs, the searching 
procedure is implemented at stages called generations. At each one, a population of 
randomly generated points evolves by applying the selection, recombination and mutation 
operators. The most popular interpretation of EAs is genetic algorithms (Holland, 1975; 
Goldberg, 1989; Michalewich, 1992), where variables are represented on a chromosome-like 
(usually binary string) structure. This specific structure enables the documentation of the 
global convergence property of genetic algorithms via the schema theory (Goldberg, 1989). 

Simulated annealing 
Simulated annealing (SA) is based on an analogy with the homonymous thermodynamical 
process. For slowly cooled thermodynamical systems (e.g., metals), nature is able to find the 
minimum state of energy, while the system may end in an amorphous state of higher energy 
if it is cooled quickly. This principle is expressed by the Boltzmann probability distribution: 
  p(E) ~ exp (– E / k T)    (1) 

The energy of a system in thermal equilibrium at a given temperature T is probabilistically 
distributed among all different states E. The system may switch to a new energy state with 
probability p, irrespective of whether it is higher or lower. Therefore, nature’s minimisation 
strategy is to allow the system sometimes to go uphill as well as downhill, so that it has a 
chance to escape from a local energy minimum in favour of finding a better, more global 
minimum. However, the lower the temperature, the less likely is a significant uphill step. 

Kirkpatrick et al. (1983) transferred the principles of annealing in optimisation, by 
introducing a control parameter, analogue of temperature, and an annealing cooling schedule 
that describes its gradual reduction. Assuming a large enough initial temperature and a 
proper schedule, SA slowly converges to the globally optimal solution. 

The shuffled complex evolution method 
The shuffled complex evolution (SCE) method (Duan et al., 1992) is a heuristic global 
optimisation scheme that became quickly one of the most popular among water resources 
engineers. According to the algorithm, a random set of points is sampled and partitioned into 
complexes. Each of them is allowed to evolve in the direction of global improvement, using 
competitive evolution techniques based on the downhill simplex method. At periodic stages, 
the entire set of points is shuffled and reassigned to new complexes, to enable information 
sharing. The combination of competitive evolution and shuffling ensures that the information 
gained by each of the individual complexes is shared through the entire population. This 
results in a robust searching scheme that conducts an efficient search on the feasible space. 

The evolutionary annealing-simplex algorithm 
Coupling simulated annealing with the simplex method 

 
  

An interesting category of global optimisation techniques aims to combine the robustness of 
SA in rugged problems, with the efficiency of direct search methods in simple search spaces. 
The strengths and weaknesses of the two approaches are complementary. SA avoids local 
optima by jumping away from them, but it sacrifices efficiency (i.e., running time) by doing 
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so; on the other hand, direct search methods converge quickly to the nearest local optimum, 
but they have no way of getting out of it. 

A well-known local optimiser is the downhill simplex algorithm. However, there are only 
few references in literature on how to incorporate the SA strategy to this method. For 
example, Press et al. (1992) introduced into the objective function a logarithmically 
distributed random variable associated with every vertex, proportional to the temperature. 
The simplex behaves between a random walk and an ordered downhill motion, depending on 
the ratio ∆f / T, where ∆f is the difference in values of the function at two vertices and T is 
the temperature. Pan and Wu (1998) improved this method by incorporating some follow-up 
strategies to escape from local optima. Finally, Kvaniscka and Pospichal (1997) proposed a 
simplex-based algorithm where the generation of reflection points is randomised and their 
returning to the population is implemented according to a probabilistic criterion. 

Description of the evolutionary annealing-simplex algorithm 
The evolutionary annealing-simplex (EAS) algorithm presented herein is a heuristic method, 
developed on the basis of the above schemes. Its concept is based on a control random search 
technique, where a generalised Nelder-Mead method is coupled with an annealing strategy. 
The core of the evolution is a simplex implementing the typical Nelder-Mead movements as 
well as some original ones, according to a combination of deterministic and stochastic rules. 
The main characteristic is that none of the movements is totally deterministic, enabling thus 
the exploration of rough search spaces. A typical iteration cycle consists of the following: 

(1) A simplex S = {x1, x2,…, xn + 1} is formulated by randomly selecting its vertices from 
the current population P, consisting of m ≥ n + 1 points, where x1 corresponds to the 
best (lowest) and xn + 1 to the worst (highest) value of the objective function, f. 

(2) From the subset {x2,…, xn + 1} a vertex w is selected that is candidate to be replaced. 
The candidate point is the vertex that maximises the modified function: 

 g(xi) = f(xi) + u T    (2) 
where u denotes a uniform random number from the interval [0, 1] and T is the actual 
temperature of the system. 

(3) A new point r is generated by reflecting the simplex away from w according to: 
 r = g + (0.5 + u) (g – w)    (3) 
 where g is the centroid of the subset S – {w} and u is a uniform random number. 

(4) If f(r) < f(w), the new point r replaces the vertex w. Moreover, if f(r) < f(x1), i.e. the 
new point is better than the current best vertex, a sequence of expansion (line 
minimisation) steps are implemented according to the equation: 

xnew = g + φ[s] (r – g)    (4) 
where φ[s] = φ[s – 1] + u, with φ[0] = 1. The expansion continues as long as the function 
value improves, accelerating thus the local searching procedure. On the other hand, if 
f(r) > f(x1), the simplex is outside contracted as follows: 

xnew = g + (0.25 + 0.5u) (r – g)   (5) 
If either the expansion or the outside contraction successes, xnew replaces r. 

(5) If g(r) > g(w), the reflection point r is not accepted, the actual temperature is reduced 
by a factor λ and the simplex is inside contracted according to the equation: 

xnew = g – (0.25 + 0.5u) (g – w)   (6) 
If f(xnew) > f(xn+ 1), i.e. the new point is worse than the current worst vertex, the 
simplex shrinks toward the best vertex x1, such as x'i = 0.5(x1 + xi). 
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(6) If g(r) < g(w), the reflection point r is accepted even if it deteriorates the function 
value. Next, a given number of uphill movements are implemented according to (4). 
The difference of subsequent function values is an approximation of the gradient. 
Whenever the gradient becomes negative, the simplex escapes from the region of 
attraction of the current local minimum and the new point replaces r. Otherwise, if 
any trial uphill movement success, a random point is generated on the boundaries of 
the population P, and replaces r according to a mutation probability pm. The new 
point is generated as follows: 

xnew = c + d y / ||y||   (7) 
where c is the centroid of P, d is the maximum Euclidean distance of the members of 
P from the centroid and y is a random direction in the n-dimensional space. 

The algorithm stops if the relative distance between the current best fmin, and worst, fmax, 
function value in P becomes smaller than a given tolerance, ε. The initial temperature is set 
equal to fmax – fmin, while at the beginning of each cycle it is re-evaluated so that it never 
exceeds ξ (fmax – fmin), where ξ ≥ 1 is a control parameter of the annealing schedule. 

Experimental results 
The EAS algorithm was first tested in 8 typical benchmark functions (Figure 1), most of 
them adapted from De Jong (1975). For each function, 100 independent runs were made. The 
success percentage was used as indicator of the algorithm's effectiveness, whereas the 
average number of function evaluations was used as indicator of its efficiency. Input 
arguments were m = 4n + 1, λ = 0.95, ξ = 5, pm = 10% and ε = 1%. For the sake of 
comparison, the results from the SCE method, having the same population length, are also 
included. The analysis showed that both methods faced with success almost all benchmark 
problems. The EAS algorithm was proved slightly more effective, while the SCE method 
was proved slightly more efficient. 

Table 1: Effectiveness and efficiency (in parenthesis) indices for the EAS and SCE methods. 
Test function n Number of optima EAS SCE-UA 
Sphere 2 1 100 (4128) 100 (5159) 
Hozaki 2 2 100 (324) 100 (296) 
Goldestein-Price 2 4 100 (552) 99 (449) 
Rozenbrock 2 1 100 (619) 100 (1191) 
Rozenbrock 10 1 26 (10847) 99 (11105) 
Griewank 10 > 1000 91 (2768) 100 (5574) 
Michalewicz 2 > 100 51 (1409) 44 (438) 
Integer step 10 1 100 (3324) 1 (2350) 
Mean effectiveness   83.5 80.0 

 
Next, two real-world applications were examined, taken from the domain of water 

resources engineering. The first was the calibration of a parsimonious hydrological model of 
4 parameters, specifically the imperviousness of the basin, the storage capacity of the soil 
moisture reservoir and the recession coefficient of the soil moisture and groundwater. Input 
data was the precipitation and the potential evapotranspiration for a simulation period of 93 
months. Two case studies were examined; the first one was based on real output data (i.e., 
historical runoff series) whereas the second one was based on synthetic output data, where 
runoff was calculated assuming arbitrary parameter values. The reason of using synthetic 
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data was the elimination of errors due to the data as well as the model structure. For both 
cases, the EAS algorithm managed to achieve the same effectiveness rate (84%), which was 
better than the rate achieved by the SCE method (80% and 72%, respectively). 

The second application was the maximisation of the mean annual energy profit of a 
hypothetical hydrosystem, comprising of two hydroelectric reservoirs in parallel. A high-
dimensional methodology was implemented, assuming as control variables the step-by-step 
reservoir target releases. Hence, for a simulation period of 16 years, the total number of 
control variables was 384. The results were 44.7 monetary unions for the SCE method and 
46.5 unions for the EAS algorithm. The characteristic of this problem was the flat-type 
response surface of the objective function, due to the use of desirable and not real 
magnitudes as control variables, which makes extremely difficult the location of the gradient 
of the function, particularly when the number of parameters is large. 

Summary and conclusions 
The current trend in optimisation research is the combination of techniques obtained from 
diverse methodological approaches, in order to develop more robust search schemes. The 
EAS algorithm follows the above concept, by trying to couple the robustness of SA in rough 
problems, with the efficiency of the downhill simplex method in simple search spaces. By 
enhancing the typical Nelder-Mead procedure with new movements such as climbing and 
mutation, and by introducing to the original movements a stochastic component, it not only 
makes possible to easily escape from local optima but also to accelerate the searching 
procedure, especially in high-dimensional applications. After extended analysis, the 
algorithm was proved at least as effective and efficient as the SCE method, which is now 
widely used in the region of water resources systems optimisation. 
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