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Motivation: The management of the 
hydrosystem for the water supply of Athens
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Requirements for 
stochastic simulation
1. Multivariate model
2. Time scales from annual to 

monthly or sub-monthly
3. Preservation of essential 

marginal statistics up to third 
order (skewness)

4. Preservation of joint second 
order statistics (auto- and 
cross-correlations)

5. Capturing/reproduction of 
“patterns” observed in the last 
severe drought – Preservation 
of long-term persistence

Mornos river

0

200

400

600

800

19
91

-9
2

19
87

-8
8

19
88

-8
9

19
89

-9
0

19
90

-9
1

19
92

-9
3

Normal average

6-year average

Ru
no

ff, 
mm

0

50

100

150

200

250

19
87

-8
8

19
88

-8
9

19
89

-9
0

19
90

-9
1

19
91

-9
2

19
92

-9
3

B. Kifisos river
Normal average

6-year averageRu
no

ff, 
mm



Koutsoyiannis & Efstratiadis, A stochastic hydrology framework for the management of multiple reservoir systems 4

Climatic persistence versus climatic variability
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Methodology 1: The generalised 
autocovariance function (GAS)
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See details in: Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation 
and forecast of hydrologic time series Water Resources Research, 36(6), 1519-1534, 2000.

General expression
γj = γ0 (1 + κ β j)–1/β

where
γj : autocovariance 

for lag j
γ0 : variance
κ, β: parameters
(The two parameters 
allow for preservation of 
γ1 and Hurst exponent)

For β = 0 ⇒ ARMA
γj = γ0 exp (–κ j)

For κ = (1/β) (1 – 1/β)–β

(1 – 1 / 2β)–β ⇒ FGN
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Methodology 2: Generalised generating 
scheme for any covariance structure
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See details in: Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation 
and forecast of hydrologic time series Water Resources Research, 36(6), 1519-1534, 2000.

Typical (backward) moving 
average (BMA) scheme
Xi = … + a1 Vi – 1 + a0 Vi

where Vi innovations and 
ai parameters.

Symmetric moving 
average (SMA) scheme
Xi = … + a1 Vi – 1 + a0 Vi

+ a1 Vi + 1 + …

SMA has several advantages 
over BMA. Among them, it 
allows a closed solution for ai:
sa(ω) = [2 sγ(ω)]1/2

where sa(ω) and sγ(ω) the DFTs of the series aj and γj, respectively.

Both schemes are applicable for multivariate problems.
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Methodology 3: Stochastic simulation in 
forecast mode

In terminating simulations of a hydrosystem the 
present and past states must be considered.
The observed values of the present and past must 
condition the hydrologic time series of the future.
This is attainable using a two-step algorithm
1. Generate future time series without reference to the 

known present and past values.
2. Adjust future time series using the known present and 

past values and a linear adjusting algorithm.
The linear adjusting algorithm:
1. is expressed in terms of covariances among variables;
2. preserves exactly means, variances and covariances;
3. is easily implemented.

See details in: Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation 
and forecast of hydrologic time series Water Resources Research, 36(6), 1519-1534, 2000.



Koutsoyiannis & Efstratiadis, A stochastic hydrology framework for the management of multiple reservoir systems 8

Methodology 4: Coupling stochastic 
models of different time scales

See details in: Koutsoyiannis, D., Coupling stochastic models of different time scales, Water 
Resources Research, 37(2), 379-392, 2001.

The linear 
transformation 

Xs = X
~

s + h (Zp – Z
~

p)  

where  

h = Cov[Xs, Zp] ⋅ 
  {Cov[Zp, Zp]}–1  

preserves the vectors of 
means, the variance-
covariance matrix and 
any linear relationship 
that holds among Xs and 
Zp.  
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Methodology 5: Preservation of skewness 
in multivariate problems via appropriate 
decomposition of covariance matrices
Consider any linear multivariate stochastic model of the form 

Y = a Z + b V
where Y: vector of variables to be generated, Z: vector of variables with 
known values, V: vector of innovations, and a and b: matrices of parameters.
The parameter matrix b is related to a covariance matrix c by

b bT = c
This equation may have infinite solutions or no solution. 
The skewness coefficients ξ of innovations V depend on b. 
The smaller the values of ξ, the more attainable the preservation of the 
skewness coefficients of the actual variables Y. 
Therefore, the problem of determination of b can be solved in an optimisation 
framework, that combines
! minimisation of skewness ξ, and
! minimisation of the error ||b bT – c||.

A fast optimisation algorithm has been developed for this problem.
See details in: Koutsoyiannis, D., Optimal decomposition of covariance matrices for multivariate 
stochastic models in hydrology, Water Resources Research 35(4), 1219-1229, 1999.
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Implementation of the methodology:
The Castalia software

Designed as part of a decision support system for the 
water resource system of Athens
Linked to a simulation-optimisation model of a 
hydrosystem
Can also perform as a stand-alone software
Written in Delphi; utilises Oracle.
Simulates several hydrological variables at multiple sites
Uses annual and monthly time scales 
Preserves:
! essential marginal statistics up to third order (skewness)
! joint second order statistics (auto- and cross-correlations)
! long-term persistence
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Castalia:Data base operations for time series

Oct        Nov        Dec      Jan         Feb       Mar       Apr        May       Jun        Jul         Aug        Sep       Annual
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Castalia:
Parameter 
estimation-
Parameters of 
autocorrelation 
and 
persistence
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Castalia:
Stochastic 
simulation
without 
long term 
persistence
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Castalia:
Stochastic 
simulation
with long 
term 
persistence
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Castalia:
Stochastic 
forecasting
with long 
term 
persistence
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Castalia:
Preserva-
tion of 
marginal 
statistics –
Skewness
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Utilisation of Castalia’s results in the 
hydrosystem of the Athens water supply: 
System’s firm yield 
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Utilisation of Castalia’s results in the 
hydrosystem of the Athens water supply: 
Stochastic forecast of system storage

Evolution of 
quantiles of 
system storage 
(for several 
levels of 
probability of 
exceedance) for 
the next 10 
years as a result 
of 200 
terminating  
simulations with 
long-term 
persistence
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Summary
A generalised stochastic modelling framework for 
hydrological variables has been developed.
The methodology involves the combination of  
novel stochastic techniques, and preserves long-
term persistence and asymmetric distributions in 
multivariate, sequential or disaggregation,
problems. 
The methodology has been implemented in the 
Castalia program.
The methodology and the program have been 
tested in a large hydrosystem involving 4 
hydrologic catchments with 4 reservoirs.
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