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Introduction 

Simulation is defined to be a technique to imitate the evolution of a real system by studying a 

model of the system (Winston, 1994, p. 23; Ripley, 1987, p. 2). The model is an abstraction, a 

simplified and convenient mathematical representation of the actual system typically coded 

and run as a computer program. If the model has a stochastic1 element, then we have 

stochastic simulation. The term stochastic simulation sometimes is used synonymously to the 

Monte-Carlo method.   

 Stochastic simulation is regarded as mathematical experimentation and is appropriate for 

complex systems, whose study based on analytical methods is laborious or even impossible. 

For such systems, stochastic simulation provides an easy means to explore their behavior by 

answer specific ‘what if’ questions. Moreover, stochastic simulation can be viewed as a 

numerical method to solve mathematical problems in several fields like statistical inference, 

optimization, integration, and even equation solving. Under certain conditions stochastic 

simulation is more powerful than other more common numerical methods (e.g. numerical 

integration of high-dimensional differential equations).  

                                                 
1 The term stochastic is etymologized from the Greek verb στοχάζοµαι initially meaning to aim, point, or shoot 
(an arrow) at a target (στόχος is a target). Metaphorically, the verb meant to guess or to conjecture (the target).. 
The modern Greek meaning is to imagine, to think, to meditate. It appears that the word stochastic is found in 
English since the 17th century with the obsolete meaning pertaining to conjecture. Its use as a scientific term is 
attributed to the Swiss mathematician Jakob Bernoulli (1654-1705), who in his famous masterpiece Ars 
Conjectandi realised that randomness and uncertainty are important aspects of our world and should be objects 
of scientific analysis. In its modern sense, stochastic can be regarded as synonymous to random or probabilistic, 
but it is mostly used for processes that indicate a mixture of structure and randomness; the term stochastic 
process was used in 1932 by A. N. Kolmogorov. 



D. Koutsoyiannis, Stochastic Simulation of Hydrosystems (SW-913) 2 

 Due to their complexity, hydrosystems, including water resource systems, flood 

management systems, hydropower systems, etc., are frequently studied using stochastic 

simulation. In particular, hydrologic processes that have a dominant role in hydrosystems are 

often regarded as stochastic processes. Stochastic hydrology, the application of theory of 

stochastic processes in analysis and modeling of hydrologic processes, has offered very 

efficient tools in tackling a variety of hydrosystems problems, including systems 

identification, modeling and forecasting, hydrologic design, water resources management, and 

flood management. 

A brief history 

Synthetic streamflow records were first used early in the 20th century by Hazen (1914) in 

studies of water supply reliability. Their construction, however, was not based on the theory 

of stochastic processes, then not developed, but on merging and rescaling observed records of 

several streams. This early work emphasizes the need for long synthetic records and the 

importance of simulation in water resources technology. The foundation of stochastic 

hydrology followed the significant developments in mathematics and physics in the 1940s, as 

well as the development of computers. Specifically, it followed the establishment of the 

Monte Carlo method, which was invented by Stanislaw Ulam in 1946. Notably, Ulam 

conceived the method while playing solitaires during convalescing from an illness, in his 

attempt to estimate the probabilities of success of the plays. As Ulam describes the story in 

some remarks later published by Eckhardt (1989), “After spending a lot of time to estimate 

them by pure combinatorial calculations, I wondered whether a more practical method than 

‘abstract thinking’ might not be to lay it out say one hundred times and simply observe and 

count the number of successful plays”. Soon after the method grew to solve neutron diffusion 

problems by himself and other great mathematicians and physicists in Los Alamos (John von 

Neumann, Nicholas Metropolis, Enrico Fermi), and was first implemented on the ENIAC 

computer (Metropolis, 1989; Eckhardt, 1989). The ‘official’ history of the method began in 

1949 with the publication of a paper by Metropolis and Ulam (1949).  



D. Koutsoyiannis, Stochastic Simulation of Hydrosystems (SW-913) 3 

 In the field of water resources, the most significant initial steps were the works by Barnes 

(1954) for the generation of uncorrelated annual flows at a site from normal distribution; 

Maass et al. (1962) and Thomas and Fiering (1962) for the generation of flows correlated in 

time; and Beard (1965) and Matalas (1967) for the generation of concurrent flows at several 

sites.  

 The classic book on time series analysis by Box and Jenkins (1970) was also originated 

from different, more fundamental scientific fields. However, it has subsequently become very 

popular in stochastic hydrology. Box and Jenkins developed a classification scheme for a 

large family of time series models. Their classification distinguishes among autoregressive 

models of order p (AR(p)), moving average models of order q (MA(q)) combinations of the 

two, called autoregressive-moving average (ARMA(p, q)) models, and autoregressive 

integrated moving average (ARIMA(p, d, q)) models. However, despite making a large 

family, Box-Jenkins models do not cover fully the needs of hydrologic modeling, as they do 

not comply with some peculiarities of hydrologic and other geophysical processes. This gave 

rise to substantial research that resulted in numerous stochastic tools appropriate for 

applications in water recourses. 

Utility of stochastic simulation in hydrosystems 

Due to the significant uncertainties inherent to hydrosystems, among which the major is 

hydrologic uncertainty (related to the unknown future of inflows to hydrosystems), the 

estimation of a system’s reliability is important for its design and operation. The reliability of 

a system is defined to be the probability that a system will perform the required function for a 

specified period of time under stated conditions  (Chow et al., 1988, p. 434). Reliability is the 

complement of probability of failure or risk, i.e. the probability that the “loading” will exceed 

the “capacity”. In many instances the risk can be estimated using analytical means, so 

stochastic simulation is not required. For example, in the design of dykes that confine a 

river’s flow, the risk of overtopping of dykes can be estimated in a typical probabilistic 

manner, provided that there exists a record of floods of the river with sufficient length (some 

decades). The estimation procedure includes the selection of a probabilistic model (e.g. an 
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extreme value distribution function), the fitting of the model based on the available record, 

and the estimation of the probability that flood exceeds the discharge capacity of the designed 

river cross section (the estimation of the latter is a matter of hydraulics). Behind this 

procedure, there are two implicit assumptions that make the methodology appropriate for this 

example problem:  

1. The project under study (the dykes) does not modify the natural flow regime, so that if 

the project were constructed many years before, the observed flow record would not 

be altered. Thus, the assumed probabilistic model, although fitted on past data, is still 

valid after the construction of the project.    

2. The quantity (flood discharge) whose exceedance was assumed to be the risk is the 

same quantity, for which we have observed data. Thus, the probabilistic model that 

was constructed for this quantity can directly yield the risk. 

 In many cases, however, these assumptions are not valid. Let us first examine the case 

where the assumption 2 is untrue. For example, we may have available rainfall data, from 

which we can construct a probabilistic model for extreme rainfall intensity, and wish to 

estimate the probability of exceedance of flood discharge. In this case we can use a simple 

one-to-one mapping (transformation) of rainfall to discharge values (e.g. to adopt the relation 

known as the rational formula), so that the risk of exceeding a certain discharge level equals 

the risk of exceeding the corresponding rainfall level. This methodology usually incorporates 

serious oversimplifications and ignorance of certain factors that affect the actual hydrologic 

process (e.g. retention, infiltration, etc.). A more realistic methodology is to use a more 

detailed model that transforms a rainfall series (not each isolated value) into a discharge 

series, also considering all processes involved in this transformation. In this case we can use 

simulation to obtain a discharge series. 

 The assumption 1 can be untrue in many cases as well. For example, the construction of a 

dam will alter the flood regime at the dam and downstream, as the spillway outflow does not 

equal the natural inflow (attenuation occurs due to temporal flood storage). Also, the 

construction of a storm sewer will modify the contributing areas and flow times in the area (in 
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addition, it is impossible to have observed data for the sewer discharge in its design phase). 

Another typical example is a reservoir (see the entry Reliability Concepts in Reservoir Design 

– SW-776), whose storage (a quantity that determines the risk, which is the probability of 

emptying of the reservoir) is inexistent before the construction of the reservoir. Obviously, in 

all these cases where assumption 1 is not valid, assumption 2 is too not valid. Thus, we will 

proceed as in the previous paragraph with simulation being the most appropriate procedure to 

obtain a series of data values for the quantity of interest.  

 Even in an existing project (e.g. an existing reservoir), where the quantity of interest could 

be measured directly to obtain a historical record, simulation may be again necessary to assess 

impacts of several possible changes in the future that were not experienced in the past. For 

example, a change on water use (e.g. increase of water demand) and a change of land use or 

climate, which alters water availability, calls for simulation to estimate a series for the 

quantity of interest for the examined scenario.  

 The above discussion explains why in most studies of hydrosystems (with the exception of 

cases where both assumptions listed above are valid) it is necessary to perform simulation as a 

means for transformation of some input time series of initial quantities to some output time 

series of the final quantities of interest. Grace to the power of computers, the simulation 

methodology has greatly replaced older methodologies that used simplified one-to-one 

transformations. But why simulation should be stochastic?  

 In stochastic simulation the input time series are no longer the observed records but 

synthetic time series constructed by an appropriate stochastic model. An observed time series 

is unique and has a limited length equal to the period of observations. On the contrary, a 

stochastic model can produce as many time series as required and of any arbitrary length. The 

utility of a long length of time series becomes obvious in steady state simulations (Winston, 

1994, p. 1220), when a low value of probability of failure (risk) is to be estimated. For 

example, in a problem where the accepted probability of failure is 1% per year, apparently 

several hundreds of simulated years are needed to detect a few failures. The utility of 

ensemble time series (as opposed to the unique observed record) becomes obvious in non-

steady state problems (i.e. in terminating simulations) and in forecast problems in which the 
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initial conditions (present and past values of the processes of interest) are known. In these 

cases, stochastic simulation offers the possibility of different sample paths of the quantity of 

interest, instead of having a single value at a time, so that we can estimate expected values 

and confidence zones.  

Components and solution procedure of stochastic simulation 

The components and the steps followed in stochastic simulation of a hydrosystem are 

demonstrated in Figure 1. The entire procedure includes two main model components 

(marked 1 and 2 in Figure 1) and two simpler procedures (marked 3 and 4 in Figure 1). The 

first model component is the stochastic model of inputs, which produces a vector X(µ, ω) of 

hydrological inputs (e.g. time series of rainfall, evaporation, river flow, depending on the 

problem studied) to the hydrosystem, where µ is a vector that contains the parameters of 

hydrologic inputs (all estimated from the available records of observations) and ω denotes a 

sample path realization of the random variables (that is, ω can be thought of as representing 

the randomness in the system, e.g., all random numbers in a simulation run). At a minimal 

configuration, the vector of parameters µ includes mean values, standard deviations, 

autocorrelations (at least for lag one) and cross-correlations (for multiple-site models).  

 The second component is the transformation model which takes the inputs X(µ, ω) and 

produces the outputs Z(X(µ, ω), λ) (e.g. river flow if X is rainfall and evaporation, or 

reservoir release and storage if X is river flow); here the vector λ contains parameters of the 

transformation model (e.g. parameters determining the hydrological cycle in a basin and/or 

parameters determining the operation of a specific project like a reservoir).  

 The third component is a procedure that takes the outputs Z(X(µ, ω), λ) and determines a 

sample performance measure L(Z(X(µ, ω), λ)) of the system that corresponds to the sample 

realization represented by ω. This performance measure depends of the problem examined; 

for instance, in a design flood problem it can be the risk of exceeding a specified flood level; 

in a reservoir design problem it can be either the risk of emptying a reservoir, or the attained 

release for a stated reliability.  
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Parameters of 
hydrological 

inputs, µ

Parameters of 
transformation 

model, λ

Parameter space, θ

Randomness, ω

1. Stochastic model of inputs (stochastic hydrologic simulation)

Hydrologic inputs (e.g. river flow, rainfall, evaporation), X(µ, ω)

2. Transformation model (hydrosystem simulation)

System outputs (e.g. flood, water availability), Z(X(µ,ω),λ)

3. Procedure for the estimation of the performance measure (e.g. risk) 

Sample performance measure of the system, L(Z(X(µ, ω), λ))

4. Ensemble average (or time average in steady state simulation)

Performance measure of the system, J(θ)

 
Figure 1 Schematic representation of the components and the solution procedure in hydrosystem simulation. 
Rectangles represent the components of the solution procedure, whereas parallelograms represent inputs and 
outputs to the different components. 

 By repeating the execution of these three components using different simulation runs, 

represented by different ω, we can obtain an ensemble of simulations and a sample of 

performance measures, from which we can estimate the true (independent of ω) performance 

measure of the system J(θ) := E[L(Z(X(µ, ω), λ))], where E[ ] denotes expected value and θ 

:= (µ, λ). However, if the system is stationary and ergodic (in other words, if we have a steady 

state simulation), L will tend to J as the simulation length tends to infinity. Therefore, a single 

instance of the sample performance measure, estimated from a simulation with a large length, 
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is an adequate estimate of the true performance measure. This is the case, for instance, in a 

reservoir simulation with constant water demand. Conversely, if the water demand is growing 

in time (a common situation in practice), the simulation is no more a steady state one, and 

numerous runs, typically with a small length each one, must be performed to estimate the true 

performance measure. 

 In the following part of the article we will focus on the model component 1, i.e. the 

stochastic model of inputs. 

Typical Box-Jenkins models 

Let Xi denote the process of interest (e.g. rainfall or streamflow at a site) with i denoting 

discrete time. To generate a time series of Xi we start generating a sequence of independent 

identically distributed variables (iid, also known as white noise) Vi having a specified 

distribution function (e.g. Gaussian). This is known as generation of random numbers; a 

concise introduction to this topic can be found in Papoulis (1990) and a more detailed 

presentation can be found in Ripley (1987).  If Xi can be assumed stationary (i.e. with 

probability distribution function that does not vary in time, which is typically the case if the 

time step is a year), the unstructured sequence of Vi can be converted to a structured sequence 

Xi by means of a recursive relationship, whose general form has been studied by Box and 

Jenkins (1970). From the large family of Box-Jenkins processes, the ones that have been 

widely used in stochastic hydrology are special cases of the equation  

 Xi = a Xi – 1 + a΄ Xi – 2 + b Vi + b΄ Vi – 1 (1) 

where a, a΄, b and b΄ are parameters that are estimated from auto-covariance properties of the 

process Xi. The special cases are 

1. The iid or white noise or AR(0) process in which a = a΄ = b΄ = 0;  b ≠ 0. 

2. The Markovian or AR(1) process in which a΄ = b΄ = 0;  a, b ≠ 0. 

3. The AR(2) process in which b΄ = 0; a, b, a΄ ≠ 0. 

4. The ARMA(1, 1) process in which a΄ = 0;  a, b, b΄ ≠ 0. 
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The complete form of (1), known as the ARMA(2, 1) process, has been not used so frequently 

in hydrology. The listed special cases preserve auto-covariance properties for lag 0 (case 1) to 

lag 2 (cases 2 and 3); beyond these lags the model autocovariance is zero (case 1) or tends to 

zero exponentially (cases 2-4). 

Peculiarities in stochastic representation of hydrologic processes   

Simple stationary models, such as the above described, often are not the best choice in 

hydrologic modeling because of several peculiarities of hydrologic processes, of which the 

most important are discussed below.  

 Seasonality. When the time scale of interest is finer than annual, hydrologic processes 

cannot be regarded as stationary because of the effect of season of the year to the properties of 

the process. A simple method often used to take into account seasonality is to standardise the 

process Xi using seasonal values of mean and standard deviation, i.e. setting Yi := (Xi – µi) / σi 

and assuming that Yi is a stationary process that can be modeled for instance by (1); here µi 

and σi denote the mean and standard deviation, respectively, of Xi, which are assumed to vary 

with i in a periodic manner. This standardization approach, however, is flawed; the 

stationarity assumption for Yi implies that, apart from the mean and standard deviation, other 

statistical properties of Xi like autocorrelation and skewness do not vary in season, which is 

not true. A more precise way of modelling seasonality is to assume a cyclostationary (also 

known as periodic) process, which is expressed as in (1) but with parameters a, b a΄, b΄, ...,  

and statistics of the noise variables Vi varying with i in a periodic manner. 

 Long-term persistence. Box-Jenkins models like (1) are essentially of short memory type, 

that is, their autocorrelation structure decreases rapidly with the lag time. However, the study 

of long historical time series of hydrological and other geophysical processes has revealed 

that autocorrelations may be significant for large lags, e.g. 50 or 100 years.  This property is 

related to the tendency of streamflows to stay above or below their mean for long periods, 

observed for the first time by Hurst (1951), or, equivalently, to multiple time scale 

fluctuations of hydrologic processes (Koutsoyiannis, 2002; see also the entry SW-434 - 

Hydrologic Persistence and the Hurst Phenomenon). Therefore, models like (1) are proven 
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inadequate in stochastic hydrology, as the long-term persistence of hydrologic processes is 

important to be reproduced (see the entry SW-776 - Reliability Concepts in Reservoir 

Design).  

 Intermittency. At fine time scales, some hydrologic processes like rainfall and in some 

cases streamflow appear as intermittent processes; thus, rainfall alternates between two states, 

the dry (zero rainfall) and wet (positive rainfall). This is manifested in the marginal 

probability distribution of rainfall depth by a discontinuity at zero. Box-Jenkins processes like 

the one in (1) need to be truncated to represent this discontinuity; this is not so easy, nor 

common. To model intermittency, alternative two-state processes, like two-state Markov 

chains (e.g. Haan, 1977, p. 302) and point process models (e.g. Waymire and Gupta, 1981) 

have been proposed.  

 Skewness. Another peculiarity of hydrologic processes is the skewed distribution functions 

observed mostly in fine and intermediate time scales. This is not so common in other 

scientific fields whose processes are typically Gaussian. Therefore, attempts have been made 

to adapt standard models to enable treatment of skewness (e.g. Matalas and Wallis, 1976; 

Todini, 1980; Koutsoyiannis, 1999, 2000). The skewness is mainly caused by the fact that 

hydrologic variables are non-negative and sometimes intermittent. Therefore, a successful 

modeling of skewness indirectly contributes at avoiding negative values of simulated 

variables; however, it does not eliminate the problem and some ad hoc techniques (such as 

truncation of negative values) are often used in addition to modeling skewness.  

 Spatial variation. Hydrologic processes evolve both in time and space. Typically, time 

series models consider only the temporal evolution. The most precise mathematical 

representation of hydrologic processes can be achieved extending the indexing set of the 

process from one dimension (representing time) to three dimensions (one for time and two for 

space). However, multidimensional modeling is not easy and has been implemented only in 

few cases (for example in continuous time and space modeling of rainfall; e.g. Waymire et al., 

1984). A midway solution, which is the most common in stochastic hydrology, is to use 

multivariate models, which describe the temporal evolution of the process simultaneously in a 

number of points. The same method can be directly used to model more than one cross-



D. Koutsoyiannis, Stochastic Simulation of Hydrosystems (SW-913) 11 

correlated hydrological processes (e.g. rainfall and runoff) at the same location 

simultaneously.  

 In the following sections we give some characteristic examples of models that respect 

these peculiarities and together can deal with a large spectrum of problems in stochastic 

hydrologic simulation. These are: 

1. The multivariate periodic autoregressive model of order 1 (PAR(1)), which reproduces 

seasonality and skewness but not long-term persistence. 

2. A generalized multivariate stationary model that reproduces all kinds of persistence and 

simultaneously skewness but not seasonality. 

3. A combination of the previous two cases in a multivariate disaggregation framework that 

can respect almost all the above listed peculiarities, with the exception of intermittency 

whose handling by such a type of models may be not easy.  

4. The Bartlett-Lewis process that is appropriate to model rainfall, with emphasis on its 

intermittent character, at fine time scale, but at a single point basis only.    

The multivariate PAR(1) model  

Let Xs := [Xs
1, Xs

2, …, Xs
n]T represent a hydrologic process at a sub-annual (e.g. monthly) time 

scale (δ) and at n locations (the subscript T denotes the transpose of a vector or matrix). The 

PAR(1) model is similar to the AR(1) model but with periodically varying parameters. In 

multivariate setting, it is expressed by  

 Xs = as Xs – 1 + bs Vs (`2) 

where as and bs are (n × n) matrices of parameters and Vs is a vector of innovations 

(independent, both in time and location, random variables) with size n. The time index s can 

take any integer value but the parameters as and bs are periodic functions of s with period k := 

1 year / δ (e.g. 12 if δ is one month). This model can reproduce the following set of statistics: 

1. the mean values, i.e., the k vectors µs := E[Xs] of size n each;  
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2. the variances and lag-zero cross-covariances among different locations, i.e. the k 

matrices σss := Cov[Xs, Xs] = E[(Xs – µs)(Xs – µs)T] (with Cov[ ] denoting covariance), 

of size (n × n) each; 

3. the lag-one auto-covariances at each location, i.e. the k vectors  γ 
s,1  := [γ1

s,1 , …, γn
s,1 ]T, 

where γl
s,τ  := Cov[X

 l
s , X l

s–τ] = E[(X l
s  – µ l

s)(X l
s–τ – µ l

s–τ)], of size n each (notice the 

notational identity γl
s‚0 ≡ σll

ss); 

4. the third moments, i.e., the k vectors ξs = µ3[Xs] = E[(X l
s  – µ l

s)
3
, l = 1, …, n]T of size n 

each (with µ3[ ] denoting the third central moment of a random variable or random 

vector). 

The model parameters as and bs are typically determined by the moment estimators that 

are  

 as = diag(γl
s,1 / γl

s–1‚0, l = 1, …, n) (3) 

 bs bs
T = σss – as σs–1,s–1 as (4) 

These equations are extensions for the seasonal model of those for the stationary Markov 

model given by Matalas and Wallis (1976, p. 63). In an alternative estimation, a full (rather 

than a diagonal) matrix as can be derived, which enables preservation of the lag-one cross-

covariances among different locations. However, the more parsimonious formulation in (3) is 

sufficient for most cases. The calculation of bs, given the product bs bs
T from (4), is not a 

trivial issue. A generalized methodology to do this operation, also known as the extraction of 

the square root of a matrix, has been proposed by Koutsoyiannis (1999). Another group of 

model parameters are the moments of the auxiliary variables Vs. The first moments (means) 

are obtained by  

 E[Vs] =bs
–1 ( µs – as µs – 1) (5) 

The variances are by definition 1, i.e., Var[Vs] = [1, …, 1]T and the third moments are 

obtained by  

 µ3[Vs] = 



b(3)

s

 –1

 (ξs – a(3)
s  ξs – 1) (6) 
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where a(3)

 
s  and b(3)

 
s  denote the matrices whose elements are the cubes of as and bs, respectively.  

A generalized multivariate stationary model respecting long-term persistence 

The most difficult and often the most important task in simulating hydrologic processes at the 

annual scale is to reproduce long-term persistence. The Box-Jenkins processes are 

inappropriate for this purpose. Other types of models like fractional Gaussian noise (FGN) 

models and broken line models (whose comprehensive discussion can be found e.g. in Bras 

and Rodriguez-Iturbe, 1985) have several weak points such as parameter estimation problems, 

narrow type of autocorrelation functions that they can preserve, and their inability to 

reproduce skewness and simultaneously to perform in multivariate problems. In a recent paper  

(Koutsoyiannis, 2000), all these problems have been remedied and the proposed generalized 

methodology can perform in multivariate problems respecting all categories of statistics listed 

in points 1-4 of the previous section and, in addition, the auto-covariances at all locations for 

any lag r.  

 The setting of the method is stationary, rather than cyclostationary, so all statistics and 

parameters are not functions of time, which is reflected in the notation used. For example, the 

autocovariance for lag τ is denoted as γτ := [γ1
τ , …, γn

τ]T where γl
τ := Cov[X

 l
i , X l

i–τ]. It is 

reminded that long-term persistence implies non-ignorable autocovariances for high lags (e.g. 

of the order 102-103). Such autocovariances can be described by a power-type (as opposed to 

the exponential type of ARMA processes) functions, like  

 γl
τ = γl

0 (1 + κl βl τ)–1/β 
l
 (7) 

where κl and βl are constants. This generalized autocovariance structure (GAS) incorporates 

as special cases the exponential ARMA type structure (for β = 0) and the FGN structure (for a 

special combination of κl and βl; see Koutsoyiannis, 2000). The constants κl and βl can be 

estimated by fitting (7) to the sample autocovariance estimates; note that (7) can be used for 

lags beyond a certain lag τ0, thus allowing the possibility to specify different values (i.e. the 

historical values of the sample autocovariance estimates) for smaller lags. 
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 In each of the locations, the process Xi
 l can be expressed in terms of some auxiliary 

variables Vi
 l, uncorrelated in time i (i.e., Cov[Vi

 l, Vm
 k] = 0 if i ≠ m) but correlated in different 

locations l for the same time i, by using  

 Xi
 l = ∑

r = –q

q
 a|r|

l  Vi + r
 l  (8) 

This equation defines the so-called symmetric moving average (SMA) scheme. Like the 

conventional (backward) moving average (MA) process, the SMA scheme transforms a 

sequence of temporally uncorrelated variables Vi
 l into a process with autocorrelation by taking 

the weighted average of a number of Vi
 l. In the SMA process, the weights ar

l are symmetric 

about a centre (a0
l) that corresponds to the variable Vi

 l. The number of the variables Vi
 l that 

define Xi
 l is 2q + 1, where q is theoretically infinity but in practice can be restricted to a finite 

number, as the sequence of weights ar
l tends to zero for increasing r. Koutsoyiannis (2000) 

showed that the discrete Fourier transform sa
l(ω) of the ar

l sequence is related to the power 

spectrum sγ
l(ω) of the process (i.e. the discrete Fourier transform of the sequence of γl

τ) by 

 sa
l(ω) = 2 sγ

l(ω) (9) 

This enables an easy and fast (utilizing the fast Fourier transform) computation of the 

sequence of ar
l, even if the terms of the sequence are thousands. The computation includes the 

transformation of the sequence of γl
τ to sγ

l(ω), the calculation of sa
l(ω) from (9), and the inverse 

transformation of sa
l(ω) to the sequence of ar

l.  

 The auxiliary variables Vi
 l have by definition unit variances, and means E[Vi

 l] and third 

central moments µ3[Vi
 l] given by 

 










a0 + 2 ∑
j = 1

s
 aj  E[Vi

 l] = µl,      










a0
3+ 2 ∑

j = 1

q
 aj

3  µ3[Vi
 l] = ξ l (10) 

Their variance-covariance matrix c := Cov[Vi, Vi] has elements clk that can be expressed in 

terms of σlk (the elements of the variance-covariance matrix σ of Xi), and the sequences ai
l and 

ai
k by 



D. Koutsoyiannis, Stochastic Simulation of Hydrosystems (SW-913) 15 

 clk = σlk / ∑
r = –q

q
  a|r|

l  a|r|
k  (11) 

 Given the matrix c, the vector of variables Vi = [V i
 1, V i

 2, …, V i
 n]T can be generated using 

the simple multivariate model  

 Vi = b Wi  (12) 

where Wi = [W i
 1, W i

 2, …, W i
 n]T is a vector of innovations with unit variance independent both 

in time i and in location l = 1, …, n, and b is a matrix with size n × n such that 

 b bT = c (13) 

The other parameters needed to completely define model (12) are the vector of mean values 

E[W] and third moments µ3[W] of Wi
 l. These can be calculated in terms of the corresponding 

vectors of Vi
 l, already known from (10), by 

 E[W] = b–1 E[V],      µ3[W] = (b(3))–1 µ3[V] (14) 

Stochastic disaggregation techniques 

Seasonal models capable of reproducing the long-term persistence of hydrologic processes do 

not exist at present. If the timescale of interest is finer than annual and, simultaneously, 

respecting of long-term persistence is important, a two-scale approach is followed. A 

stationary stochastic model like the one described in previous section is used to generate the 

annual time series. These are then disaggregated into a finer time scale in a manner that 

periodicity and short-term memory of the process of interest is respected. Traditionally, the 

latter task has been tackled by the so-called disaggregation models, which were initially 

proposed by Valencia and Schaake (1973) and improved since then by the contribution of 

several researchers (for an outline of such contributions see Grygier and Stedinger, 1988, and 

Koutsoyiannis, 1992). These are purposely-designed models to generate a process at the finer 

time scale given that at the coarser one. Specifically, they do not model the process of interest 

in the lower-level time scale itself, but rather they are hybrid schemes using simultaneously 

both time scales. Sometimes (owing to nonlinear transformations of variables) these models 
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are not able to ensure consistency with the higher-level process. Then, adjusting procedures 

are necessary to restore consistency (e.g. Grygier and Stedinger, 1988; Koutsoyiannis and 

Manetas, 1996). 

  A different approach was recently proposed by Koutsoyiannis (2001), which is a 

generalized framework for coupling stochastic models of different time scales. This approach, 

couples two independent stochastic models appropriate respectively for the coarser (annual) 

and finer (e.g. monthly) scales using a transformation that modifies the output of the latter to 

become consistent with the series produced by the former model. To demonstrate this 

approach, we will assume that the coarse scale model is the multivariate SMA model 

described in the previous section, which produces annual series Zi, and the finer scale model 

is the multivariate PAR(1) model described two sections before, which produces monthly 

series Xs. Consistency of the two series requires that they obey   

 ∑
s = (i – 1) k + 1

i k

  Xs = Zi (15) 

where k is the number of fine-scale time steps within each coarse-scale time step (k = 12 in 

our example). The annual series Zi are generated first. The finer-scale model is run 

independently of the coarser-scale one, without any reference to the known Zi, and produces 

monthly series X
~

s. If we aggregate the latter at the annual scale (by means of (15)) we will 

obtain some annual series Z
~

i, which will apparently differ from Zi. In a subsequent step, we 

modify X
~

s thus producing Xs consistent with Zi (in the sense that they obey (15)) without 

affecting the stochastic structure that characterizes X
~

s. For this modification we use a linear 

transformation Xs = f(X
~

s, Z
~

i, Zi), which has been termed the coupling transformation. This is 

given by (Koutsoyiannis, 2001) 

 X*
i  = X

~*
i  + h (Z*

i  – Z
~*

i ) (16)  

where 

 X*
i  := [XT

(i – 1)k + 1, …, XT
i k ]

T
  (17) 

 Z*
i  := [ZT

i , ZT
i + 1, XT

(i – 1)k]
T
  (18) 
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 h = Cov[X*
i , Z*

i ] {Cov[Z*
i , Z*

i ]}
–1

 (19) 

and X
~*

i  and Z
~*

i  are defined in terms of  X
~

s and Z
~

i in a manner identical to that of the definition 

of X*
i  and Z*

i . 

 It is clarified that the vector X*
i  contains the monthly values of all 12 months of year i for 

all examined locations (e.g. for 5 locations, X*
i  contains 12 × 5 = 60 variables) and the vector 

Z*
i  contains (a) the annual values of the current year; (b) the annual values of the next year; 

and (c) the monthly values of the last month of the previous year (e.g. for 5 locations Z*
i  

contains 3 × 5 = 15 variables). Items (b) and (c) of Z*
i  are included to assure that the 

transformation will preserve not only the covariance properties among the monthly values of 

each year, but the covariances with the previous and next years as well. Note that at the stage 

of the generation at year i the monthly values of year i – 1 are known (therefore, in Z*
i  we 

enter monthly values of the year i – 1) but the monthly values of year i + 1 are not known 

(therefore, in Z*
i  we enter annual values of the year i + 1, which are known).  

 The quantity h (Z*
i  – Z

~*
i ) in (16) represents the correction applied to X

~
 to obtain X. 

Whatever the value of this correction is, the coupling transformation will ensure preservation 

of first and second order properties of variables (means and variance-covariance matrix) and 

linear relationships among them (in our case the additive property (15)). However, it is 

desirable to have this correction as small as possible in order for the transformation not to 

affect seriously other properties of the simulated processes (e.g. the skewness). It is possible 

to make the correction small enough, if we keep repeating the generation process for the 

variables of each period (rather than performing a single generation only) until a measure of 

the correction becomes lower that an accepted limit. This measure can be defined as 

 ∆ = (1 / m) || Z΄*
i  – Z

~΄*
i || (20) 

where Z΄*
i  and Z

~΄*
i  are respectively Z*

i  and Z
~*

i  standardized by standard deviation (i.e. Z΄*l
i   := 

Z*l
i  / {Var[Z*l

i ]}1/2), m is the common size of Z΄*
i  and Z

~΄*
i , and ||.|| denotes the Euclidian norm.  
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Point process models 

At even finer time scales like daily or hourly, the intermittency of hydrologic processes 

dominates and stochastic models like the ones described earlier can hardly describe it. Point 

process models have been the most widespread approach to represent intermittent hydrologic 

processes and particularly rainfall. As a representative example, we summarize here the 

rainfall model based on the Bartlett-Lewis process; this was chosen due to its wide 

applicability and experience in calibrating and applying it to several climates. Accumulated 

evidence on its ability to reproduce important features of the rainfall field from the hourly to 

the daily scale and above can be found in the literature (e.g. Rodriguez-Iturbe et al., 1987, 

1988; Onof and Wheater, 1993). This type of model has the important feature of representing 

rainfall in continuous time; the statistical properties at any discrete time scale are directly 

obtained from those in continuous time and this enables model fitting combining statistics of 

different time scales.  

 The Bartlett-Lewis Rectangular Pulse model assumes that rainfall occurs in the form of 

storms of certain durations and each storm is a cluster of random cells, each having constant 

intensity during the time period it lasts. The general assumptions of the model are (Figure 2):  

(1) Storm origins ti occur following a Poisson process with rate λ (this means that time 

durations between consecutive storm origins, ti – ti–1, are independent identically 

distributed following an exponential distribution with parameter λ).  

(2) Origins tij of cells of each storm i arrive following a Poisson process with rate β.  

(3) Arrivals of each storm i terminate after a time vi exponentially distributed with 

parameter γ.  

(4) Each cell has a duration wij exponentially distributed with parameter η.  

(5) Each cell has a uniform intensity Xij with a specified distribution. 
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Figure 2 Explanatory sketch for the Bartlett-Lewis rectangular pulses model. 

 In the original version of the model, all model parameters are assumed constant. In a 

modified version, the parameter η is randomly varied from storm to storm with a gamma 

distribution with shape parameter α and scale parameter ν. Subsequently, parameters β and γ 

also vary so that the ratios κ := β / η and φ := γ / η are constant. The distribution of the 

uniform intensity Xij is typically assumed exponential with parameter 1 / µX. Alternatively, it 

can be chosen as two-parameter gamma with mean µX and standard deviation σX. Thus, in its 

most simplified version the model uses five parameters, namely λ, β, γ, η, and µX and in its 

most enriched version seven parameters, namely λ, κ, φ, α, ν, µX and σX. 

 The equations of the Bartlett-Lewis model, relating the statistical properties of the rainfall 

process in discrete time to the model parameters, may be found in the references mentioned 

above. These equations serve as the basis for the model fitting. 

Concluding remarks 

Stochastic simulation is a powerful method, easily applicable and extremely flexible. Its main 

advantage is its ability to perform in complex systems describing them faithfully, without 

simplifying assumptions. However, it is an approximate procedure and the accuracy of its 

results depends on the sample size. In addition, it is a slow procedure, as the estimation error 

decreases inversely proportional to the square root of the simulation length (i.e. for half error 

we need four times greater simulation length). Today, this is not a major problem as the 
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progress in computer technology makes attainable even a vast simulation length in reasonable 

computer time.  

 In addition to the estimation error due to a finite simulation length, another significant 

source of uncertainty is always the limited historical records (based on hydrological 

measurements), which are used to fit probabilistic or stochastic models. This source of 

uncertainty, which concerns not only the simulation method but also any method, including 

an analytical one, is forgotten sometimes, so the following points of caution should be 

stressed: 

• The choice of a particular stochastic model and the estimation of its parameters are always 

based on the available historical records, which are the only authentic source of 

information.  

• The simulated (synthetic) hydrologic records do not replace the historical records. 

• The generation of a synthetic record (with a length usually a multiple of that of historical 

record) does not add any information nor does it extend the historical record length. 

 In conclusion, the following points should be added: 

• In problems that can be solved analytically (like in the example of the design of dykes 

discussed earlier), stochastic simulation is not the preferable method. 

• Stochastic simulation becomes a powerful numerical method when a complex system is to 

be studied, and analytical (or other numerical) methods are not applicable or are very 

difficult or require oversimplifying assumptions for the system. 
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