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Abstract It is shown that the performance of a system of two reservoirs is non-superior to that 
of a hypothetical equivalent reservoir, whose storage capacity, inflows and losses equal the 
respective sums of those of the separate reservoirs, if the objective is the maximization of 
release or reliability. 

1. Introduction 

 We consider a system of two reservoirs with storage capacities k j, j = 1, 2, given storages 
at time t – 1 denoted s j

t – 1 and given demand at time t denoted d j
t . Assuming that the inflow of 

reservoir j at time t is a random variable, I j
t , the release R j

t , spill W j
t , and storage S j

t  of the 
reservoir j at time t will be random variables too. (Here the typical notational convention of 
upper case letters for random variables is used whereas lower case letters denote known 
quantities). The release does not necessarily equal the given demand. The reservoir dynamics 
can be written as 

 S j
t  + R j

t  = s j
t – 1 – l j(s j

t – 1) + I j
t   – W j

t  (1) 

where it was assumed that the time step is small, so that the leakage l j can be assumed a 
function of the given s j

t – 1. (In this theoretical analysis the time step need not equal that used in 
simulations). Taking expected values in (1), conditional on the previous storage s j

t – 1, the 
storage capacity k j and the demand d j

t  we obtain 

 E[S j
t |s

 j
t – 1, k j, d j

t ] + E[R j
t |s

 j
t – 1, k j, d j

t ] = s j
t – 1

 – l j(s j
t – 1) + E[I j

t ] – E[W j
t |s

 j
t – 1, k j, d j

t ] (2) 

where, as implied by the notation, the inflow I j
t  does not depend on s j

t – 1, k j, d j
t . If the 

maximization of reliable release or reliability is the management objective, the left hand side 
of (2) can be regarded a measure of performance of the reservoir operation. Increasing 
expected release (E[R j

t |s j
t – 1, k j, d j

t ]) results in increasing yield, and increasing expected 
storage (E[S j

t |s
 j
t – 1, k j, d j

t ]) results in increasing reliability as it will be more likely to meet 
demand in subsequent steps. As implied by (2), the expected spill (E[W j

t |s j
t – 1, k j, d j

t ]) can be 
regarded as an equivalent measure of performance demanding its value to be as small as 
possible in order for the left hand side of (2) to be as large as possible.  
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 The spill is  

 W j
t  = max(0, s j

t – 1 – l j(s j
t – 1) + I j

t  – d j
t  – k j) (3) 

or  

 W j
t  = max(0, I j

t  – y j
t) (4) 

where y j
t  encompasses all quantities that are not random variables, i.e. 

 y j
t  := k j – s j

t – 1 + l j(s j
t – 1) + d j

t  (5) 

and represents the empty reservoir space at time t in the case that the inflow I j
t  is zero. If we 

denote the probability density function and the distribution function of I j
t  as f  j

t ( ) and F j
t ( ) , 

respectively, from (4) we find   

 E[W j
t |s j

t – 1, k j, d j
t ] ≡ E[W j

t |y j
t] =  ⌡⌠

y
t
j

∞

  (x – y j
t )f 

j
t (x) dx (6) 

2. Performance measure of the equivalent reservoir against the individual 
reservoirs  

 Now let us consider the equivalent reservoir as the hypothetical reservoir with capacity k = 
k1 + k2, inflow It = I 1

t  + I 2
t , demand dt = d 1

t  + d 2
t , storage (at time t – 1) st – 1 = s 1

t – 1 + s 2
t – 1 and 

leakage l(st – 1) = l 1(s 1
t – 1) + l 2(s 2

t – 1). For the latter to apply for any values of s 1
t – 1 and s 2

t – 1, both 
l 1(s 1

t – 1) and l 2(s 2
t – 1) must be linear functions (as implied by the equation l(s 1

t – 1 + s 2
t – 1) = 

l 1(s 1
t – 1) + l 2(s 2

t – 1)). In a manner analogous to (5) we define yt for the equivalent reservoir, 
which will be  

 yt = y 1
t  + y 2

t  (7) 

 The equivalent reservoir will be non-inferior in performance against the system of the two 
reservoirs if the quantity 

 g(y, y1) := E[W 1|y1] + E[W 2|y – y1] – E[W |y] (8) 

is non-negative for any y and y1. Here for simplicity of notation we have omitted the subscript 
t from all variables. The non-negative value of the ‘performance measure’ g(y, y1) implies that 
the expected spill from the system of two reservoirs is greater than the expected spill from the 
equivalent reservoir. By virtue of (6), (8) results in 

 g(y, y1) = ⌡⌠
y1

∞

  (x – y1) f 1(x) dx + ⌡⌠
y – y1

∞

  (x + y1 – y) f 2(x) dx –  ⌡⌠
y

∞

  (x – y) f(x) dx  (9) 

3. Proof of the non-inferior performance of the equivalent reservoir against the 
individual reservoirs  

 To show that g(y, y1) is non-negative, it suffices to show that its minimum value is non-
negative. To locate the value of y1 that minimizes g(y, y1) for a given y we determine the first 
derivative with respect to y1, which after manipulations is found to be 

  
∂g
∂y1 = F1(y1) – F2(y – y1) (10) 
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Thus, equating it to zero we can locate y
*
1 for given y from 

 F1(y
*
1) = F2(y

*
2),   y

*
2 = y – y

*
1 (11) 

which is a point of minimum since the second derivative 

 
∂2g
∂(y1)

2 = f 1(y
*
1) + f 2(y – y

*
1) (12) 

is obviously non-negative. It is noted that (11) determines a unique y
*
1 because F1(y1) and F2(y 

– y1) are both monotonically increasing and decreasing, respectively, functions of y1. It can be 
observed that (11) defines a generalized New-York-City operating rule [Clark, 1950] as F1(y1) 
and F2(y2) represent the probability of spill for each of the two reservoirs.  
 Having defined y

*
1 and consequently y

*
2 as functions of y, we can now study the variation of 

G(y) := g(y, y
*
1(y)) with respect to y. We rewrite (9) as  

 G(y) = ⌡⌠
y
*

1

∞

  (x – y
*
1) f 1(x) dx + ⌡⌠

y
*

2

∞

  (x – y
*
2) f 2(x) dx –  ⌡⌠

y

∞

  (x – y) f(x) dx  (13) 

and take the derivative, which after manipulations is found to be 

  
dG
dy  = [F1(y

*
1) – 1] 

d y
*
1 

dy  + [F2(y
*
2) – 1] 

d y
*
2 

dy  – [F(y) – 1] (14) 

Using (11) and also considering that 

 
d y

*
1 

dy  = 1 – 
d y

*
2 

dy  (15) 

we are able to simplify (14) in the form 

  
dG
dy  = F1(y

*
1) – F(y) (16) 

 Equating this derivative to zero and also considering (11), we are able to locate a stationary 
point y

*
 from 

 F1(y
*
1) = F2(y

*
2) = F(y

*
),   y

*
1 + y

*
2 = y

*
 (17) 

This, however, is not a point of minimum but one of maximum. To show this we find the 
second derivative 

  
d2G
dy2  = f 1(y

*
1) 

d y
*
1 

dy  – f(y) (18) 

Besides, taking derivatives in (11) we obtain  

 f 1(y
*
1) 

d y
*
1 

dy = f 2(y
*
2) 






1 – 
d y

*
2 

dy  (19) 

so that after algebraic manipulations 

  
d2G
dy2  = 

f 1(y
*
1)  f 2(y

*
2)

f 1(y
*
1) + f 2(y

*
2) – f(y) (20) 

which is negative at y = y
*
because when F1(y1) = F2(y2) = F(y) the following inequality holds 

  
1

f 1(y1) + 
1

f 2(y2) ≥ 
1

f(y) (21) 

(the proof is omitted). We note that the special case of equality in (21) holds only if the 
inflows to the two reservoirs are dependent in a deterministic manner, i.e. I 2 = a(I 1) where 
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a( ) is any function. (In this case it is directly obtained that f 2(y2) = f 1(y1) / a΄(y), f 2(y2) = 
f 1(y1) / [1 + a΄(y)], where a΄(y) is the derivative of  a(y), so that it can be verified that (21) 
becomes equality). This however, is a case without interest.  
 Given that the located point y

*
 is necessarily a point of maximum, this also proves that this 

point is unique because there cannot be two consecutive stationary points that are points of 
maximum simultaneously. Consequently, the derivative dG/dy will be positive for y < y

*
 and 

negative for y > y
*
, which means that G is increasing for y < y

*
 and decreasing for y > y

*
. 

Thus, the points of minimum are necessarily the lowest and highest possible values of y. Even 
in an bi-infinite reservoir, in which case the minimum points are located at y = ±∞, the value 
of G(y) cannot be negative. Indeed, from (13) we directly obtain that when y → +∞, G(y) 
→ 0, whereas for y → –∞, G(y) → y

*
1 + y

*
2 – y

*
, which due to (11) is again zero.  

 In conclusion, the minimum value of g and G cannot be negative, or equivalently, the 
expected spill from the equivalent reservoir E[W|y] cannot exceed the sum of the expected 
spills of the two reservoirs E[W 1|y1] + E[W 2| y2], for any combination of y1, y2, and y. For the 
proof we did not make any assumption for the distribution of inflows.  

4. Example for normally distributed inflows  

 It may be useful for verification to demonstrate the above theoretical result using a specific 
distribution. Thus, we assume that inflows to reservoirs 1 and 2 are normally distributed with 
means µ1 and µ2, and standard deviations σ1 and σ2. In this case the inflow to the equivalent 
reservoir, the sum of the inflows to the two reservoirs will be normally distributed too with 
mean µ = µ1 + µ2 and standard deviation σ such that |σ1 – σ2| ≤ σ ≤ σ1 + σ2. The probability 
density function of the latter will be 

 f(x) = 
1

2 π σ
 exp








–
 1 
2  



x – µ

σ

2

 (22) 

so that from (6), after manipulations, we find  

  E[W|y] =  ⌡⌠
y

∞

  (x – y)f(x) dx = (σ)
2
 f(y) – (y – µ) [1 – F(y)] (23) 

Consequently,  

 g(y, y1) =  (σ1)
2
 f 1(y1) + (σ2)

2
 f 2(y – y1) – (σ)

2
 f(y)   

   (24) 
  – (y1 – µ1) [1 – F 1(y1)] – (y – y1 – µ2) [1 – F 2(y – y1)] + (y – µ) [1 – F (y)]  

 An example plot of g(y, y1) versus y1 for y = µ is given in Figure 1 (left) assuming certain 
values of parameters shown in the figure caption. From (11) we conclude that the point of 
minimum y

*
1 is given by 

 
y
*
1 – µ1

σ1  = 
y
*
2 – µ2

σ2 ,   y
*
2 = y – y

*
1 (25) 

or 

 y
*
1 = 

σ1(y – µ2) + σ2 µ1

σ1+ σ2  = y – y
*
2 (26) 

In our example this is y
*
1 = µ1 = 2.48 hm3, and the minimum value of g(y, y1) is 0.14 hm3.  
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Figure 1 Plots of g(y, y1) versus y1 for y = µ (left) and of G(y) versus y (right) assuming normal distribution of 
inflows with µ1 = 2.48, µ2 = 5.13, µ = 7.60, σ1 = 1.24, σ2 = 2.56, σ = 3.45 (corresponding to cross-correlation 
coefficient 0.60). Units in hm3. 

 Now, the function G(y) is  

 G(y) =  σ1 (σ1+ σ2) f 1(y
*
1) – (σ)

2
 f(y) – (y – µ) [F 1(y

*
1) – F (y)] (27)   

A plot of G(y) versus y for our example is given in Figure 1(right). The point of maximum is 
y
*
 = µ in which case y

*
1 = µ1 and y

*
2 = µ2 and the maximum value of G(y) is 0.14 hm3. G(y) 

tends to 0 as y tends to ±∞.  

5. Example for gamma distributed inflows  

 The normal distribution is not representative if the time step is small, because inflows at 
small time steps are asymmetric and typically are generated from a three-parameter gamma 
distribution. The demonstration of the above results with the gamma distribution is not as 
simple and accurate as in the normal case, mainly because the sum of two correlated, gamma 
distributed variables (inflows to individual reservoirs) is difficult to determine in an analytical 
manner. We can, however, assume that it is approximately gamma distributed, i.e., with 
density F(x) = Φ(x – c; κ, λ) where c, κ, λ are the location, shape and scale parameters of the 
distribution, and   

 Φ(x, κ, λ) := ⌡⌠
0

x
 
λκ ξ κ – 1 e–λξ

Γ(κ)  dξ (28) 

From (6), after manipulations, we find  

 E[W|y] =  ⌡⌠
y

∞

  (x – y)f(x) dx = 
κ
λ [1 – Φ(y – c; κ + 1, λ)] – (y – c) [1 – Φ(y – c; κ, λ)] (29) 
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Figure 2 Plots of g(y, y1) versus y1 and y2 = y – y1 assuming three-parameter gamma distribution of inflows with 
means and standard deviations as in Figure 1 and skewness coefficients Cs

1 = 1.0, Cs
2 = 1.50, Cs = 1.05. Units in 

hm3. 

Consequently,  

 g(y, y1) =  
κ1

λ1 [1 – Φ(y1 – c1; κ1 + 1, λ1)] + 
κ2

λ2 [1 – Φ(y – y1 – c2; κ2 + 1, λ2)]   

  – 
κ
λ [1 – Φ(y – c; κ + 1, λ)] – (y1 – c1) [1 – Φ(y1 – c1; κ1, λ1)] (30) 

  – (y – y1 – c2) [1 – Φ(y – y1 – c2; κ2, λ2)] + (y – c) [1 – Φ(y – c; κ, λ)]  

 A 3-dimensional example plot of g(y, y1) versus y1 and y2 (= y – y1) is given in Figure 2. 
The behavior shown in Figure 2 is similar to that in Figure 1. The performance measure g is 
non-negative everywhere and becomes zero for very small or very high values of both y1 and 
y2 but it takes high values if y1 is low and y2 high or the reverse. This demonstrates that the 
equivalent reservoir is always non-inferior to the individual reservoirs. For intermediate 
values of y1 and y2, if a good operation rule is followed (approximately, along the diagonal of 
Figure 2 passing from the origin) the equivalent reservoir is only slightly superior to the 
individual reservoirs. But if a bad operation is followed, the loss for the two reservoirs can be 
as high as about 3 hm3, which is 40% of the total expected inflow of the month. 


