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Introduction: The context
1989-present: Several investigators discover low dimensional 
deterministic chaos in hydrologic processes
This is a manifestation of a wider trend, for which other investigators 
expressed their scepticism, e.g.,

“… the desire for finding a chaotic attractor has led to a naïve
application of the analysis methods; as a result, the number of 
claims on the presence of strange attractors in vastly different
physical, chemical, biological and astronomical systems has grown 
(exponentially?)” (Provenzale et al., 1992)
“… most (if not all) of these claims have to be taken with much 
caution” (Grassbrerger et al., 1991)

August 2001: Koutsoyiannis, D., Are hydrologic processes chaotic?
(Unpublished)
February 2002: Schertzer, D., I. Tchguirinskaia, S. Lovejoy, P. Hubert, 
H. Bendjoudi & M. Larchvêque, Which chaos in the rainfall–runoff 
process? Hydrol. Sci. J., 47(1), Discussion to Sivakumar, B., R. 
Berndtsson, J. Olsson & K. Jinno, Evidence of chaos in the rainfall–
runoff process, Hydrol. Sci. J., 46(1), 131–146, 2001. 
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Studies that have investigated chaos in hydrologic processes
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The notion of an attractor 
A dynamical system in discrete time: 
xn + 1 = S1(xn), n ∈ I, xn ∈ Rm

Expression of the system trajectory xnthrough time 
delayed vectors of a single observable yn:
xn := [yn, yn – τ, …, yn – (m – 1)τ]T, n, τ ∈ I
An attractor: a set A ⊆ Rm that is invariant under the 
dynamical evolution (S1(A) = A)
Basic property of an attractor (if it is not a fixed point or 
a limit cycle): It is nonintersecting 
(xn1

≠ xn2
for all n1 ≠ n2)

Whitney’s (1936) embedding theorem (generalized for 
fractal objects by Sauer et al., 1991): A D-dimensional 
object can be embedded in an m-dimensional Euclidean 
space if m ≥ 2D + 1 
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Demonstration of Whitney’s embedding theorem 
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Whitney’s embedding theorem applied to 
hydrological series
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2-dimensional delay representation 
of a series of 10 000 daily rainfall 
depths (Vakari raingage, W. Greece)
Embedding dimension: m = 2
Attractor dimension: D = ? 
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3-dimensional delay representation 
of the same rainfall series
Embedding dimension: m = 3
Attractor dimension: D = ? 

Question: Does this look like a line 
with D = 1 or smaller?

Answer: If D ≤ 1, then intersections 
would not occur in m = 3 dimensions.  
But intersections occur, ergo D > 1
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Whitney’s embedding theorem applied to 
hydrological series (2)

Question: In some papers analysing hydrological series (daily 
rainfall, daily streamflow) the attractor dimension was estimated as  
D = 1 or smaller, down to 0.45.  For these estimations, it was 
necessary to use embedding dimensions m as high as 10 up to 40. 
What does this mean?

Answer: Clearly, if D ≤ 1, then a dimension m = 3 would suffice to 
embed the attractor.  Thus, something was wrong in the estimation 
procedure followed
Possible sources of errors:

• What was estimated must not be the topological dimension of 
the trajectory (to be discussed later)

• As the accuracy of estimation decreases with increased 
embedding dimension m, one may need to use high m to make 
calculations inaccurate enough so as to get “good” wrong 
results (to be discussed later)

Conclusion: The result D ≤ 1 cannot be acceptable
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Seeking for a minimum acceptable attractor 
dimension in a rainfall series
Question: Can we obtain a rough estimate of the minimum acceptable 
attractor dimension D, when analysing a daily rainfall series, without 
doing any calculation?

Answer: Daily rainfall series contains dry periods 
Let k be the length of the longest dry period 
Set n = 1 the day when this dry period starts, so that the rainfall depths 
yn for n = 1 to k are all zero
Assume that the rainfall at the examined location is the outcome of a 
deterministic system whose attractor can be embedded in Rm for some 
integer m. This attractor is reconstructing using delay embedding with 
delay τ
Furthermore, assume that m < (k – 1) / τ + 1. Then, there exist at least two 
delay vectors with all their components equal to zero. Namely, the 
vectors:
xk = [yk, yk – τ, yk – 2τ, …, ]T, xk – 1 = [yk – 1, y k – 1 – τ, y k – 1 – 2τ, …, y k – 1 – (m – 1) τ]T

both will be zero (xk = xk – 1 = 0)
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Seeking for a minimum acceptable attractor 
dimension in a rainfall series (2)
Answer (continued): 
In that case, xk = S1(xk – 1) = S1(0) = 0, and since the system is deterministic, 
it will result in xn = 0 for any n > 0 (since xk + 1 = S1(xk) = S1(0) = 0, etc.)
That is, given that rainfall is zero for a period k, it will be zero forever, 
which means that the attractor is a single point
This of course is absurd and thus the embedding dimension should be 
m ≥ (k – 1) / τ + 1
Now, Whitney’s embedding theorem tells that the attractor should have 
dimension 
D ≥ (m – 1)/2 and, hence, Dmin = (k – 1) / 2τ

Example: In Athens, Greece, in a 132-year rainfall record we have a dry 
period with length k = 120 days (4 months)
If  we assume a ‘safe’ delay τ = 10, then m ≥ 12 and Dmin = 6 (like the 
largest of estimates published in the literature) – Could be D = ∞
Question: How many data points do we need to study a D = 6 attractor? 
Answer: So many that such a study is impossible (to be discussed later)
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Typical procedure to estimate an attractor 
dimension
It is an iterative procedure 

For successive m we attempt to reconstruct the attractor using 
time delay vectors x of size m
For each m we estimate the attractor dimension D(m)
If beyond some m* the attractor dimension remains constant, i.e., 
D(m) = D(m*) = D, then the attractor dimension is D and the 
required embedding dimension is m*  

The dimension of an object is determined in terms of the generalised
entropy. If the object is spanned with hypercubes of edge length ε, 
there is a sequence of entropies Iq(ε) and thus a sequence of 
dimensions 
Dq = limε→ 0 Iq(ε) / ln(ε), q = 0, 1, 2, ….
The dimension implied in the embedding theorems is the 
topological (box counting or capacity) dimension D0
The dimension used in typical calculations is the correlation 
dimension D2
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Estimation of the correlation dimension

For q ≥ 2, the estimation of dimension may be based on 
the so-called correlation sums (rather than generalised 
entropies) 
Cq(ε) = N-q {nr. of q-tuples (xj1, …, xjq) with all ‖xjs– xjr‖ < ε}
This is due to the relationship Cq(ε) ≈ exp[(1 – q) Iq(ε)]
This enables calculation of D2(m) (for some m) with the 
following algorithm 

1. Calculate the correlation sum C2(ε, m) for several values of ε
2. Make a log-log plot of C2(ε, m) vs. ε and a semi-log plot of the 

local slope d2(ε, m) := Δ[ln C2(ε, m)]/Δ[ln ε] vs. ε, and locate a 
region with constant slope, known as a scaling region

3. Calculate the slope of the scaling region, which is the estimate of 
the correlation dimension D2(m) of the set for the embedding 
dimension m
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Example
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Correlation sums C2(ε, m) and 
their local slopes d2(ε, m) vs. 
length scale ε for embedding 
dimensions m = 1 to 8 calculated 
from a series of 10 000 
independent random values 
with Pareto distribution with κ = 
1/8.
Pareto distribution and density:
F(y) = (y / a)κ,  f(y) = (κ / a) (y / a)κ – 1

(0 ≤ y ≤ a)

Question: We observe that D2(1) 
= 0.25, D2(2) = 0.5, etc. What do 
these results mean?

Answer: In fact D0(m) = m (space 
filling set) but it happens here 
D2(m) < D0(m) = m (significant 
underestimation of dimensions)
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Correlation dimension vs. capacity 
dimension and the effect of an asymmetric 
density function

Rule: D2(m) = D0(m)
The rule is valid only for square-
integrable density functions f(y), 
i.e., those whose square integral 
over their domain A is finite 
(∫

A
f 2(y) dy < ∞)

In asymmetric, J-shaped densities, 
this integral can be infinite
In this case 
D2(1) = 2 + 2 limε→ 0 [ε f ΄(ε)] / f(ε)] < 1 
= D0(1)
Hydrological time series on fine 
time scales have asymmetric, 
J-shaped densities

Example: In densities 
commonly used in hydrological 
processes, like: 
Gamma 
f(y) = [1 / aΓ(κ)] (y / a)κ – 1 e–y / a

Weibull
f(y) = (κ / a) (y / a)κ – 1 exp[–(y / a)κ]
Pareto 
f(y) = (κ / a) (y / a)κ – 1

it is shown that
D2(1) = min (1, 2κ)
That is, for κ < ½, D2(1) < 1
This explains why in the 
previous example (κ = 1/8)
D2(m) = 0.25 m < m
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The effect of intermittency
It can be shown that if a process yn is strictly intermittent, 
i.e., if Prob(yn = 0) > 0, then D2(1) = 0 exactly
This can be extended to many dimensions, i.e., 
if Prob(xn = 0) > 0 ,where xn is the m-dimensional delay 
vector, then D2(m) = 0 exactly
Hydrological processes like rainfall (at a time scale 
monthly or finer) and runoff (in ephemeral streams) may 
be strictly intermittent
In such cases, calculation of correlation dimension has no 
meaning at all, as it says nothing about the capacity 
dimension of the set under study 
Ignorance of the effect of intermittency is a potential 
source of erroneous results 



D. Koutsoyiannis, On embedding dimensions and their use to detect deterministic chaos in hydrological processes 15

Demonstration of 
the effect of 
intermittency
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Correlation sums C2(ε, m) and 
their local slopes d2(ε, m) vs. 
length scale ε for embedding 
dimensions m = 1 to 8 calculated 
from a series of 10 000 
independent random values, 
80% of which are generated 
from the uniform distribution 
and the remaining are zeros 
(located at random) 

Observation: Clearly, the 
example verifies the theoretical 
result D2(m) = 0 (unless one goes 
to large scales, ε > 10-2)
Note: Still D0(m) = m (a space 
filling set) 
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The effect of wide-sense intermittency
Wide-sense intermittency is met when a process shifts 
among different regimes not necessarily going to zero 
state
Streamflow series display this kind of intermittency (low 
flows, regular flows, floods) 
For such kinds of intermittency, Graf von Hardenberg et 
al. (1997) have shown that the standard algorithms fail to 
estimate correctly the dimensions of processes, while 
giving no warning of their failure 
In addition, they demonstrated that the standard 
algorithms, applied on a time series from a composite 
chaotic system with randomly driven intermittency, 
estimates a very small dimension (e.g. D2 = 1 or smaller) 
although the actual dimension of the system is infinite 
due to the random character of intermittency
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Recovery from the effect of wide-sense 
intermittency

Graf von Hardenberg et al. (1997) proposed ways to 
refine the algorithm so as to obtain correct results
The simplest of them is to filter the data by excluding all 
the delay vectors x having at least one component yi < c, 
where c an appropriate cutoff value that leaves out all 
“off” data points of the intermittent time series 
This simple algorithm was proven very effective
In addition, it was found appropriate to recover from the 
effects of strict-sense intermittency and asymmetric 
distribution function, as well
However, it reduces dramatically the number of data 
points, especially for large embedding dimensions (to be 
discussed further later)
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The effect of data size
Question: What is the sufficient data size (Nmin) to accurately estimate 
correlation dimension D(m) for embedding dimension m?

Typical answer: 
1. There is the formula due to Smith (1988)

Nmin = 42m

but this results in too many data points (e.g. 108 and 1016 points for m
= 5 and 10)

2. Then, there is the formula due to Nerenberg and Essex (1990)
Nmin = 102 + 0.4 m

but this still results in many points (e.g. 104 and 106 points for m = 5 
and 10)

3. Since I do not have so many points I can do with fewer (just as many 
as I have)

4. Several examples have demonstrated good performance with fewer 
points

Comment: Demonstration is not a proof
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Statistical estimation of the required data size

Most studies have attempted to show that a time series 
originates from a low-dimensional deterministic system 
rather than a stochastic system 
In this case, it is natural to make the null hypothesis that 
it originates from a stochastic system and then to reject 
this hypothesis 
Under this null hypothesis, the correlation sum for any 
length scale ε and any embedding dimension m is 
C2(ε, m) = [C2(ε, 1)]m

Since in a stochastic system, C2(ε, m) expresses a 
probability (the probability that the distance of two 
points is less than ε), the required data size Nmin can be 
easily estimated by classical statistical techniques
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Statistical estimation of the required data size (2)
The statistical result is
Nmin = √2 (z(1 + γ) / 2 / c) [C2(ε ̅, 1)]–m / 2

where 
za the a-quantile of the standard normal distribution, 
γ a confidence coefficient
c the acceptable relative error in the estimation of C2(ε, m)
ε ̅ the upper limit of the scaling area for embedding 

dimension 1 (or the highest possible length scale that 
suffices to adequately estimate D2(1), meaning that 
for ε > ε ̅, d2(ε, 1) is not constant)

Example: For γ = 0.95 or z(1 + γ) / 2 = 1.96, c = 3% and C2(ε ̅, 1) = 0.15 we 
obtain 
Nmin ≈ 102 + 0.4 m

i.e., the Nerenberg and Essex formula 
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Demonstration of 
the statistical 
estimation of the 
required data size
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10 000 independent random 
points from the Weibull
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Comments: Here dimensions 
are known from theory (D2(m) = 
0.25 m); also C2(ε, m) and d2(ε, m) 
can be computed from theory 
(blue solid curves)
Clearly, ε̅ ≤ 10-20 (error 2%), so 
Nmin=301.65 + m (close to Smith)
For m = 1, 2, 5, 10: Nmin = 8 350, 
252 000, 6.9×109, 1.7×1017
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A complete procedure for the typical problem

The procedure
Make plots of C2(ε, m) and d2(ε, m) for several m
In the plot of d2(ε, 1) (i.e., for m = 1) locate a region where d2(ε, 1) 
becomes constant and relatively smooth. Set ε̅ the upper limit of this 
area (above which d2(ε, 1) is not constant) and ε1 the lower limit 
(below which d2(ε, 1) becomes too rough)
From the plot of C2(ε, 1) determine C2(ε1, 1)
Set C2(εm, m) = C2(ε1, 1) (N1 / Nm)2 and determine εm for each m (N1
and Nm are the actual data size for embedding dimensions 1 and m
which can be different)
For those m in which εm ≤ ε̅, determine D2(m) as the average d2(ε, m) 
on the interval (εm, ε)
For those m in which εm > ε̅ , D2(m) cannot be determined 

The typical problem: For given data set of size N, if nothing is known 
for the system dynamics, up to which embedding dimension m can 
D2(m) be estimated accurately?
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Demonstration of the 
complete algorithm:
An example involving 
asymmetry and 
autocorrelation
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Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from a 
series of 10 000 autocorrelated 
random values having 
approximately Pareto distribution 
with κ = 0.44  

Comments: 
1. Maximum m = 2 for adequate 

estimation of D2(m) 
2. The synergistic effects of 

asymmetry and autocorrelation 
lead to the conclusion that D = 1

3. However, it is known that 
D2(m) = 0.88 m, so that D = ∞
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An example 
involving asymmetry 
and autocorrelation
Recovery from the 
effect of asymmetry
Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the same series as in the 
previous figure but excluding 
points having at least one 
coordinate smaller than 0.01 
(following the procedure by 
Graf von Hardenberg et al.) 
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Comments: 
1. Maximum m = 2 for adequate 

estimation of D2(m) 
2. D2(1) = 1, D2(2) = 2, so no 

saturation
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Real world examples
1. A daily rainfall 
series
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Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the daily rainfall series at the 
Vakari raingage (N = 11 476; 
intermittent; skewness = 4.59; 
chosen τ = 12)

Comments: 
1. Due to the presence of zeros, 

D2(m) = 0 for all m
2. Figure says nothing about the 

capacity dimension of the 
‘attractor’

3. If we incorrectly ignored the 
small ε and instead, chose ε in 
the region 0.01-0.1, we would 
estimate a small D (≤ 1.5)
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Real world examples
1. A daily rainfall 
series (continued)
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Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the same daily rainfall series as 
in the previous figure but 
excluding points with zero 
values

Comments: 
1. Again D2(m) = 0 due to 

“measurement induced 
intermittency” (e.g. 5% of the 
values are recorded as 0.1 mm, 
4% as 0.2 mm, etc.)

2. It becomes much more difficult 
to obtain an inaccurate estimate 
of a small D
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Real world examples
2. A storm data 
series
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Correlation sums C2(ε, m) and slopes
d2(ε, m) calculated from a storm data 
series at Iowa (N = 9679 data points 
measured every 10 s; skewness = 4.83
corresponding to κ = 0.40 for Gamma 
distribution; high autocorrelation; 
chosen τ = 500)

Comments: 
1. Again “measurement induced 

intermittency” (e.g., 217 values are 
0.09 mm/h, 169 are 0.08 mm/h, etc.)

2. Ignoring intermittency area, 
maximum m = 2, D2(1) = 0.69 and 
D2(2) = 1.00

3. Results do not support nor prohibit 
the existence of low-dimensional 
determinism
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Real world examples
2. A storm data 
series (continued)
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Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the same storm series as in the 
previous figure but excluding 
points having at least one 
coordinate smaller than 0.01

Comments: 
1. Ignoring intermittency area, 

maximum m = 1 (for adequate 
estimation of D2(m)), whereas 
D2(1) = 1

2. Results do not indicate low-
dimensional determinism



D. Koutsoyiannis, On embedding dimensions and their use to detect deterministic chaos in hydrological processes 29

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E-04 1E-03 1E-02 1E-01 1E+00
ε

C
2(
ε,

 m
) 1 2 3 4

5 6 7 8

 Inaccurate area

Inadequate area

0

1

2

3

4

5

6

7

8

1E-04 1E-03 1E-02 1E-01 1E+00
ε

d
2(
ε,

 m
)

1 2 3 4
5 6 7 8

Inaccurate area

Inadequate area

ε
_

ε 1

Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the monthly rainfall series at 
Athens excluding zero points (N
= 1586; intermittent; skewness = 
1.75; chosen τ = 1)

Real world examples
3. A monthly rainfall 
series

Comments: 
1. Maximum m = 1 (for adequate 

estimation of D2(m)), whereas 
D2(1) = 1

2. Results do not indicate low-
dimensional determinism
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Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the hourly relative humidity 
series at Athens (N = 18 888; no 
intermittency; no skewness; high 
autocorrelation; chosen τ = 108)

Real world examples
4. A hourly relative 
humidity series

Comments: 
1. Maximum m = 4 (for adequate 

estimation of D2(m)), 
2. D2(m) = m, for m = 1 to 4
3. Clearly, there is no low-

dimensional determinism
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Correlation sums C2(ε, m) and 
slopes d2(ε, m) calculated from 
the discharge series at Ali Efenti
gage at Pinios River (N = 8 246 -
1435 missing values; wide-sense 
intermittency; skewness; high 
autocorrelation; chosen τ = 94)

Real world examples
5. A daily streamflow 
series

Comments: 
1. Maximum m = 1 (for adequate 

estimation of D2(m)), whereas 
D2(1) = 1

2. Results do not indicate low-
dimensional determinism
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Conclusions
Studies reporting the discovery of low-dimensional chaotic 
deterministic dynamics in hydrological systems (using time 
delay embedding and correlation dimension) may be misleading 
and flawed
Specific peculiarities of hydrological processes on fine time 
scales, such as asymmetric J-shaped densities, intermittency, and 
high autocorrelation, are synergistic factors that can lead to 
misleading conclusions regarding presence of (low-dimensional) 
deterministic chaos 
The required size to accurately estimate chaotic descriptors of 
hydrological processes, as quantified by statistical reasoning, is 
so tremendous that cannot be met in hydrological records
In light of the theoretical analyses and arguments, procedures 
are proposed to recover from misleading results 
Typical real-world hydrometeorological time series, such as 
relative humidity, rainfall, and runoff, are explored and none of 
them is found to indicate the presence of low-dimensional chaos



This presentation is available on line at
http://www.itia.ntua.gr/e/docinfo/584/

References
Graf von Hardenberg, J., F. Paparella, N. Platt, A. Provenzale, E. A. Spiegel, and C. Tesser, Missing motor of on-off intermittency, Physical Review 

E, 55(1), 58-64, 1997b.
Grassberger, P., T. Schreiber, and C. Schaffrath, Nonlinear time sequence analysis, Int. J. Bifurcation and Chaos, 1, 521, 1991.
Jayawardena, A. W., and F. Lai, Analysis and prediction of chaos in rainfall and stream flow time series, J. Hydrol., 153, 23-52, 1994.
Koutsoyiannis, D., and D. Pachakis, Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series, Journal of 

Geophysical Research-Atmospheres, 101(D21), 26444-26451, 1996.
Nerenberg, M. A. H., and C. Essex, Correlation dimension and systematic geometric effects, Phys. Rev. A, 42, 7065-7074, 1990.
Porporato, A., and L. Ridolfi, Nonlinear analysis of river flow time sequences, Water Resour. Res., 33(6), 1353-1367, 1997.
Provenzale, A., L. A. Smith, R. Vio and G. Murante, Distinguishing between low-dimensional dynamics and randomness in measured time series, 

Physica D, 58, 31-49, 1992.
Rodriguez-Iturbe, I., Exploring complexity in the structure of rainfall, Adv. Water Resour., 14(4), 162-167, 1991.
Rodriguez-Iturbe, I., B. F. de Power, M. B. Sharifi, and K. P. Georgakakos, Chaos in Rainfall, Water Resour. Res., 25(7), 1667-1675, 1989.
Sangoyomi, T. B., U. Lall, and H. D. I. Abarbanel, Nonlinear dynamics of the Great Salt Lake: dimension estimation, Water Resour. Res., 32(1), 149-

159, 1996.
Sauer, T., J. Yorke, and M. Casdagli, Embedology, J. Stat. Phys., 65(3/4), 579-616, 1991.
Sharifi, M. B., K. P. Georgakakos, and I. Rodriguez-Iturbe, Evidence of deterministic chaos in the pulse of storm rainfall, J. Atmos. Sci., 45(7), 888-

893, 1990.
Sivakumar, B., S.-Y. Liong, and C.-Y. Liaw, Evidence of chaotic behavior in Singapore rainfall, J. Am. Water Resour. Assoc., 34(2) 301-310, 1998.
Sivakumar, B., S.-Y. Liong, C.-Y. Liaw, and K.-K. Phoon, Singapore rainfall behavior: chaotic? J. Hydrol. Eng., ASCE, 4(1), 38-48, 1999.
Sivakumar, B., R. Berndtsson, J. Olsson, K Jinno, and A. Kawamura, Dynamics of monthly rainfall-runoff process at the Göta basin: A search for 

chaos, Hydrology and Earth System Sciences, 4(3), 407-417, 2000.
Sivakumar, B., R. Berndtsson, J. Olsson, and K Jinno, Evidence of chaos in the rainfall-runoff process, Hydrological Sciences Journal, 46(1), 131-145, 

2001.
Smith, L. A., Intrinsic limits on dimension calculations, Phys. Lett. A, 133, 283-288, 1988.
Tsonis, A. A., Chaos: From Theory to Applications, 274 pp., Plenum, New York, 1992.
Tsonis, A. A., J. B. Elsner, and K. Georgakakos, Estimating the dimension of weather and climate attractors: Important issues on the procedure 

and interpretation, J. Atmos. Sci., 50(15) 2249-2555, 1993.
Wang, Q., and T. Y. Gan, Biases of correlation dimension estimates of streamflow data in the Canadian prairies, Water Resour. Res., 34(9), 2329–

2339, 1998.
Whitney, H., Differentiable manifolds, Ann. Math., 37, 645, 1936.
Wilcox, B. P., M. S. Seyfried, and T. H. Matison, Searching for Chaotic Dynamics in Snowmelt Runoff, Water Resour. Res., 27(6), 1005-1010, 1991.

M
ad

e 
in

 C
ef

al
on

ia


