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Abstract The Gumbel distribution has been the prevailing model for quantifying risk 

associated with extreme rainfall. Several arguments including theoretical reasoning and 

empirical evidence are supposed to support the appropriateness of the Gumbel distribution. 

These arguments are examined thoroughly in this work and are put into question. Specifically, 

theoretical analyses show that the Gumbel distribution is quite unlikely to apply to 

hydrological extremes and its application may misjudge the risk as it underestimates seriously 

the largest extreme rainfall amounts. Besides, it is shown that hydrological records of typical 

length (some decades) may display a distorted picture of the actual distribution suggesting 

that the Gumbel distribution is an appropriate model for rainfall extremes while it is not. In 

addition, it is shown that the extreme value distribution of type II (EV2) is a more consistent 

alternative. Based on the theoretical analysis, in the second part of this study an extensive 

empirical investigation is performed using a collection of 169 of the longest available rainfall 

records worldwide, each having 100-154 years of data. This verifies the inappropriateness of 

the Gumbel distribution and the appropriateness of EV2 distribution for rainfall extremes. 

Keywords design rainfall; extreme rainfall; generalized extreme value distribution; Gumbel 

distribution; hydrological design; hydrological extremes; probable maximum precipitation; 

risk.  

Statistique de valeurs extrêmes et estimation de précipitations extrêmes 

1. Recherche théorique  

Résumé La distribution de Gumbel a longtemps été le modèle régnant pour la quantification 

du risque associé aux précipitations extrêmes. Plusieurs arguments comprenant à la fois un 
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raisonnement théorique et des faits empiriques sont censés soutenir la convenance de la 

distribution de Gumbel. Ces arguments sont examinés exhaustivement dans ce travail et sont 

mis en question. Spécifiquement, des analyses théoriques montrent que la distribution de 

Gumbel est peu susceptible de s'appliquer aux valeurs extrêmes de variables hydrologiques et 

son application peut conduire à une sous-estimation sérieuse du risque des plus grandes 

valeurs dans la série des valeurs extrêmes de précipitations. En outre, il est montré que les 

séries hydrologiques de longueur typique (quelques décennies) peuvent montrer une image 

déformée de la distribution réelle ce qui suggère que la distribution de Gumbel est réellement 

le modèle approprié pour les précipitations extrêmes alors qu'elle ne l'est pas. En outre, on 

montre que la distribution de valeurs extrêmes du type II (EV2) est une alternative plus 

cohérente. Dans la deuxième partie de cette étude, en et se basant sur l'analyse théorique, une 

recherche empirique étendue est effectuée; celle-ci utilise une collection de 169 parmi les 

séries de précipitations les plus longues qui sont disponibles dans le monde entier, chacun 

comportant 100-154 ans de données. Ceci vérifie l'inapproprieté de la distribution de Gumbel 

et la convenance de la distribution EV2 pour les précipitations extrêmes.  

Mots-clés Précipitations de projet; précipitations extrêmes; distribution généralisée de valeurs 

extrêmes; Distribution de Gumbel; conception hydrologique; valeurs extrêmes en hydrologie; 

précipitation maximum probable; risque.  

1. Introduction 

Almost a century after the empirical foundation of hydrological frequency curves known as 

“duration curves” (Hazen, 1914) and the theoretical foundation of probabilities of extreme 

values (von Bortkiewicz, 1922; von Mises, 1923), and half a century after the convergence of 

empirical and theoretical approaches (Gumbel, 1958) the estimation of hydrological extremes 

continues to be highly uncertain. This has been vividly expressed by Klemeš (2000), who 

argues that  

“... the increased mathematization of hydrological frequency analysis over the past 50 

years has not increased the validity of the estimates of frequencies of high extremes and 
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thus has not improved our ability to assess the safety of structures whose design 

characteristics are based on them. The distribution models used now, though disguised 

in rigorous mathematical garb, are no more, and quite likely less, valid for estimating 

the probabilities of rare events than were the extensions ‘by eye’ of duration curves 

employed 50 years ago.” 

 Twenty years earlier, a similar critique was done be Willeke (1980; see also Dooge, 1986), 

who, among several common myths in hydrology, included the “Myth of the Tails”, which 

reads  

“Statistical distributions applied to hydrometeorological events that fit through the 

range of observed data are applicable in the tails”,  

and emphasizes the fact that the tails of distributions fitted to real data are highly uncertain. 

 Obviously, however, the probabilistic approach to extreme values of hydrological 

processes signifies a major progress in hydrological science and engineering as it quantifies 

risk and disputes arbitrary and rather irrational concepts and approaches like the probable 

maximum precipitation (PMP) and flood (PMF). The latter that essentially assume an upper 

limit to precipitation and river flow have never been supported by concrete reasoning and data 

and have been criticized on both ethical grounds, for the promise that design values are risk 

free, and technical grounds for logical inconsistency and methodological gaps (Benson, 

1973). For example, the hydrometeorological approaches to PMP are based on storm 

maximization assuming a high dew point, equal to the maximum observed values during a 

period of at least 50 years (World Meteorological Organization, 1986, p. 11). Obviously, the 

maximum of a 50-year period does not represent a physical limit and had this period been 100 

or 200 years the observed dew point would be higher. The statistical approach to PMP, based 

on the studies of Hershield (1961, 1965) has been revisited recently (Koutsoyiannis, 1999) 

and it was concluded that the data used by Hershfield do not suggest the existence of an upper 

limit. It must be recognized however, that the PMP/PMF concepts are still in wide use and are 

regarded by many as concepts more physically based than the probabilistic approach. 
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 If one is exempted from the concept of an upper limit to a hydrological quantity and adopts 

a probabilistic approach, one will accept that the quantity may grow without any upper limit 

but the probability of exceedence decreases as the quantity grows. In this case, as probability 

of exceedance tends to zero, there exists a lower limit to the rate of growth which is proven 

mathematically. This lower limit is represented by the Gumbel distribution, which has the 

thinnest possible tail. So, abandoning the PMP concept and adopting the Gumbel distribution 

can be thought of as a step from a finite upper limit to infinity, but with the slowest possible 

growth rate towards infinity. Does nature follow the slowest path to infinity? This question is 

not a philosophical one but has strong engineering implications. If the answer is positive, the 

design values for flood protection structures or measures will be the smallest possible ones 

(among those obtained by the probabilistic approach), otherwise they will be higher. 

 The fact that the Gumbel distribution has been the most common probabilistic model used 

in modelling hydrological extremes, especially rainfall extremes, may be interpreted as a 

positive answer to the above question. It is well known that the estimation of rainfall extremes 

is very important for major hydraulic structures, given that design floods are generally 

estimated from appropriately synthesized design storms (e.g. U.S. Department of the Interior, 

Bureau of Reclamation, 1977, 1987; Sutcliffe, 1978). Recently, several studies have shown 

that floods seem to have heavier tails than a Gumbel distribution (Farquharson et al., 1992; 

Turcotte, 1994; Turcotte and Malamud, 2003). Other studies (Wilks, 1993; Koutsoyiannis and 

Baloutsos, 2000; Coles et al. 2003; Coles and Pericchi, 2003; Sisson et al., unpublished) have 

extended the scepticism for the Gumbel distribution to the case of rainfall extremes, showing 

that it underestimates seriously the largest extreme rainfall amounts.  

 This scepticism on the Gumbel distribution for hydrological extremes, with emphasis on 

rainfall extremes, is the central theme of this study. After a brief review of basic concepts of 

extreme value distributions, theoretical arguments are provided that show that the Gumbel 

distribution is quite unlikely to apply to hydrological extremes. Besides, it is shown that 

hydrological records of inadequate length may display a distorted picture of the actual 

distribution suggesting that the Gumbel distribution is an appropriate model for rainfall 

extremes while it is not. Apparently, as record length grows, the picture drawn by 
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hydrological records becomes clearer. Therefore, a collection of 169 of the longest available 

rainfall records worldwide, each having 100-154 years of data was formed. Based on the 

theoretical analysis, in the second part of this study an extensive empirical investigation is 

performed. This verifies the fact that the Gumbel distribution is inappropriate for rainfall 

extremes and suggests that the three-parameter extreme value distribution of type II is a 

choice closer to reality and easy to use even with short rainfall records.  

2. Basic concepts of extreme value distributions  

It is recalled from probability theory that the largest of a number n of independent identically 

distributed random variables, i.e.,  

 X := max {Y1, Y2, …, Yn} (1) 

has probability distribution function  

 Hn(x) = [F(x)]n  (2) 

where F(x) := P{Yi ≤ x} is the common probability distribution function (referred to as parent 

distribution) of each Yi. If n is not constant but rather can be regarded as a realization of a 

Poisson distributed random variable with mean ν, then the distribution of X becomes (e.g. 

Todorovic and Zelenhasic, 1970; Rossi et al., 1984), 

 H ν́(x) = exp{–ν[1 – F(x)]} (3) 

Since ln [F(x)]n = n ln {1 – [1 – F(x)]} = n {–[1 – F(x)] – [1 – F(x)]2 – …} ≈ –n [1 – F(x)], it 

turns out that for large n or large F(x), Hn(x) ≈ H ń(x). Numerical investigation shows that even 

for relatively small n, the difference between Hn(x) and H ń(x) is not significant (e.g., for n = 

10, the relative error in estimating the exceedence probability 1 – Hn(x) from (3) rather than 

from (2) is about 3% at most; for F(x) = 0.95, even for n = 1, the error does not exceed 2.5%).  

 In hydrological applications concerning the distribution of annual maximum rainfall or 

flood, it may be assumed that the number of values of Yi (e.g., the number of storms or floods 

per year), whose maximum is the variable of interest X (e.g. the maximum rainfall depth or 
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flood discharge), is not constant. The Poisson model can be regarded as appropriate for such 

applications. Given also the small difference between (3) and (2), it can be concluded that (3) 

should be regarded as an appropriate model for every practical hydrological application. 

 However, the exact distributions (2) or (3), whose evaluation requires the parent 

distribution to be known, have not been used in hydrological statistics. Instead, hydrological 

applications have made wide use of asymptotes or limiting extreme value distributions, which 

are obtained from the exact distributions when n tends to infinity. Gumbel (1958), following 

the pioneering works by Fréchet (1927), Fisher and Tippet (1928) and Gnedenco (1941) 

developed a comprehensive theory of extreme value distributions. According to this, as n 

tends to infinity Hn(x) converges to one of three possible asymptotes, depending on the 

mathematical form of F(x) (Gumbel, 1958, p. 157). The same limiting distributions may also 

result from H ν́(x) as ν tends to infinity. All three asymptotes can be described by a single 

mathematical expression introduced by Jenkinson (1955, 1969) and become known as the 

Generalized Extreme Value (GEV) distribution. This expression is  

 H(x) = exp
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where ψ, λ > 0 and κ are location, scale and shape parameters, respectively. Leadbetter (1974) 

showed that this holds not only for maxima of independent random variables but for 

dependent random variables, as well, provided that there is no long-range dependence of high-

level exceedences. It is noted that the sign convention of κ in (4) is opposite to that most 

commonly used in hydrological texts and the location parameter is dimensionless whereas in 

most texts a dimensional parameter ξ = λ ψ is used. 

 When κ > 0, H(x) represents the extreme value distribution of maxima of type II (EV2). In 

this case the variable is bounded from below and unbounded from above (λ ψ – λ/κ ≤ x < +∞). 

A special case is obtained when the lower bound becomes zero (ψ = 1/κ). This special two-

parameter distribution has the simplified form 

 Η(x) = exp
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In some texts, (5) is referred to as the EV2 distribution. Here, as in Gumbel (1958), the name 

EV2 distribution is used for the complete three-parameter form (4) with κ > 0. Distribution (5) 

is referred to as the Fréchet distribution. 

 The limiting case κ = 0 represents the type I distribution of maxima (EV1 or Gumbel 

distribution). Using simple calculus it is found that in this case, (4) takes the form 

 H(x) = exp[–exp (–x/λ + ψ)]   (6) 

which is unbounded from both below and above (–∞ < x < +∞). 

 When κ < 0, H(x) represents the type III (EV3) distribution of maxima. This, however, 

should be of no practical interest in hydrology as it refers to random variables bounded from 

above (–∞ < x ≤ λ ψ – λ/κ). As discussed in the introduction, there is no general consensus on 

this and many regard an upper bound in natural quantities as reasonable. Even Jenkinson 

(1955) regards the EV3 distribution as “the most frequently found in nature, since it is 

reasonable to expect the maximum values to have an upper bound”. However, he leaves out 

rainfall from this conjecture saying “to a considerable extend rainfall amounts are 

‘uncontrolled’ and high falls may be recorded”. In fact, he proposes the EV2 distribution for 

rainfall (note that he uses a different convention, calling EV2 as type I). In a recent study, 

Sisson et al. (unpublished), even though detect EV2 behaviour of rainfall maxima, they 

attempt to incorporate the idea of a PMP upper bound within an EV2 modelling framework.  

 Furthermore, it is noted that if the distribution of minima is of interest, the roles of types II 

and III reverse, e.g. the type III distribution is not bounded from above and thus it is a 

reasonable model for the study of droughts. 

 The close relationship between the distribution of maxima H(x) and the tail of the parent 

distribution F(x) allows for the determination of the latter if the former is known. The tail of 

F(x) can be represented by the distribution of x conditional on being greater than a certain 

threshold ξ, i.e., Gξ(x) := F(x|x > ξ), for which  

 1 – Gξ(x) = 
1 – F(x)
1 – F(ξ) ,          x ≥ ξ  (7) 
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If we choose ξ so that the exceedence probability 1 – F(ξ) equals 1/ν, the reciprocal of the 

mean number of events in a year (this is implied when the partial duration series is formed 

from a time series of measurements, by choosing a number of events equal to the number of 

years of record), and denote G(x) the conditional distribution for this specific value, then  

 1 – G(x) = ν [1 – F(x)] (8) 

Combining (8) with (3) it is obtained that 

 G(x) = 1 + ln H ν́(x) (9) 

 If H ν́(x) is given by the limit distribution H(x) in (4), then it is concluded that for κ > 0  

 G(x) = 1 – 



1 + κ 



 x 

λ  – ψ  
–1 / κ

,         x ≥ λ ψ (10) 

which is the Pareto distribution. Similarly, for κ = 0  

 G(x) = 1 – exp (–x/λ + ψ),          x ≥ λ ψ  (11) 

which is the exponential distribution. For the special case ψ = 1/κ 

 G(x) = 1 – 



 λ 

κ x
1/κ

,                x ≥ λ/κ  (12) 

which is a power law relationship between the distribution quantile x and the return period 

T := 1 / [1 – G(x)], the mean time interval between exceedences of x, expressed in years. 

Specifically, (12) can be written as x = (λ/κ) T κ. Turcotte (1994) used this special power law 

(also calling it a fractal law) to model flood peaks over threshold in 1200 stations in the 

United States. In the generalized Pareto case (10), the corresponding relationship is x = 

(λ/κ) (T κ – 1 + κ ψ)  

3. The prevailing of the Gumbel distribution 

Due to their simplicity and generality, the limiting extreme value distributions H(x) have 

become very widespread in hydrology. The exact distributions Hn(x) and H ν́(x) (equations (2) 
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and (3)) are used rarely in studies of hydrological extremes, as their determination requires the 

parent distribution F(x) to be known. The determination of F(x) may be too complex and is 

not necessary as its truncated version G(x) is sufficient for the study of extremes. 

 In particular, as mentioned in the introduction, the EV1 extreme value distribution has 

been by far the most popular model of extremes. In hydrological education is so prevailing 

that most textbooks contain the EV1 distribution only, omitting EV2. In hydrological 

engineering studies, especially those analysing rainfall maxima, the use of EV1 has become 

so common that its adoption is almost automatic, without any reasoning or comparing it with 

other possible models. There are several reasons for this: 

a. Theoretical reasons. Most types of parent distribution functions that are used in 

hydrology, such as exponential, gamma, Weibull, normal, and lognormal, (e.g. 

Kottegoda and Rosso, 1997, p. 431) belong to the domain of attraction of the Gumbel 

distribution. In contrast, the domain of attraction of the EV2 distribution includes less 

frequently used parent distributions like Pareto, Cauchy, and log-gamma.  

b. Simplicity. The mathematical handling of the two-parameter EV1 is much simpler 

than that of the three-parameter EV2 (see also point d below).  

c. Accuracy of estimated parameters. Obviously, two parameters are more accurately 

estimated than three. For the former case, mean and standard deviation (or second L-

moment) suffice, whereas in the latter case the skewness is also required and its 

estimation is extremely uncertain for typical small-size hydrological samples.  

d. Practical reasons. Probability plots are the most common tools used by practitioners, 

engineers and hydrologists, to choose an appropriate distribution function. EV1 offers 

a linear probability plot, known as Gumbel probability plot, which is a diagram of xH 

versus the so called Gumbel reduced variate, defined as zH := –ln(–ln H). The 

observed zH is estimated in terms of plotting positions, i.e. sample estimates of 

probability of non-exceedence. In contrast, a generalized linear probability plot for the 

three-parameter EV2 is not possible to construct (unless one of the parameters is 

fixed). In fact, if κ > 0, the plot of xH versus zH is a convex curve. This  may be 
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regarded as a primary reason of choosing EV1 against EV2 in practice. For the Fréchet 

distribution, a linear plot is possible (a plot of ln xH versus zH that will be referred to as 

the Fréchet probability plot). However, empirical evidence shows that, in most cases, 

plots of xH versus zH give more straight-line arrangements than plots of ln xH versus zH. 

An additional practical reason is the fact that many institutions suggest, or even 

require, the use of EV1.  

 As mentioned in the introduction, EV1 has one potential disadvantage, which is very 

important from the engineering point of view: For small probabilities of exceedence (or large 

return periods) it yields the smallest possible quantiles xH in comparison to those of EV2 for 

any (positive) value of the shape parameter κ. This means that EV1 results in the highest 

possible risk for engineering structures. Normally, this would be a sufficient reason to avoid 

the use of EV1 in engineering studies.  

 Obviously, this disadvantage of EV1 would be counterbalanced only by strong empirical 

evidence and theoretical reasoning. In practice, the small size of common hydrological 

records (e.g. a few tens of years) cannot provide sufficient empirical evidence for preferring 

EV1 over EV2. This is discussed in section 5 based on a simulation study and in part 2 of the 

study based on the real-world collection of long records. In addition, the theoretical reasons, 

exhibited in point a above, are not strong enough to justify the automatic adoption of the 

Gumbel distribution. This is discussed in section 4.  

4. Theoretical study of the appropriateness of the Gumbel distribution 

To begin the theoretical discussion, it will be assumed that the events, whose maximum 

values are studied, can be represented as independent identically distributed random variables 

Yi (Assumption 1). Further, it will be assumed that the (unknown) parent distribution F(y) 

belongs, with absolute certainty, to the domain of attraction of EV1 (Assumption 2). Are 

these rather oversimplifying and implausible assumptions sufficient to justify the adoption of 

EV1? The answer is clearly, No. This answer is demonstrated in Figure 1, which depicts 

Gumbel probability plots of the exact distribution functions of maxima Hn(x) for n = 103 and 
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106 for two parent distribution functions. The first (left panel) is the standard normal 

distribution and the second (right panel) is the Weibull distribution (F(y) = 1 – exp(–y k)) with 

shape parameter k = 0.5. Both parent distributions belong to the domain of attraction of the 

EV1 limiting distribution, so it is expected that the Gumbel probability plot tends to a straight 

line as n → ∞. However, the tendency is remarkably slow, and even for n as high as 106 the 

curvature of the distribution functions is apparent. Obviously, in hydrological applications, 

such a high number of events within a year, is not possible (it can be expected that the number 

of storms or floods in a location will not exceed the order of 10-102). Thus, the limiting 

distribution for n → ∞ is not useful at all. 

 When studying storms and floods at a fine time scale, the parent distribution has typically a 

positively skewed, J-shaped density function. Thus, the normal distribution is not relevant in 

this case, but the Weibull distribution with shape parameter smaller than 1 (e.g. k = 0.5 as in 

the example of Figure 1) can be a plausible parent distribution. In this case, it is observed in 

Figure 1, that the probability plots are convex curves, which indicates that, for a specified n, 

an EV2 distribution may approximate sufficiently the exact distribution. Thus, even if the 

parent distribution belongs to the domain of attraction of the Gumbel distribution, an EV2 

distribution can be a choice closer to the exact distribution of maxima in comparison to EV1. 

 Now, the Assumption 1 set above will be relaxed, forming the more plausible Assumption 

1A. According to this, the events whose maximum values are studied are independent random 

variables Yi but not identically distributed ones. Instead, it is assumed that all Yi have the same 

type of distribution function Fi(y) but with different parameters. This distribution function 

belongs to the domain of attraction of the Gumbel distribution, i.e., Assumption 2 is valid for 

each Fi(y).  

 The relaxed assumption 1A is more consistent with hydrological reality. The statistical 

characteristics (e.g., averages, standard deviations etc.) and, consequently, the parameters of 

distribution functions exhibit temporal (e.g. seasonal) variation. In addition, evidence from 

long geophysical records shows that there appear fluctuations of local statistical properties on 

large time scales (e.g., tens of years, hundreds of years, etc.). It has been proposed that such 

fluctuations, either periodical or irregular, occurring either on a single time scales or on 
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multiple time scales simultaneously, constitute the physical basis of the well-known Hurst 

phenomenon (Klemes, 1974; Montanari et al., 1999; Koutsoyiannis, 2002). Here it should be 

noted that such fluctuations may not be detected in series of maxima, which typically satisfy  

Leadbetter’s (1974) condition of the absence long-range dependence, but surely affect the 

parent distribution of rainfall at low- and intermediate-level exceedences. 

 The consequences of Assumption 1A are demonstrated by examples in which the parent 

distribution is specified to be the gamma distribution (which belongs to the domain of 

attraction of EV1) with varying scale parameter. (Additionally, the shape parameter could be 

regarded as a varying one, but the study of the effect of the variation of the scale parameter is 

mathematically more convenient and sufficient for the demonstration attempted.) More 

specifically, it may be assumed that during some ‘epoch’ (e.g. a specific month of a year 

through one or more years) the scale parameter is fixed to some value αi > 0. In this case, the 

probability density function of Yi, conditional on αi, is 

 fi(y|αi) = αi
θ y

θ – 1 
e

 –αi
 y
 /Γ(θ) (13) 

where the shape parameter θ > 0 was kept constant for all ‘epochs’. In the first example it will 

be assumed that αi varies randomly following a gamma distribution itself with scale parameter 

β > 0 and shape parameter τ > 0, so that its density is 

 g(αi) = β
τ αi

τ – 1 
e

 –β αi /Γ(τ) (14) 

 If one is interested on the unconditional distribution of the variable Y, that is valid over all 

epochs, instead of a specified epoch, then one should use (13) and (14) to determine the 

marginal density of Y, which is 

 f(y) = ⌡⌠
0

∞

 fi(y|αi) g(αi) dαi = {β
τ y

θ – 1 
/[Γ(θ) Γ(τ)]} ⌡⌠

0

∞

 αi
θ + τ – 1 e

 –(y +
 
β) αi

 
dαi (15) 

After algebraic manipulations it is obtained that  

 f(y) = 
1

β Β(θ, τ) 
(y/β)

θ – 1

 (1 + y/β)
τ + θ  (16) 
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which shows that the marginal distribution of Y/β is beta of the second kind (Kendal and 

Stuart, 1963, p. 151; Yevjevich, 1972, p. 149). Consequently, the marginal probability 

distribution function of Y is  

 F(y) = By/(y + β) (θ, τ) / B (θ, τ)  (17) 

where Bz(θ, τ) and B(θ, τ) denote respectively the incomplete beta function and the Euler 

(complete) beta function, i.e.,  

 Bz(θ, τ) := ⌡⌠
0

z

 t θ – 1 (1 – t)τ – 1 dt,     B(θ, τ) := ⌡⌠
0

∞

 t θ – 1 (1 – t)τ – 1 dt (18) 

Thus, the exact distribution of maxima for constant and variable n is respectively 

 Hn(x) = [Bx/(x + β) (θ, τ) / B (θ, τ)]n,     H ν́(x) = exp{–ν[1 – Bx/(x + β) (θ, τ) / B (θ, τ)]}  (19) 

For θ = 1, the parent distribution (17) simplifies to 

 F(y) = 1 – (1 + y/β)–τ  (20) 

which is the Pareto distribution. Clearly, this belongs to the domain of attraction of EV2 with 

zero lower bound, i.e., the limiting distribution of maxima H(x) is the Fréchet distribution. In 

the general case, it can be shown that  

 
 

lim
y → ∞

  
y f(y)

1 – F(y) = τ > 0  (21) 

which is a sufficient condition for convergence of Hn(x) to the EV2 distribution (e.g. 

Kottegoda and Rosso, 1997, p. 430). 

 In Figure 2 it is demonstrated how the exact distribution tends to the Fréchet distribution as 

n increases. In this case the shape parameter θ was assumed 0.5 and the exact distribution was 

calculated from (19). For n as high as 1000 the Fréchet probability plot becomes almost a 

straight line. However, as in the cases of Figure 1, for smaller values of n, which are more 

relevant in hydrological applications, the Fréchet plot of the exact distribution appears to be 
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curved, so an EV2 distribution would yield a better approximation to the exact distribution 

than the Fréchet distribution. (It is noted that the concave curvature appearing in the Fréchet 

plot of Figure 2 would be convex in a Gumbel plot).  

 A more specific numerical experiment is depicted in Figure 3. Here the exact distributions 

of maxima H5(x) (for n = 5), based on assumptions 1 and 1A, are compared. In case 1A, a 

variable parameter gamma distribution was assumed, with parameters θ = 0.5, τ = 5 and β = 1. 

In case 1, the variable scale parameter is replaced by a constant parameter α = τ/β = 5 (equal 

to the mean of the scale parameter of case 1A). The exact distribution of maxima for case 1 is 

almost a straight line on the Gumbel probability plot whereas that of case 1A is a convex 

curve. In addition to the theoretical distribution functions, empirical ones were also plotted, 

based on 4000 synthetic maxima. To these synthetic data series the EV1 and EV2 

distributions were fitted and were also plotted in Figure 3. As expected, EV1 is in good 

agreement with the exact distribution of case 1 but departs significantly from the exact 

distribution in case 1A, especially in the tail that corresponds to large return periods. In 

contrast, the EV2 distribution (estimated κ = 0.20) is almost indistinguishable from the exact 

distribution. 

 A second simpler example was based again on gamma parent distribution function with 

constant shape parameter θ = 0.5 and scale parameter shifting between two values, α1 = 2 and 

α2 = 6 which are sampled at random with probabilities 0.25 and 0.75, respectively. The two 

values of the scale parameter could be thought of as representing two epochs, a wet and a dry 

or even two distinct competing processes as in Walshaw (2000). For comparison, a gamma 

distribution with constant parameter α = 5 (again equal to the mean of α1 and α2) was used. 

Here, the theoretical distributions were not determined but rather empirical ones were plotted, 

based on 4000 synthetic maxima. To these synthetic data series, the EV1 and EV2 

distributions were fitted and were also plotted in Figure 4. As in Figure 3, EV1 is in good 

agreement with the empirical distribution of the constant parameter case but departs 

significantly from the empirical distribution of the variable parameter case. Again, the 

departure is greatest in the tail, i.e. in large return periods. In contrast, EV2 (with κ = 0.20) 

agrees well with the simulated distribution. 
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 All this theoretical discussion and the examples show that the theoretical reasons, which 

have endorsed the use of the Gumbel distribution for hydrological extremes, are not strong 

enough to compensate the high risk it implies.  

5. The hiding of the EV2 distribution  

If, according to the previous analysis, an EV2 distribution is more likely to represent 

hydrological maxima than an EV1 distribution, the question arises, Why this was not 

manifested in maximum rainfall series, which are typically attributed an EV1 behaviour? The 

answer to this question is simple: Typical annual maximum rainfall series extend over 20-50 

years and such a record length hides the EV2 distribution and displays an EV1 behaviour.  

 This was demonstrated by Koutsoyiannis and Baloutsos (2000) using an annual series of 

maximum daily rainfall in Athens, Greece, extending through 1860-1995 (136 years). This 

series was found to follow the EV2 distribution, but if small parts of the series were analysed, 

the EV1 distribution seemed to be an appropriate model. 

 Here a more systematic analysis has been done based on Monte Carlo simulations for 

different sample sizes m and different shape parameters κ. For each combination of m and κ, 

200 synthetic records were generated from the EV2 distribution. For each synthetic record, 

the parameter κ was assumed unknown and was estimated from the record, using the methods 

of moments and L-moments. From the simulation results, a negative bias, defined as 

estimated κ minus true κ, became apparent, and its expected magnitude b was computed as the 

average of the 200 samples. As expected, b is found to be a function of both m and κ, which 

can be approximated by the following expressions (chosen after several trials and fitted   

numerically to simulation results): 

 b = –1.7 κ3 – 
55 κ + 2

m + 200 κ + 20 ,     b = – 
0.44 e4 κ

m  (22) 

for the moments and L-moments estimators, respectively. The expressions are plotted in 

Figure 5. It can be observed that for κ = 0.15 (a value that is typical for extreme rainfall as it 

will be shown in part 2 of the study) and for a record length of 20 years the bias is –0.15, 
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which means that the estimated κ will be zero! Even for a record length of 50 years the 

negative bias is high (b = –0.12), so that κ will be estimated at 0.03, a value that will not give 

good reason for preferring EV2 to EV1.  

 The situation is improved if L-moments estimators are used as the resulting bias is much 

lower (Figure 5). However the method of L-moments is relatively new (Hosking et al., 1985; 

Hosking, 1990) and its use has not been very common so far. In addition, even the method of 

L-moments will not reject the hypothesis of an EV1 distribution against the hypothesis of 

EV2 distribution thus making a type II error (no rejection of a false hypothesis) with a high 

probability. To demonstrate this, the L-moments κ test (Hosking et al., 1985; see also 

Stedinger et al., 1993) was used, which tests whether κ = 0 (i.e., appropriateness of the EV1 

distribution; null hypothesis) or not (alternative hypothesis). To determine the probability of 

type II error using this test, a simulation experiment was performed similar to the one already 

described, assuming that the true distribution is EV2 with several values of κ. With this 

assumption, for each combination of κ and m 10000 synthetic records were generated and for 

each record the κ-test was applied with null hypothesis κ = 0, alternative hypothesis κ > 0 and 

significance level 5%. The results of simulations have been plotted in Figure 6. It can be 

observed that for κ = 0.15 and m = 20 the frequency of not rejecting the EV1 distribution is 

80%! Even for m = 50 this frequency is high, 62%.  

 For the method of maximum likelihood, a single simulation experiment was performed 

corresponding to κ = 0.15 and m = 30. The bias was found to be about half that of the method 

of L-moments, i.e. not very substantial. Its sample variance, however was equally high as in 

the other methods, which indicates that the uncertainty in estimating the shape parameter is 

high even using the more accurate method of maximum likelihood. It is noted that the latter 

method is not widely used in engineering applications, as, in contrast to the other two 

methods which are simple, it requires numerical optimization (no analytical solution can be 

obtained). Consequently, a more detailed demonstration of the behaviour of this method is not 

relevant to this investigation, whose purpose is to demonstrate whether common engineering 

practices hide or display an underlying EV2 behaviour of a series of maxima. The reader 

interested in additional information of the application of the maximum likelihood method in 
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rainfall extremes, including testing of rejecting the hypothesis of EV1 versus EV2, as well as 

in Baysian analysis in fitting EV2 to rainfall extremes, is referenced to Coles and Pericchi 

(2003). 

The findings of this investigation show that the empirical evidence supporting the wide 

applicability of the Gumbel distribution may in fact be the result of too small sample sizes and 

imperfections of parameter fitting methods, rather than a manifestation of the real behaviour 

of rainfall maxima. To improve the clarity of the real behaviour of extreme rainfall series 

longer records are needed. Such records are investigated in the second part of the study.  

6. Synopsis and conclusion  

The Gumbel or EV1 distribution has been the prevailing model for rainfall extremes despite 

of the fact that it results in the highest possible risk for engineering structures, i.e. it yields the 

smallest possible design rainfall values in comparison to those of EV2 for any value of the 

shape parameter. The simplicity of the calculations of the EV1 distribution along with its 

geometrical elucidation through a linear probability plot may have contributed to its 

popularity in hydrologists and engineers. There is also a theoretical justification, as EV1 is the 

asymptotic extreme value distribution for a wide range of parent distributions that are 

common in hydrology.  

 However, the theoretical investigation of this study shows that the convergence of the 

exact distribution of maxima to the asymptote may be extremely slow, thus making the EV1 

asymptotic distribution an inappropriate approximation of the exact distribution of maxima. 

Besides, the attraction of parent distributions to the EV1 asymptote relies on a stationarity 

assumption, i.e. the assumption that parameters of the parent distribution are constant in time, 

which may not be the case in hydrological processes. Slight relaxation of this assumption may 

result in the EV2 rather than the EV1 asymptote.  

 On the contrary, the EV2 distribution does not have the theoretical disadvantages of the 

EV1 distribution. Even though it is still a limiting distribution, it can yield good 

approximations to the exact distribution of maxima yet away from the limit, and it is not very 

sensitive to changes of parameters in time.  
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 The simulation experiments of the study show that small sizes of records, e.g. 20-50 years, 

hide the EV2 distribution and display it as if it were EV1. This allows the conjecture that the 

broad use of the EV1 distribution worldwide may in fact be related to small sample sizes 

rather than to the real behaviour of rainfall maxima, which should be better described by the 

EV2 distribution. This conjecture is investigated in the second part of the study using 169 of 

the longest available rainfall records worldwide.  
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Figure 1. Gumbel probability plots of the exact distribution function of maxima Hn(x) for n = 103 and 106, 

also in comparison with the parent distribution function F(y) ≡ H1(y), which in the left panel is standard 

normal and in the right panel Weibull with shape parameter k = 0.5. The distribution quantile has been 

standardized by x0.9999 corresponding to zH = 9.21.  
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Figure 2. Fréchet probability plot of the exact distribution function of maxima Hn(x) for n = 1, 10 and 

1000, as this results assuming a gamma parent distribution with shape parameter θ = 0.5 and scale 

parameter randomly varying following a second gamma distribution with shape parameter τ = 3 and scale 

parameter β = 1. The distribution quantile has been standardized by x0.9999 corresponding to zH = 9.21.  
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Figure 3. Gumbel probability plot of the exact distribution function of maxima H5(x), as this results 

assuming a gamma parent distribution with shape parameter θ = 0.5 and scale parameter either constant 

α = 5 (case 1) or randomly varying following a second gamma distribution with shape parameter τ = 5 and 

scale parameter β = 1 (case 1A). The additional plotted curves are empirical distribution functions from 

synthesized series of length 4000, and fitted to these series EV1 and EV2 distribution functions.  

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1 0 1 2 3 4 5 6 7
Gumbel reduced variate

D
ist

rib
ut

io
n 

qu
an

til
e 

 1

Empirical - constant parameter
Fitted EV1 - constant parameter
Empirical - variable parameter
Fitted EV1 - variable parameter
Fitted EV2 - variable parameter

 
Figure 4. Gumbel probability plot of the empirical distribution functions of maxima H5(x) and fitted EV1 

and EV2 distribution functions, as they result from synthesized series of length 4000 assuming gamma 

parent distribution with shape parameter θ = 0.5 and scale parameter either constant α = 5, or shifting at 

random between the values α1 = 2 and α2 = 6 with probabilities 0.25 and 0.75, respectively.  
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Figure 5. Bias in estimating the shape parameter κ of the GEV distribution using the methods of moments 

and L-moments.  
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Figure 6. Probability of type II error (no rejection of a false hypothesis) in testing the null hypothesis that a 

series originates from the EV1 distribution against the hypothesis that it originates from the EV2 

distribution.  


