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Abstract In the first part of this study, theoretical analyses showed that the Gumbel 
distribution is quite unlikely to apply to hydrological extremes and that the extreme 
value distribution of type II (EV2) is a more consistent choice. Based on these 
theoretical analyses, an extensive empirical investigation is performed using a 
collection of 169 of the longest available rainfall records worldwide, each having 100–
154 years of data. This verifies the theoretical results. In addition, it shows that the 
shape parameter of the EV2 distribution is constant for all examined geographical 
zones (Europe and North America), with value κ = 0.15. This simplifies the fitting and 
the general mathematical handling of the distribution, which become as simple as 
those of the Gumbel distribution.  
Key words design rainfall; extreme rainfall; generalized extreme value distribution; Gumbel 
distribution; hydrological design; hydrological extremes; probable maximum precipitation; risk  

Statistiques de valeurs extrêmes et estimation de précipitations 
extrêmes: II. Recherche empirique sur de longues séries de 
précipitations  
Résumé Dans la première partie de cette étude, des analyses théoriques ont prouvé 
que la distribution de Gumbel est peu susceptible de s’appliquer aux valeurs extrêmes 
de variables hydrologiques et que la distribution de valeurs extrêmes du type II (EV2) 
est un choix plus cohérent. Une recherche empirique étendue est effectuée, en se 
basant sur ces analyses théoriques, avec une collection de 169 séries de précipitations, 
parmi les plus longues de celles qui sont disponibles dans le monde entier, comportant 
chacune 100-154 ans de données. Ceci vérifie les résultats théoriques. En outre, on 
montre que le paramètre de forme de la distribution EV2 est constant pour toutes les 
zones géographiques examinées (l’Europe et l’Amérique du Nord), avec la valeur 
0.15. Ceci simplifie l’ajustement et la manipulation mathématique générale de la 
distribution, qui deviennent aussi simples que pour la distribution de Gumbel.  
Mots clefs pluie de projet; précipitation extrême; distribution généralisée de valeurs extrêmes; 
distribution de Gumbel; dimensionnement hydrologique; valeurs extrêmes en hydrologie; 
précipitation maximum probable; risque 

 
 
INTRODUCTION  
 
According to the statistical theory of extremes, the distribution function H(x) of the 
maximum of a number n of identically distributed random variables with distribution 
F(x), if n is large enough (theoretically infinite), takes the asymptotic form, known as 
the Generalized Extreme Value (GEV) distribution (Jenkinson, 1955, 1969): 
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where ψ, λ > 0 and κ are location, scale and shape parameters, respectively. (Note that 
the sign convention of κ in equation (1) is opposite to that most commonly used in 
hydrological texts and the location parameter is dimensionless.) 
 When κ = 0, the type I distribution of maxima (EV1 or Gumbel distribution):  

H(x) = exp[–exp(–x/λ + ψ)]    (2) 

is obtained, which is unbounded from both below and above (–∞ < x < +∞). When  
κ > 0, H(x) represents the extreme value distribution of maxima of type II (EV2), 
which is bounded from below and unbounded from above (λψ – λ/κ ≤ x < +∞). A 
special case, the Fréchet distribution, is obtained when the lower bound becomes zero 
(ψ = 1/κ), in which: 
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When κ < 0, H(x) represents the type III (EV3) distribution of maxima. However, this 
is of no practical interest in hydrology as it refers to random variables bounded from 
above (–∞ < x ≤ λψ – λ/κ). 
 There is a complete correspondence between the distribution of maxima H(x) and 
the tail of F(x), which can be represented by the distribution of x conditional on being 
greater than a certain threshold ξ, i.e. G(x) := F(x|x > ξ). For appropriate choice of ξ, it 
can be shown that (see Koutsoyiannis, 2004): 
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which is the Pareto distribution. For κ > 0 this corresponds to the EV2 distribution 
whereas for κ = 0 it takes the form:  

G(x) = 1 – exp(–x/λ + ψ) x ≥ λψ (5) 
which is the exponential distribution and corresponds to the EV1 distribution. For the 
special case ψ = 1/κ: 
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The latter equation is equivalently written in the power law form x = (λ/κ)Tκ, where  
T := 1/[1 – G(x)] is the return period. In the generalized Pareto case (equation (4)), the 
corresponding relationship is x = (λ/κ)(Tκ – 1 + κψ). 
 In hydrological applications, H(x) is fitted to annual maximum series of a 
hydrological quantity such as rainfall depth of certain duration, whereas G(x) is fitted 
to series of values over threshold (also known as partial duration series) of the same 
quantity. In the latter case, the threshold is chosen so that the number of events (greater 
than the threshold) equals the number of years of record. 
 The EV1 distribution has been the prevailing model for rainfall extremes despite 
the fact that it results in the highest possible risk for engineering structures, i.e. it 
yields the smallest possible design rainfall values in comparison to those of the EV2 
for any value of the shape parameter. The simplicity of the calculations of the EV1 
distribution along with its geometrical elucidation through a linear probability plot 
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may have contributed to its popularity with hydrologists and engineers. There is also a 
theoretical justification, as EV1 is the asymptotic extreme value distribution for a wide 
range of parent distributions that are common in hydrology.  
 However, the theoretical investigation of part I of this study (Koutsoyiannis, 2004) 
shows that convergence of the exact distribution of maxima to the asymptote EV1 may 
be extremely slow, thus making the EV1 distribution an inappropriate approximation 
of the exact distribution of maxima. Besides, the attraction of parent distributions to 
this asymptote relies on a stationarity assumption, i.e. the assumption that parameters 
of the parent distribution are constant in time, which may not be the case in hydro-
logical processes. Slight relaxation of this assumption may result in the EV2 rather 
than the EV1 asymptote.  
 Simulation experiments in part II of this study showed that small sizes of records, 
e.g. 20–50 years, hide the EV2 distribution and display it as if it were EV1. This 
allowed the conjecture that the broad use of the EV1 distribution worldwide may in 
fact be related to small sample sizes rather than to the real behaviour of rainfall 
maxima, which should be better described by the EV2 distribution. This conjecture is 
investigated thoroughly here based on real-world long rainfall records.  
 
 
DATA 
 
Some thousands of raingauge data sets from Europe and the USA were examined in 
this study, namely data from the United States Historical Climatology Network 
(USHCN), Land Surface Observation Data of the UK Met Office, and data from the 
oldest stations of France, Italy and Greece. Among these, a total of 169 stations were 
found to have at least 100 years of data (not including the years with missing data) and 
were chosen for further analysis. Their geographical locations are shown in Fig. 1, 
classified in six geographical zones. Table 1 shows the general characteristics of 
raingauges of the different geographical zones and Table 2 gives the general charac-
teristics of the top ten, in terms of record length, raingauges, which are from all 
countries of this case study (USA, UK, France, Italy and Greece) and are located in 
four of the six zones. 
 For all stations, all recorded data values through the station operation were 
available with the exception of Athens, Greece, where only the annual maximum daily 
rainfall values were available. From the continuous record of each station (except 
Athens), two series were extracted, the series of annual maximum values of daily 
rainfall and the series of values over a threshold chosen so that the number of values 
equals the number of years of the record. In some of the records there were several 
missing values or values marked as incorrect, which were deleted. Years with more 
than five missing daily values in two or more months were excluded. In this way, 169 
annual maximum series and 168 series of values over threshold were constructed.  
 
 
INITIAL EXPLORATION 
 
As an initial step, the typical statistics and the L-statistics (based on probability-
weighted moments; Hosking 1990) were estimated for each annual maximum series of 
daily rainfall depths. The ranges in each of the six geographical zones and the  
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Fig. 1 Geographical locations of raingauges. 

 
 
corresponding averages over all stations of each zone are shown in Table 3. Potential 
relationships among these statistics and their geographical variation were subsequently 
explored. 
 The sample mean (µ) and maximum values (xmax) over the observation period of 
each annual maximum daily rainfall series are plotted in the log-log diagram of Fig. 2 
using different symbols for each geographical zone. It is observed there that (a) both 
mean and maximum values vary with the geographical zone (as expected): clouds of 
points referring to different zones occupy different areas in the diagram; (b) there 
exists a clear relationship between mean and maximum values (as expected), which 
seems to be independent of the geographical zone; and (c) this relationship can be 
approximated by a power law with exponent slightly higher than one (1.08). This is 
contrary to an observation by Hershfield (1965) that arid areas (with small mean) tend 
to have higher relative extremes (ratios of maximum to mean or standard deviation) 
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Table 1 General characteristics of raingauges of the different geographical zones.  

  Geographical zone:  Total 
  1 2 3 4 5 6  
Number of stations 104 19 15 3 24 4 169 
Record length min 100 100 100 100 100 128 100 
 max 130 131 122 103 130 154 154 
Number of station years 10 942 2012 1610 304 2624 573 18 065 
Elevation (m) min 3 3 11 376  6 3 
 max 1867 917 2078 1870  107 2078 
 
 
Table 2 General characteristics of the top ten, in terms of record length, raingauges.  

Name Zone/Country 
/State 

Latitude 
(°N) 

Longitude 
(°) 

Eleva-
tion (m)

Record 
length 

Start year End 
year 

Years with 
missing values 

Florence 6/Italy  43.80 11.20 40 154 1822* 1979 1874–1877 
Genoa 6/Italy 44.40 8.90 21 148 1833 1980  
Athens 6/Greece 37.97 23.78 107 143 1860 2002  
Charleston 
City 

2/USA/SC 32.79 –79.94 3 131 1871 2001  

Oxford 5/UK 51.72 –1.29  130 1853 1993 1930, 1933, 
1961–1969 

Cheyenne 1/USA/WY 41.16 –104.82 1867 130 1871 2001 1877 
Marseille 6/France 43.45 5.20 6 128 1864 1991  
Armagh 5/UK 54.35 –6.65  128 1866 1993  
Savannah  2/USA/GA 32.14 –81.20 14 128 1871 2001 1969–1971 
Albany 1/USA/NY 42.76 –73.80 84 128 1874 2001  
* Record starts in 1813 but values prior to 1822 are incorrect. 
 
 
Table 3 Averages and ranges of statistical characteristics of annual maximum daily rainfall series for 
the different geographical zones.  

  Geographical zone: Total 
     1    2    3    4    5    6  
Sample mean, µ (mm) min 34.2 65.3 19.1 31.8 31.3 48.5 19.1 
 mean 65.7 91.0 36.5 39.4 36.1 68.9 61.4 
 max 90.1 109.0 75.3 48.7 46.4 110.9 110.9 
Sample maximum, xmax (mm) min 88.4 146.8 40.1 84.3 54.1 140.0 40.1 
 mean 175.8 265.7 83.9 125.2 89.7 225.4 165.8 
 max 429.5 490.0 157.0 201.2 130.3 389.2 490.0 
Coefficient of variation, Cv min 0.26 0.32 0.31 0.35 0.26 0.35 0.26 
 mean 0.38 0.42 0.36 0.41 0.34 0.42 0.38 
 max 0.68 0.57 0.47 0.47 0.45 0.48 0.68 
Coefficient of skewness, Cs min 0.58 0.89 0.83 1.08 0.55 1.65 0.55 
 mean 1.69 1.81 1.19 1.93 1.70 1.92 1.67 
 max 4.94 3.89 1.69 3.32 3.22 2.03 4.94 
L-coefficient of variation, τ2 min 0.14 0.18 0.16 0.19 0.14 0.18 0.14 
 mean 0.19 0.21 0.19 0.21 0.17 0.22 0.19 
 max 0.26 0.25 0.25 0.22 0.22 0.24 0.26 
L-coefficient of skewness, τ3 min 0.12 0.16 0.14 0.16 0.15 0.22 0.12 
 mean 0.24 0.26 0.21 0.23 0.24 0.26 0.24 
 max 0.43 0.38 0.26 0.29 0.35 0.28 0.43 
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Fig. 2 Plot of the sample mean and maximum, over the observation period, of each 
annual maximum daily rainfall series for the six different geographical zones. 

 
 
than areas with heavy rainfall. In addition, if Hershfield’s observation was valid, it 
would be manifested as a negative correlation between mean (µ) and coefficient of 
variation (Cv := σ/µ, where σ is the standard deviation) or the L-variation (τ2 := λ2/µ, 
where λ2 is the second L-moment.). However, Fig. 3 does not suggest such a negative 
correlation. In fact, the correlation coefficient between µ and τ2 is +0.30. The 
correlation coefficient between mean (µ) and L-skewness (τ3 := λ3/λ2, where λ3 is the 
third L-moment) is slightly positive, too (+0.09, a value not significant statistically).  
 The dispersion of both τ2 and τ3 is large as shown in Fig. 3. Figure 4, in which τ3 is 
plotted against τ2 using different symbols for different geographical zones, shows a 
positive correlation between τ2 and τ3 (correlation coefficient = 0.52) and simul-
taneously indicates independence of the geographical zone, as clouds of points 
referring to different zones are homogeneously mixed in the diagram. However, the 
positive correlation between τ2 and τ3 does not have a physical meaning but rather is a 
statistical effect. To show this, 169 synthetic samples with lengths and means equal to 
those of the historical records were generated from the EV2 distribution with constant 
shape parameter κ = 0.103 and location parameter ψ = 3.34 (these values are the 
averages of the estimated parameters over all stations, as it will be discussed in the 
next section). The values of the statistics τ2 and τ3 of these synthetic samples have been 
plotted in Fig. 5, which reveals a picture similar to that of Fig. 4 with a strong correla-
tion between τ2 and τ3 (correlation coefficient = 0.60). Notably, the dispersion of τ3 in 
Fig. 5 is identical to that in Fig. 4, whereas the dispersion of τ2 in the former is slightly 
smaller than in the latter.  
 
 
FITTING OF DISTRIBUTION FUNCTIONS  
 
GEV distributions were fitted to each of the 169 annual maximum series of daily 
precipitation depths using three methods, maximum likelihood, moments and  
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Fig. 3 Plot of the L-variation and L-skewness coefficients vs the mean of the annual 
maximum daily rainfall series.  
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Fig. 4 Plot of L-skewness vs L-variation coefficient for the annual maximum daily 
rainfall series for the six different geographical zones. 

 
 
L-moments. The averages over all raingauges and the dispersion characteristics 
(minimum and maximum values and standard deviations) of the three parameters of 
the GEV distribution are shown in Table 4. The shape parameter κ is the most 
important as it determines the type of the distribution of maxima (EV1 or EV2) and 
consequently the behaviour of the distribution in its tail. Besides, it is the most 
uncertain parameter as its estimation depends on the skewness (Cs or τ3 for the method 
of moments or L-moments, respectively) whose value cannot be determined 
accurately. Clearly, Table 4 shows that in more than 90% of the series the estimated κ 
is positive, which suggests EV2 distributions. (The smaller values of κ given by the   
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Fig. 5 Plot of L-skewness vs L-variation coefficient for 169 synthetic samples with 
lengths and means equal to those of the historical records, generated from the EV2 
distribution with shape parameter κ = 0.103 and location parameter ψ = 3.34. 

 
 
Table 4 Averages over all raingauges and dispersion characteristics of the parameters of the GEV 
distribution as estimated by three different methods from the annual maximum daily rainfall series.  

Parameter  Estimation method: 
  Max likelihood Moments L-Moments 
κ Mean 0.103 0.052 0.103 
 Standard deviation 0.080 0.079 0.085 
 Min –0.061 –0.121 –0.080 
 Max 0.303 0.238 0.373 
 Percent positive 91% 74% 92% 
λ Mean 15.39 16.64 15.52 
 Standard deviation 5.63 6.31 5.81 
 Min 4.95 5.16 4.86 
 Max 31.08 34.89 32.13 
ψ Mean 3.36 3.14 3.34 
 Standard deviation 0.42 0.44 0.43 
 Min 2.54 2.07 2.42 
 Max 4.48 4.44 4.47 
 
 
method of moments, as shown in Table 4, and the smaller percentage of positive 
values, 74%, is clearly a result of the significant negative bias implied by the 
estimators of this method, as demonstrated in part I of the study—Koutsoyiannis, 
2004.) The estimated κ values range between some slightly negative values to over 
0.30. Given the observation of the previous section in Fig. 5 regarding the statistical 
behaviour of τ3, which determines κ, it should be expected that the large range of κ 
values is rather a statistical effect. This will be examined further below. 
 Figure 6 depicts the EV2 distribution functions fitted by the method of L-moments 
to the annual maximum series of four of the stations from Table 2, namely Charleston  
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Fig. 6 EV2 (continuous lines) and EV1 (dotted lines) distributions fitted by the 
method of L-moments and comparison with the empirical distribution (crosses) for the 
annual maximum daily rainfall series of (a) Charleston City, USA/SC; (b) Oxford, UK 
(c) Marseille, France; and (d) Florence, Ximeniano Observatory, Italy (Gumbel 
probability plots). 

 
 
City (USA/SC), Oxford (UK), Marseille (France) and Florence (Italy). The estimated 
shape parameters κ are respectively 0.083, 0.081, 0.155 and 0.120. For comparison, 
Fig. 6 includes also plots of the EV1 distributions fitted again by the method of  
L-moments and of the empirical distributions determined using Weibull plotting 
positions. Clearly, the observed maxima for high return periods are higher than the 
predictions of the EV1 distributions and even from those of the EV2 distribution. 
Obviously, however, the EV2 distribution is in closer agreement to the empirical 
distribution than the EV1 distribution. The differences of EV1 and EV2 seem to be not 
very significant for return periods smaller than 50 years.  
 One may argue that, if the differences between the two distributions are 
insignificant for return periods smaller than 50 years, then the entire discussion is 
rather scholastic and not important in engineering design. For example, urban drainage 
systems are designed for return periods 5–10 years, which for some more important 
components perhaps can be extended to 50 years. Indeed, for such return periods, the 
selection of distribution function is not an important issue. In fact, for return periods of 
5–10 years there is no need to fit a probabilistic model at all; empirical estimations of 
probabilities based on the observed maxima suffice, provided that a record with some 
decades of data is available. The problem becomes essential in the design of major 
hydraulic constructions such as dam spillways or flood protection works in urban 
rivers. For example, if a dam is studied for a design duration of s = 100 years and the 
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acceptable risk of the dam overtopping due to flood is R = 1%, then the design return 
period will be (e.g. Chow et al., 1988) T = 1/[1 – (1 – R)1/s] ≈ 10 000 years. Several 
dams in Europe have been designed on this probabilistic basis (and not on the 
doubtable approach of probable maximum precipitation; see discussion in 
Koutsoyiannis, 2004) with return periods of this order of magnitude. 
 In this respect, the differences of distribution functions, when extrapolated to high 
return periods such as 1000–100 000 years, are extremely important. These differences 
are demonstrated graphically in Fig. 7, which is similar to the diagrams of Fig. 6 but 
with emphasis given to the tail of the distribution, for return periods higher than 200 
years. Figure 7 refers to another station, Athens, Greece, again included in the top ten 
stations of Table 2. The values of κ estimated by the methods of L-moments, 
maximum likelihood and moments are respectively 0.170, 0.158 and 0.106. Clearly, 
the EV1 distribution underestimates seriously the maximum rainfall for high return 
periods. For instance, at the return period 20 000 years the EV1 distribution results in a 
value of rainfall depth half that obtained by the EV2 distribution. Another comparison 
of the two distributions can be done in terms of the value of probable maximum 
precipitation (PMP). This was initially considered to be the greatest depth of precipita-
tion for a given duration that is physically possible over a geographical location. 
However, more recently it has been considered as one high rainfall value that has a 
certain return period like other, higher or lower, values of rainfall depth. Thus, 
National Research Council (1994, p. 14) assessed that PMP estimates in the USA have 
return periods of the order 105 to 109 and Koutsoyiannis (1999) showed that PMP 
values estimated by the method of Hershfield have return periods around 60 000 years. 
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Fig. 7 EV2 and EV1 distributions fitted by several methods and comparison with the 
empirical distribution for the annual maximum daily rainfall series of Athens, 
National Observatory, Greece (Gumbel probability plot). The PMP value (424.1 mm) 
was estimated by Koutsoyiannis & Baloutsos (2000).  
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The latter method was used by Koutsoyiannis & Baloutsos (2000) to estimate PMP in 
Athens and resulted in a value of 424.1 mm, which has been plotted in Fig. 7. If the 
return period of this value is estimated by the EV2 distribution, it turns out to be 
37 000 to 300 000 years depending on the parameter estimation method, whereas EV1 
results in the unrealistically high value 4 × 1010 years.  
 
 
STUDY OF THE VARIATION OF PARAMETERS  
 
The problem of the parameter variation and the question whether this variation 
corresponds to physical (climatological) reasons or is a purely statistical (sampling) 
effect have already been posed in the previous sections. Here they will be studied more 
systematically. As already indicated, simulation is a proper means to assess the 
sampling effect and estimate the portion of parameter variation that this effect 
explains. More specifically, a simulation can be performed assuming that one or more 
statistical parameters are constant. A number of synthetic samples can be thus 
generated and the sample parameters can be computed. Their variation can then be 
compared with that of the historical samples.  
 As already discussed, the variation of the means of the annual maximum series of 
daily rainfall reflects a climatic variability and is different in different geographical 
zones. This is also verified by simulation: the standard deviation of means over all 
stations is 20.0 mm, while a simulation assuming constant mean over all stations 
would yield a standard deviation of only 2.3 mm. However, this is not the case with 
other parameters, if they are expressed on a non-dimensionalized basis. Their 
variability is mostly a sampling effect. To demonstrate this, 169 synthetic samples with 
lengths and means equal to those of historical series were generated from the GEV 
distribution with constant shape parameter κ = 0.103 and location parameter ψ = 3.34. 
These constant values are the averages of the relevant parameters estimated by the 
method of L-moments (Table 4). The empirical distributions of several dimensionless 
sample statistics, i.e. coefficients of variation (τ2 and Cv), skewness (τ3 and Cs) and 
kurtosis (τ4), ratio of maximum value (xmax) to mean value (µ), and the parameters κ 
and ψ themselves (L-moments estimates), were then obtained and compared 
graphically to the corresponding empirical distributions obtained from the 169 
historical series (Fig. 8). It can be observed that in most cases the empirical distribu-
tions of the synthetic samples are almost identical to those of the historical ones. The 
highest differences between the two appear in the distributions of coefficients of 
variation τ2 and Cv, and that of the location parameter ψ.  
 An additional simulation was performed assuming that the parameters κ and ψ are 
not constant but random variables uniformly distributed (for simplicity) over an 
interval, determined so as to match the standard deviation of the parameters shown in 
Table 4. The resulting empirical distribution functions are also plotted in Fig. 8. In all 
cases, the greater dispersion of the simulated sampling distributions as compared to the 
historical ones is apparent. 
 These simulation experiments and comparisons with historical data suggest that a 
hypothesis of a common statistical law applying to all 169 series, except for a scaling 
parameter to account for the different means µ, is not far from reality. In this case, a 
radically improved approach to fitting a probability distribution becomes possible. If 
the annual maximum daily rainfall series of each station is rescaled by an appropriate 
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Fig. 8 Empirical distribution functions of several dimensionless sample statistics 
(coefficients of variation τ2 and Cv, skewness τ3 and Cs, and kurtosis τ4; ratio of 
maximum value xmax to mean value µ; and L-moments estimates of parameters κ and 
ψ of the GEV distribution), as computed from either: the 169 historical annual 
maximum daily rainfall series (thick continuous lines); 169 synthetic samples with 
lengths and means equal to those of historical series generated from the GEV 
distribution with constant shape parameter κ = 0.103 and location parameter ψ = 3.34 
(dotted lines); and 169 synthetic samples with lengths and means equal to those of 
historical series generated from the GEV distribution with shape parameter κ and 
location parameter ψ varying following uniform distributions (dashed lines). 

 
 
scaling factor, then all 18 065 data values can be regarded as realizations of the same 
statistical law and can be unified in one statistical record. The scaling factor can be the 
sample mean µ. This is an unbiased estimate of the true mean but not the most efficient 
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one. Hershfield (1961) recognising this and attributing it to the fact that outliers in 
maximum rainfall records may have an appreciable effect on the sample mean, 
introduced a correction procedure of the sample mean which takes into account a 
second sample mean computed after excluding the maximum item of the series. Here a 
similar procedure was devised, which is based on the sample mean µ and the 
maximum item of the series xmax. A systematic simulation-optimization experiment 
based on the GEV distribution with κ ranging from 0 to 0.20, showed that the 
parameter:  

µ΄ := ⎝⎜
⎛

⎠⎟
⎞1 + 

0.94
n0.7 µ – 

xmax
n0.87  (7) 

is an approximately unbiased estimate of the true mean always more efficient than µ in 
the sense that its variance is smaller than that of µ. Therefore, µ΄ was used as the 
rescaling factor. 
 The empirical distribution of the unified rescaled annual maximum series of daily 
rainfall is depicted in Fig. 9. To this, the EV2 distribution is fitted by several methods 
and also plotted in Fig. 9, whereas its parameters are shown in Table 5. It is observed 
that the methods of maximum likelihood, moments and L-moments result in 
(a) different parameter estimates despite the extremely large record length (18 065 
station years), and (b) estimates of distribution quantiles that are systematically lower 
than the empirical estimates in the tail (for return periods > 500 years). Both these 
observations may indicate that the EV2 distribution is an imperfect model for annual 
series of extreme rainfall. However problem (b) can be resolved by adopting a  
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Fig. 9 EV2 and EV1 distributions fitted by several methods and comparison with the 
empirical distribution for the unified record of all 169 annual maximum rescaled daily 
rainfall series (18 065 station years). 
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Table 5 Parameters of the EV2 distribution as estimated by four different methods from the unified 
record of all 169 annual maximum rescaled daily rainfall series (18 065 station years).  

Parameter Estimation method: 
 Max likelihood Moments L-moments Weighted least squares 
κ 0.093 0.126 0.104 0.148 
λ 0.258 0.248 0.255 0.236 
ψ 3.24 3.36 3.28 3.54 
 
 
different parameter estimation method that gives more emphasis to the highest values. 
Here a weighted least squares method was used, which minimizes the weighted 
average of square errors between empirical and EV2 quantiles. To give higher import-
ance to the high values, the weights were assumed equal to the empirical quantiles. As 
shown in Table 5, the latter method resulted in a shape parameter κ = 0.15, greater than 
those of the other methods. The plot of the EV2 distribution with this shape parameter, 
shown in Fig. 9, is in closer agreement with the empirical distribution in the tail, if 
compared to those of the other methods, which is very important from an engineer’s 
point of view. 
 It should be noted that the shape parameter κ = 0.15, whose estimation has given 
higher importance to the high observed values, may have a negative effect in 
predictions of the EV2 distribution at short return periods, due to the imperfection of 
this distribution. Specifically, it may be anticipated that for return periods of  
5–10 years, the EV2 distribution with κ = 0.15 may result in underestimation of the 
rainfall extremes. Therefore, it can be advisable that, if only short return periods are of 
interest, then the value κ = 0.10 should be used, which corresponds to both the  
L-moments and the maximum likelihood estimations.  

 In addition to EV2, the EV1 distribution with parameters fitted by the method of 
L-moments (λ = 0.283, ψ = 2.99) was plotted in Fig. 9. Its inappropriateness for return 
periods greater than 50 years is more than obvious. The weighted least squares method 
applied to the EV1 distribution results in even worse situation as in the attempt to 
approach the greatest quantiles the distribution fit becomes poor even in the low 
distribution quantiles. 
 In the above analysis, both dimensionless parameters κ and ψ were hypothesized 
constant for all stations. A hypothesis somewhat closer to reality would be to introduce 
some variation to the location parameter ψ and keep only the parameter κ constant. It is 
interesting to investigate whether this affects the estimate of the parameter κ. For this 
investigation, another standardization of the samples was done, so that each data value 
xij (with i indicating the station and j the year) is linearly transformed to x΄ij := (σ/µ) 
[(xij – µi)/σi] + 1, where µi and σi are, respectively, the mean and standard deviation of 
station i, and µ and σ the averages for all stations of the corresponding quantities. Were 
the value of ψ constant for all stations, the coefficients of variations σi/µi would be 
constant, too, so the transformation would become x΄ij = xij/µi, which is the rescaling 
transformation that was already done in the previous analysis. Similarly to the previous 
analysis, the corrected mean (equation (7)) was used while for standard deviations the 
corrections due to Hershfield (1961) were applied. 
 The so transformed samples of the different stations were again unified and from 
the unified series the parameters were re-estimated. Interestingly, all parameter 
estimation methods resulted in virtually the same values of κ that are shown in Table 5 
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(the largest difference was ±0.001). Moreover, the parameters λ and ψ were also 
almost equal to those of Table 5 (largest difference ±2%).    
 
 
ANALYSIS OF SERIES OF VALUES OVER THRESHOLD 
 
All previous analyses were performed on the annual maximum series. As discussed in 
the Introduction, the probabilistic behaviour of the series over threshold can be 
theoretically obtained from that of the annual maximum series. Here it is shown that 
this is also empirically verified. The 168 series were rescaled by µ΄ as obtained from 
the annual maximum series and then merged into a unified record. The empirical 
distribution of the unified record is shown in the Pareto probability plot of Fig. 10. The 
Pareto reduced variate that is used for the horizontal axis is defined as yT := (T κ – 1)/κ 
with κ fixed to 0.15. The Pareto and exponential distributions with parameters equal to 
those of the EV2 and EV1 distributions, respectively, shown in Table 5, are also 
plotted in Fig. 10. This figure shows that the same parameters estimated from the 
unified annual maximum series are good for the Pareto distribution of the unified 
series of values over threshold, so there is no need to re-estimate them. In addition, the 
observations already made on Fig. 9 about the superiority of the EV2 distribution fitted 
by the method of least squares and the inappropriateness of the EV1 distribution are 
valid also for, respectively, the Pareto and exponential distributions in Fig. 10. 
 In addition to the Pareto probability plot of Fig. 10, a log-log plot of rescaled 
rainfall depth vs return period is given in Fig. 11. The fact that both the empirical 
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Fig. 10 Empirical distribution of the union of the 168 series of rescaled rainfall depths 
over threshold (17 922 station years) in comparison with the Pareto distribution with 
parameters estimated from the unified series of annual maxima, shown in Table 5 
(Pareto probability plot with κ = 0.15). 
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Fig. 11 Empirical and Pareto distributions of the union of the 168 series of values over 
threshold (17 922 station years) as in Fig. 10, but in a double logarithmic plot of 
rescaled rainfall depths vs return period. 

 
 
and fitted theoretical distribution functions have an apparent curvature on this log-log 
plot suggests that the power law relationship between rainfall depth and return period 
on a basis of values over threshold (which has been called a fractal distribution by 
Turcotte (1994) and is equivalent to the Fréchet distribution on a basis of annual 
maximum values) is inappropriate for modelling rainfall extremes.  
 
 
FROM EV1 TO EV2 DISTRIBUTION 
 
All the above analyses converge to the conclusion that neither of the two-parameter 
special cases of the GEV distribution, i.e. the Gumbel and Fréchet distributions, is 
appropriate for extreme rainfall. On the contrary, the three-parameter EV2 distribution 
is an alternative much closer to reality. In addition, they converge to the conclusion 
that the shape parameter of the EV2 distribution can be hypothesized to have a con-
stant value κ = 0.15, regardless of the geographical location of the raingauge station.  
 If the shape parameter of the EV2 distribution is fixed, the general handling of the 
distribution becomes as simple as that of the EV1 distribution. For example, the 
estimation of the remaining two parameters becomes similar to that of the EV1 
distribution. That is, the scale parameter can be estimated by the method of moments 
from: 

λ = c1σ  (8) 

where c1 = κ/ Γ(1 – 2κ) – Γ2(1 – κ) or c1 = 0.61 for κ = 0.15, while in the EV1 case  
c1 = 0.78. The relevant estimate for the method of L-moments is: 

λ = c2λ2  (9) 
where c2 = κ/[Γ(1 – κ)(2κ – 1)] or c2 = 1.23 for κ = 0.15, while in the EV1 case  
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c2 = 1.443. The estimate of the location parameter for both the method of moments and 
L-moments is: 

ψ = µ/λ – c3 (10) 
where c3 = [Γ(1 – κ) – 1]/κ or c3 = 0.75 for κ = 0.15, while in the EV1 case c3 = 0.577.  
 If, in addition to λ and ψ, the shape parameter is to be estimated directly from the 
sample (which is not advisable but it may be useful for comparisons), the following 
equations can be used, which are approximations of the exact (but implicit) equations 
of the literature:  

κ = 
1
3 – 

1
0.31 + 0.91Cs + (0.91Cs)2 + 1.8

 (11) 

κ = 8c – 3c2 c := 
ln2
ln3 – 

2
3 + τ3

  (12) 

The former corresponds to the method of moments and the resulting error is smaller 
than ±0.01 for –1 < κ < 1/3 (–2 < Cs < ∞). The latter corresponds to the method of  
L-moments and the resulting error is smaller than ±0.008 for –1 < κ < 1 (–1/3 < τ3 < 1). 
 The construction of linear probability plots is also easy if κ is fixed. It suffices to 
replace in the horizontal axis the Gumbel reduced variate zH = –ln(–lnH) with the GEV 
reduced variate zH = [(–lnH)-κ – 1]/κ. Such plots are portrayed in Fig. 12 for the same 
distributions depicted in Fig. 6 on Gumbel probability plots, but now for κ = 0.15. In  
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Fig. 12 Empirical distributions (crosses), EV2 distributions (continuous lines), and 
95% Monte Carlo prediction limits for the empirical distribution (dashed lines) of the 
annual maximum daily rainfall series of (a) Charleston City, USA/SC; (b) Oxford, UK 
(c) Marseille, France; and (d) Florence, Italy, as in Fig. 6 but in GEV plot with 
κ = 0.15. The EV2 distribution was fitted by the method of L-moments assuming fixed 
κ = 0.15.  
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addition to the empirical and EV2 distributions, upper and lower prediction limits of 
the former, computed by Monte Carlo simulation (e.g. Ripley, 1987, p. 176), have 
been plotted in this figure, which demonstrate the high uncertainty of estimates for 
large return periods.  
 
 
CONCLUSIONS AND DISCUSSION 
 
The conclusions of this extensive analysis based on 169 rainfall series with lengths 
100–154 years and a total number of 18 065 station years from stations in Europe and 
the USA may be summarized as follows. 
1. Neither of the two-parameter special cases of the GEV distribution, i.e. the 

Gumbel and Fréchet distributions, is appropriate for modelling annual maximum 
rainfall series. In contrast, the three-parameter EV2 distribution is a choice much 
closer to reality.  

2. The shape parameter κ of the EV2 distribution is very hard to estimate on the basis 
of an individual series, even in series with length 100 years or more. This is 
because of the estimation bias and the large sampling variability of the estimators 
of κ, which was demonstrated here using simulation. For example, for sample size 
m = 30 and κ = 0.15 the method of moments estimates a κ almost zero and the 
method of L moments does not reject the false hypothesis of EV1 distribution at 
75% of cases (see first part of the study—Koutsoyiannis, 2004). The analysis 
showed that even in the unified record with 18 065 values, the uncertainty in 
estimating κ is large as different estimation methods yield different estimates of κ. 
The most important conclusion, however, is that the observed variability in the 
values of κ in the 169 series is almost entirely explained by statistical reasons as it 
is almost identical with the sampling variability. This allows the hypothesis that 
the shape parameter of the EV2 distribution is constant for all examined 
geographical zones, with value κ = 0.15. 

3. The location parameter ψ of the EV2 distribution turned out to be fairly constant 
with a mean value ψ = 3.54 (corresponding to κ = 0.15) and coefficient of varia-
tion as low as 0.13. However, this small variation cannot be attributed to statistical 
reasons entirely as the sampling variation seems to be slightly lower than that 
observed in the 169 historical samples. However, this is not a major problem as ψ 
can be estimated with relative accuracy on the basis of an individual series. 

4. The scale parameter λ of the EV2 distribution varies with the station location and 
there is no need to seek a generalized law about it as it can be estimated with 
relative accuracy on the basis of an individual series. 

5. The behaviour of the examined series over threshold turns out to be fully consist-
ent with that of the annual maximum series, as the same parameter values of the 
EV2 distribution of the latter are equally good for the Pareto distribution of the 
former. Thus, the statistical analysis of either the annual maximum series or the 
series over threshold suffices to know the behaviour of both.  

6. In engineering practice, the handling of the EV2 distribution can be as easy as that 
of the EV1 distribution if the shape parameter of the former is fixed to the value  
κ = 0.15. The parameter estimation is virtually the same (only some constants 
change) and very similar linear probability plots can be constructed (the Gumbel 
reduced variate zH = –ln(–ln H) should be replaced with the GEV reduced variate 
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zH = [(–ln H)-0.15 – 1]/0.15, or in case of series over threshold with the Pareto 
reduced variate yT = (T 0.15 – 1)/0.15. If the linearity of the plot is not necessary, a 
log-log plot of distribution quantile versus return period is a simpler choice. 

 In a recent study, Koutsoyiannis (1999) revisited Hershfield’s (1961) data set 
(95 000 station years from 2645 stations) and showed that this can be described by the 
EV2 distribution with κ = 0.13. The plot of Fig. 13, indicates that the value κ = 0.15 
that is proposed in the present study can be acceptable for that data set too. This 
enhances the trust that an EV2 distribution with κ = 0.15 can be thought of as a 
generalized model appropriate for mid latitude areas of the Northern Hemisphere. The 
present analyses do not confirm Hershfield’s (1965) observation that arid areas tend to 
have higher relative extremes (ratios of maximum to mean or standard deviation) than 
areas with heavy rainfall, which as Koutsoyiannis (1999) showed, is equivalent to a 
negative correlation of κ with mean. Before a concrete conclusion on this issue can be 
drawn, long records from other geographical zones, especially tropical and Southern 
Hemisphere ones, should be explored.  
 The results of this study also converge with other recent studies such as those by 
Chaouche (2001), Chaouche et al. (2002), Coles et al., (2003) and Sisson et al. (2003), 
which all verify the EV2/Pareto behaviour in the tail of the distribution of rainfall 
extremes and exclude the possibility of EV1/exponential behaviour. In particular, 
Chaouche (2001) exploited a data base of 200 rainfall series of various time steps 
(month, day, hour, minute) from the five continents, each including more than 100 years 
of data. Using multifractal analyses, he showed that (a) a Pareto type law describes the 
rainfall amounts for large return periods; (b) the exponent of this law is scale invariant 
over scales greater than an hour; and (c) this exponent is almost space invariant. 
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Fig. 13 Empirical distribution of standardized rainfall depth k for Hershfield’s (1961) 
data set (95 000 station years from 2645 stations), as determined by Koutsoyiannis 
(1999), and fitted EV2 distributions with κ = 0.13 (Koutsoyiannis, 1999) and κ = 0.15 
(present study) (GEV probability plots with κ = 0.15). 
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