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Abstract Unlike common random series like those observed for example in games of chance, 

hydrological (and other geophysical) time series have some structure, that is, consecutive 

values of hydrological time series are dependent to each other. A special kind of dependence 

observed at large timescales has been discovered by Hurst half a century ago and has been 

known by several names such as long-range dependence, long-term persistence or simply the 

Hurst phenomenon. Since then, it has been verified that this behaviour is almost omnipresent 

in several processes in nature (e.g. hydrology), technology (e.g. computer networks) and 

society (e.g. economics). The consequences of this behaviour are very significant, as it 

increases dramatically the uncertainty of the related processes. However, even today its 

importance and its consequences are not widely understood or are ignored, its nature is 

regarded as difficult to understand, and its reproduction in hydrological simulation is 

considered a hard task or not necessary. It is shown in this article that the Hurst phenomenon 

can have easy explanation and easy stochastic representation, and that simple algorithms can 

generate time series exhibiting long-term persistence.  

Keywords climate change; fractional Gaussian noise; Hurst phenomenon; hydrological 

persistence; hydrological statistics; hydrological estimation; hydrological persistence; 

hydrological prediction; long-range dependence; scaling; uncertainty 

Introduction 

Unlike common random series like those observed for example in games of chance (dice, 

roulette, etc.), hydrological (and other geophysical) time series have some structure, that is, 

consecutive values of hydrological time series are dependent to each other. It is easy to 

understand that, for instance in a monthly river flow series, a month with very high flow is 
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likely to be followed by a month with high flow, too. Since the river flow is interrelated to the 

groundwater storage, the high flow indicates that the groundwater storage will be high too, 

and given that the groundwater flow is a slow process, it is expected that its contribution to 

the river flow in the next month will be significant. This explains the dependence of 

consecutive values of hydrological time series, which has been known as short-range (or 

short-term) dependence, persistence, or memory.  

 Interestingly, however, there is another kind of dependence observed at larger timescales, 

known as long-range (or long-term) dependence, persistence, or memory. This has been 

discovered by Hurst (1951), while investigating the discharge time series of the Nile River in 

the framework of the design of the Aswan High Dam, and found in many other hydrological 

and geophysical time series. This behaviour is essentially the tendency of wet years to cluster 

into multi-year wet periods or of dry years to cluster into multi-year drought periods. The 

terms ‘Hurst phenomenon’ and ‘Joseph effect’ (due to Mandelbrot, 1977, from the biblical 

story of the ‘seven years of great abundance’ and the ‘seven years of famine’) have been used 

as alternative names for the same behaviour. Since its original discovery, the Hurst 

phenomenon has been verified in several environmental quantities such as (to mention a few 

of the more recent studies) in wind power (Haslett and Raftery, 1989); global or point mean 

temperatures (Bloomfield, 1992; Koutsoyiannis, 2003a, b); flows of several rivers such as 

Nile (Eltahir, 1996; Koutsoyiannis, 2002), Warta, Poland (Radziejewski and Kundzewicz, 

1997), Boeoticos Kephisos, Greece (Koutsoyiannis, 2003a), and Nemunas, Lithuania 

(Sakalauskienė, 2003); inflows of Lake Maggiore, Italy (Montanari et al., 1997); indexes of 

North Atlantic Oscillation (Stephenson et al., 2000); and tree-ring widths, which are 

indicators of past climate (Koutsoyiannis, 2002). In addition, the Hurst phenomenon has 

gained new interest today due to its relation to climate changes (e.g. Evans, 1996; 

Koutsoyiannis, 2003a, c; Koutsoyiannis and Efstratiadis, 2004). 

 The possible explanation of the long-term persistence must be different from that of the 

short-term persistence discussed above. This will be discussed later. However, its existence is 

easy to observe even in a time series plot, provided that the time series is long enough. For 

example, in Figure 1 (up) we have plotted one of the most well-studied time series, that of the 
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annual minimum water level of the Nile river for the years 622 to 1284 A.D. (663 

observations), measured at the Roda Nilometer near Cairo (Toussoun, 1925, p. 366-385; 

Beran, 1994). In addition to the plot of the annual data values versus time, the 5-year and 25-

year averages are also plotted versus time. For comparison we have also plotted in the lower 

panel of Figure 1 a series of white noise (consecutive independent identically distributed 

random variates) with statistics same with those of the Nilometer data series. We can observe 

that the fluctuations of the aggregated processes, especially for the 25-year average, are much 

greater in the real world time series than in the white noise series. Thus, the existence of 

fluctuations in a time series at large scales distinguishes it from random noise.  
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Figure 1 (Up) Plot of the Nilometer series indicating the annual minimum water level of the Nile River for the 

years 622 to 1284 A.D. (663 years); (down) a white noise series with same mean and standard deviation, for 

comparison.  
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Stochastic representation of the Hurst phenomenon 

The quantification of the long-term persistence is better expressed mathematically using the 

theory of stochastic processes. Let Xi denote a stochastic representation of a 

hydrometeorological process with i = 1, 2, …, denoting discrete time with time step or scale 

which for the purposes of this article is annual or multi-annual. It is assumed that the process 

is stationary, a property that does not hinder to exhibit multiple scale variability. The 

stationarity assumption implies that its statistics are not functions of time. Therefore, we can 

denote its statistics without reference to time, i.e. its mean as µ := E[Xi], its autocovariance as 

γj := Cov[Xi, Xi + j] (j = 0, ±1, ±2, …), its autocorrelation ρj := Corr[Xi, Xi + j] = γj / γ0, and its 

standard deviation σ := γ0. Further, we assume ergodicity, so that these statistics can be 

estimated from a unique time series substituting time averages for expected values. 

 Let k be a positive integer that represents a timescale larger than the basic timescale of the 

process Xi. The aggregated stochastic process on that timescale is denoted as 

 Z (k)
i  := ∑

l = (i – 1) k + 1

i k
 Xl (1) 

The statistical characteristics of Z
 (k)
i  for any timescale k can be derived from those of Xi. For 

example, the mean is 

 E[Z (k)
i ] = k µ  (2) 

whilst the variance and autocovariance (or autocorrelation) depends on the specific structure 

of γj (or ρj). In a process that exhibits the Hurst phenomenon, the variance γ
 (k)
0  for timescale k 

is related to that of the basic scale γ0 by 

 γ
(k)
0  := Var[Z

 (k)
i ] = k2H γ0 (3) 

where H is a constant known as the Hurst coefficient with values in the interval (0.5, 1). The 

value H = 0.5 corresponds to random noise whereas values in the interval (0, 0.5) are 

mathematically possible but without interest in hydrology. Consequently, the standard 

deviation is a power law of the scale or level of aggregation k with exponent H, i.e., 
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 σ(k) := (γ(k)
0 )

1/2
 = kH σ (4) 

 This simple power law can be easily used both for detecting whether a time series exhibits 

the Hurst phenomenon and for determining the coefficient H, which is a measure of the long-

term persistence. Equation (4) calls for a double logarithmic plot of standard deviation σ(k) of 

the aggregated process Z
 (k)
i  versus timescale k. In such a plot, called the aggregated standard 

deviation plot, the Hurst behaviour is manifested as a straight line arrangement of points 

corresponding to different timescales, whose slope is the Hurst coefficient. An example is 

depicted in Figure 2 for the Nilometer series of Figure 1. Clearly, the plot of the empirical 

estimates of standard deviation is almost a straight line on the logarithmic diagram with slope 

0.85. For comparison we have also plotted the theoretical curve for the white noise with slope 

equal to 0.5, significantly departing from the historical data.  
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Figure 2 Aggregated standard deviation plot of the Nilometer series.  

 By virtue of (3), it can be shown that the autocorrelation function, for any aggregated 

timescale k, is independent of k and given by  

 ρ
(k)
j  = ρj = (1 / 2) (|j + 1|2H + |j – 1|2H ) – |j|2H) ≈ H (2 H – 1) |j|2H – 2 (5) 

which shows that autocorrelation is a power function of lag. Consequently, the autocovariance 

γ
(k)
j  = γ

(k)
0  ρ

(k)
j  is a power law of both the scale k (with exponent 2H) and the lag j (with 

exponent 2H – 2).  
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 The power spectrum of the process  

 s
(k)
 γ (ω) := 2 ∑

j = –∞

∞
  γ

(k)
 j  cos (2 π j ω) (6) 

is given approximately by  

 s
(k)
γ (ω) ≈ 4 (1 – H) γ

(k)
 0  (2 ω)1 – 2 H (7) 

which is a power law of both the scale k (with exponent 2H) and the frequency ω (with 

exponent 1 – 2H). 

 The power law equations (5) and (7) can be used, in addition or alternatively to (3) and (4), 

to detect the Hurst behaviour of a time series. It should be mentioned here that Hurst’s (1951) 

original formulation to detect this behaviour was based on another quantity, the so called 

rescaled range, which corresponds to the cumulated process of inflow minus outflow of a 

hypothetical infinite reservoir.  

 Equations (3)-(7) describe essentially second order properties of the process Z
 (k)
i . A 

generalization is possible, if we assume that the process of interest exhibits scale invariant 

properties in its (finite dimensional joint) distribution function, i.e.,  

 (Z
 (k)
i  – k µ) =

d
 



k

 l 

H

  (Z
 (l)
j  – l µ) (8) 

where the symbol =
d
 stands for equality in distribution. In this case, (3) can be obtained from 

(8) setting i = j = l = 1 and taking the variance of both sides. Equation (8) defines Xi and Z
 (k)

i  

as stationary increments of a self-similar process. If, in addition, Xi (and hence Z
 (k)
i ) follows 

the normal distribution, then Xi (and Z
 (k)
i ) is called fractional Gaussian noise (FGN; 

Mandelbrot, 1965). Our interest here includes processes that may be not Gaussian, so we will 

limit the scaling property (8) to second-order properties only and call the related process a 

simple scaling signal (SSS).  

Physical explanations of the Hurst phenomenon 

As described in the Introduction, the concept of short-term persistence in hydrological 

processes is ease to explain, whereas long-term persistence and the Hurst phenomenon are 

more difficult to understand. Mesa and Poveda (1993) classify the Hurst phenomenon as one 
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of the most important unsolved problems in hydrology and state that “something quite 

dramatic must be happening from a physical point of view”. However, several explanations 

have been proposed. These can be classified in two categories: physically-based and 

conceptual.  

 Klemeš (1974) proposed an explanation that may be classified in the first category. 

According to this, the Hurst behaviour of hydrological records can be explained by 

representing the hydrological cycle by a ‘circular cascade of semi-infinite storage reservoirs’ 

where the output from one reservoir constitutes an essential part of input into the next. He 

showed that, even with an originally uncorrelated Gaussian forcing, the outputs grew 

progressively more Hurst-like with an increasing complexity of the system, e.g. with the 

number of reservoirs in the cascade. Another example of such hydrological system was 

suggested in Klemeš (1978). 

 Beran (1994, pp. 16-20) describes two physically-based model types that lead to system 

evolution (in time or space) with long-range dependence. The first model type applies to 

critical phenomena in nature such as phase transition (transition from liquid to gaseous phase, 

or spontaneous magnetization of ferromagnetic substances). For some critical system 

temperature the correlation of the system state at any two points decays slowly to zero, so the 

correlation in space can be represented by (5). The second type is related to models based on 

stochastic partial differential equations, which, under certain conditions, result in solutions 

with long-range dependence. These models provide sound links of long-range dependence 

with physics but are very complex.  

 A simple model of this category was studied by Koutsoyiannis (2003b). This model 

assumes a system with purely deterministic dynamics in discrete time, which however results 

in time series with irregular appearance exhibiting the Hurst phenomenon. The system 

dynamics is based on the simple map  

 xi = g(xi – 1; α) := 
(2 – α) min (xi – 1, 1 – xi – 1)
 1 – α  min (xi – 1, 1 – xi – 1)  (9) 

where xi is the system state, assumed to be scalar, at time i and α < 2 is a parameter. This map, 

known as generalized tent map, has been used in the study of dynamical systems. For 
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example, the map approximates the relation between successive maxima in the variable x(t) 

from the Lorenz equations that describe climatic dynamics (Lasota and Mackey, 1994, p. 

150). Koutsoyiannis (2003b) demonstrated that this model can describe a system subject to 

the combined action of a positive and a negative feedback. If the parameter α is assumed to 

vary in time following the same map, i.e., αi = g(αi – 1; λ), then we obtain the double tent map 

 ui = G(ui – 1, αi – 1; κ, λ) := g(ui – 1; κ αi – 1) (10) 

Both parameters κ and λ should be < 2 whereas the domain of ut is the interval [0, 1]. If the 

system domain is the entire line of real numbers, we can apply an additional transformation to 

shift from [0, 1] to (–∞, ∞), e.g., 

 xt = ln[ut / (1 – ut)] (11) 
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Figure 3 Schematic of the general behaviour of the double tent map in terms of the ranges of its parameters κ 

and λ.  

 The model behaviour with respect to parameters κ and λ is depicted in Figure 3. We 

observe that for small values of the parameter κ, the time series synthesized by the model 

exhibit short-range dependence with Hurst coefficient around 0.5. For large values of κ, the 
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model yields a runaway behaviour. However, in between the two non-interesting areas, there 

is an area of parameter values, shaded in Figure 3, in which the resulting time series exhibit 

the long-range dependence. All three types of behaviour are observed for negative values of λ 

(not shown in Figure 3) whereas for λ > 1 only the runaway behaviour is observed regardless 

of the value of κ. 

 The second category, labelled here ‘conceptual’, does not aim at explaining the physical 

mechanism leading to Hurst behaviour of historical records of some natural or other 

processes, but examines different stochastic mechanisms that might produce realizations 

resembling the patterns of the observed empirical time series. For example, Klemeš (1974) 

analyzed several variants of the ‘changing mean’ mechanism which assumes that the mean of 

the process is not a constant determined by the arithmetic mean of the record, but varies 

through time. Specifically, he performed numerical experiments with the following Gaussian 

random processes:  

1. a process with the mean alternating periodically between two values after constant 

time intervals called ‘epochs’; 

2. a process with a monotonic linear trend in the mean, throughout the entire series 

length; 

3. a process similar to 1 but with epoch lengths taking two different values with 

probabilities p and 1 – p; and 

4. a process with a Gaussian-distributed mean randomly varying from epoch to epoch, 

the epoch length also varying randomly and following either a uniform, exponential, 

or (single parameter) Pareto distribution.  

The processes behaved increasingly Hurst-like as their structure changed from 1 to 4. This 

behaviour was most influenced by the distribution of epoch lengths, while the distribution of 

the mean itself had little effect. 

 The effect of periodical patterns, which are extensions of those of model 1, have been 

thoroughly studied by Montanari et al. (1999), who however note that such patterns are 

unusual in real data. The effect of monotonic deterministic trends, which are extensions of 
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model 2, was studied by Bhattachara et al. (1983), who showed mathematically that a trend of 

the form f(t) = c (m + t)H – 1 with t denoting time, c a nonzero constant, m a positive constant 

and H a constant in the interval (0.5, 1), results in time series exhibiting the Hurst 

phenomenon with Hurst coefficient precisely equal to H. We may note, however, that this 

kind of nonstationarity with a monotonic deterministic trend spanning the whole length of a 

time series can hardly represent a long time series of real data, even though in short time 

series seem to be realistic. For example, to refer to the Nilometer series of Figure 1, if one had 

available only the data of the period 700-800 one would detect a ‘deterministic’ falling trend 

of the Nile level; similarly, one would detect a regular rising trend of the Nile level between 

the years 1000-1100. However, the complete picture of the series suggests that these trends 

are parts of large-scale random fluctuations rather than deterministic trends.  

 Based on this observation, Koutsoyiannis (2002) proposed a conceptual explanation, which 

can be essentially regarded as an extension of Klemeš’s model 4 and is also similar to other 

proposed conceptual models as it will be discussed later. More specifically, Koutsoyiannis 

(2002) demonstrated that superimposition of three processes with short-term persistence 

results in a composite process that is practically indistinguishable from an SSS process.  

 This demonstration is reproduced here in Figures 4-5. It starts assuming a Markovian 

process Ui, like the one graphically demonstrated in Figure 4(a), with mean µ := E[Ui], 

variance γ0 and lag one autocorrelation coefficient ρ = 0.20. The specific form of this process 

is an AR(1) one, i.e. Ui := ρ Ui – 1 + Ei, where Ei is white noise, and its autocorrelation is 

 Corr[Ui, Ui + j] = ρ j (12) 

The autocorrelation function is shown in Figure 5(a) along with the autocorrelation function 

of SSS with same lag one autocorrelation coefficient (0.20). We observe the large difference 

of the two autocorrelation functions: that of the Markovian process practically vanishes off at 

lag 4 whereas that of SSS has positive values for lags as high as 100. 

 In the next step, a second process Vi is constructed by superimposing another Markovian 

process Mi, i.e.,  

 Vi = Ui + Mi – µ (13) 
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Here the process Mi is constructed in a different way, rather than using the AR(1) model, yet 

without loosing its Markovian behaviour, so that its autocorrelation is  

 Corr[Mi, Mi + j] = φ j (14) 

for φ > ρ. More specifically, a continuous time process M (see explanatory sketch on Figure 

4(b)) with the following properties was assumed: (a) it has mean µ and some variance Var[M]; 

(b) any realization m of M lasts N years and is independent from previous realizations; (c) N is 

a random variable exponentially distributed with mean λ = –1 / ln φ. (This means that N can 

take non-integer values). In other words, M takes a value m(1) that lasts n1 years, then it 

changes to a value m(2) that lasts n2 years, etc. (where the values m(1), m(2), … can be generated 

from any distribution). The exponential distribution of N indicates that the points of change 

are random points in time. If we denote Mi the instance of the M process at discrete time i, it 

can be shown that indeed Mi is Markovian with lag one autocorrelation φ. This way of 

constructing Mi allows us to interpret Vi as a process similar to Ui but with mean Mi that varies 

randomly in time (rather than being constant, µ) shifting among randomly determined values 

m(1), m(2), …, each lasting a random time period with average λ. It can be easily shown from 

(13) that the autocorrelation of Vi for lag j is 

 Corr[Vi, Vi + j] = (1 – c)ρ j + c φ j (15) 

where c := Var[Mi] / (Var[Mi] + Var[Ui]). Setting for instance λ = 7.5 years (φ = 0.875) and c 

= 0.146 we get the autocorrelation function shown in Figure 5(b), which has departed from 

the AR(1) autocorrelation and approached the SSS autocorrelation. 

 In a third step, another process Wi is constructed by superimposing Vi with a third 

Markovian process Pi, i.e., 

 Wi = Vi + Pi – µ = Ui + Mi + Pi – 2 µ (16) 

Pi is constructed in a way identical to that of Mi, but with lag one autocorrelation ξ > φ, so that 

the mean time between changes of the value of P is ν = –1 / ln ξ. Working as in the previous 

step we find 

 Corr[Wi, Wi + j] = (1 – c1 – c2)ρ j + c1 φ j + c2 ξ j (17) 
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where c1 and c2 are positive constants (with c1 + c2 < 1). Setting for instance λ = 7.5 years (φ = 

0.875), ν = 200 years (ξ = 0.995), c1 = 0.146 and c2 = 0.036 we get the autocorrelation 

function shown in Figure 5(c), which has now become almost indistinguishable from the SSS 

autocorrelation for time lags from 1 to 1000. 
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Figure 4 Illustrative sketch for multiple timescale random fluctuations of a process that can explain the Hurst 

phenomenon: (a) a time series from a Markovian process with constant mean; (b) the same time series 

superimposed to a randomly fluctuating mean on a medium timescale; (c) the same time series further 

superimposed to a randomly fluctuating mean on a large timescale (from Koutsoyiannis, 2002). 

 In conclusion, a Markovian underlying process can result in a nearly SSS process if there 

occur random fluctuations of the mean of the process on two different scales (e.g., 7.5 and 

200 years), yet the resulting composite process being stationary. If we consider that 

fluctuations occur on a greater number of timescales, the degree of approximation of the 
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composite process to the SSS process will be even better and can cover time lags greater than 

1000 (although the extension to lags beyond 1000 may not have any practical interest in 

hydrology). In conclusion, the irregular changes of climate that, according to National 

Research Council (1991, p. 21), occur on all timescales can be responsible for, and explain, 

the Hurst phenomenon. 
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Figure 5 Plots of the example autocorrelation functions of (a) the Markovian process U with constant mean; (b) 

the process U superimposed to a randomly fluctuating mean on a medium timescale (process V); (c) the process 

V further superimposed to a randomly fluctuating mean on a large timescale (process W). The superimposition of 

fluctuating means increases the lag one autocorrelation (from ρ1 = 0.20 for U to ρ1 = 0.30 and 0.33 for V and W 

respectively) and also shifts the autocorrelation function from the AR(1) shape (also plotted in all three panels) 

towards the SSS shape (also shown in all three panels) (from Koutsoyiannis, 2002). 

 This demonstration, in fact bridges several ideas that had been proposed to explain the 

Hurst phenomenon, rather than being a novel explanation. As already discussed, it is similar 

with Klemeš’s model 4, except for the setting of multiple timescales of fluctuation of mean 
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and the emphasis on the stationarity of the composite process. Here, it should be mentioned 

that Klemeš referred to all his ‘changing mean’ models as models with nonstationarity in their 

mean, even though this is strictly true only for models 1 and 2. While he did point out that his 

final models in group 4 were in fact stationary, and that he kept the term ‘nonstationary’ for 

all changes in the mean to communicate the fact (elaborated in more detail in Klemeš, 1976) 

that one cannot tell the difference from the pattern of a single ‘nonstationary-looking’ time 

series (which even a stationary model is designed to mimic), his explanation has sometimes 

been missed and lead to a misconception about his work by some authors (including this one, 

who expresses his apology).  

 The idea of irregular sporadic changes in the mean of the process appeared also in Salas 

and Boes (1980), but not in connection with SSS and not in the setting of multiple timescales. 

The idea of composite random processes with two timescales of fluctuation appeared in 

Vanmarcke (1983, p. 225). The idea of an explanation of the Hurst phenomenon as a mixture 

of scales appears in Mesa and Poveda (1993). The idea of representing SSS as an aggregation 

of short-memory processes is the principle of the well known fast fractional Gaussian noise 

algorithm (FFGN, Mandelbrot, 1971) and is also studied, as a possible physical explanation of 

the Hurst phenomenon, by Beran (1994, p. 14). The difference of the above described 

explanation is the aggregation of only three short-memory processes. 

Importance of the Hurst phenomenon 

The presence of the Hurst phenomenon increases dramatically the uncertainty of climatic and 

hydrological processes. If such a process were random and our information on this was based 

on a sample of size n, then the uncertainty on the long term, which can be expressed in terms 

of the variance of the estimator of the mean, X–, would be:  

 var[X–] = 
σ2

n  (18) 

This offers good approximation for a process with short-term persistence, as well, but it is not 

valid for a process with long-term persistence. Instead, the following relation holds 

(Adenstedt, 1974; Beran, 1994, p. 54; Koutsoyiannis, 2003a): 
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 var[X–] = 
σ2

n2–2H (19) 

The difference between equations (18) and (19) becomes very significant for large values of 

H. For example, in a time series of n = 100 years of observations and standard deviation σ, 

according to the classical statistics (equation (18)), the standard estimation error, i.e. the 

square root of var[X–], is σ/10. However, for H = 0.8 the correct standard error, as given by 

equation (19), is σ/2.5, i.e. four times larger. To have an estimation error equal to σ/10, the 

required length of the time series would be 100 000 years! Obviously, this dramatic difference 

induces substantial differences in other common statistics as well (Koutsoyiannis, 2003a). 

 A demonstration of the difference in estimations related to climate is given in Figure 6. 

Here, a long climatic time series (992 years) was used, which represents the Northern 

Hemisphere temperature anomalies with reference to 1961–1990 mean (Figure 8, up) This 

series was constructed using temperature sensitive palaeoclimatic multi-proxy data from 10 

sites worldwide that include tree rings, ice cores, corals, and historical documents (Jones et 

al., 1998a, b). The time series was studied in relation to the Hurst phenomenon by 

Koutsoyiannis (2003a) and it was found that the estimate of the Hurst coefficient is 0.88. In 

the upper panel of Figure 6 the point estimates and the 99% confidence limits of the quantiles 

of the temperature anomalies have been plotted for probability of nonexceedence, u, ranging 

from 1 to 99%, assuming a normal distribution, as verified from the time series, and using the 

classical statistical estimators. This is done for two timescales, the basic one (k = 1) that 

represents the annual variation of temperature anomaly, and the 30-year timescale, which 

typically is assumed to be sufficient to smooth out the annual variations and provide values 

representative of the climate. (For the latter, the averaged rather than aggregated time series, 

i.e. zi
(30)/30, has been used.)  



D. Koutsoyiannis, Hydrological Persistence and the Hurst Phenomenon (SW-434) 16 

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Probability of nonexceedence

Te
m

pe
ra

tu
re

 a
no

m
al

y

Point estimates, annual
99% confidence limits, annual
Point estimates, 30-year average
99% confidence limits, 30-year average

  .01 .02 .05  .1    .2            .5            .8    .9   .95 .98.99

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Probability of nonexceedence

Te
m

pe
ra

tu
re

 a
no

m
al

y

Point estimates, annual
99% confidence limits, annual
Point estimates, 30-year average
99% confidence limits, 30-year average

  .01 .02 .05  .1    .2            .5            .8    .9   .95 .98.99

 

Figure 6 Point estimates of quantiles and 99% confidence limits thereof at the basic timescale (annual values, k 

= 1) and the 30-year timescale (30-year averages, k = 30), for the Jones’s time series of the Northern Hemisphere 

temperature anomalies: (up) using classical statistics; (down) using adapted statistics.  

 If classical statistics is used (Figure 6, upper panel), then it is observed that, due to the 

large length of the series, the confidence band is very narrow and the point estimates for the 

basic and the aggregated timescale differ significantly. The variability of climate, as 

expressed by the distribution of the average at the 30-year timescale, is very low, despite the 

much higher variability at the annual scale. This justifies the saying “Climate is what you 
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expect, weather is what you get”. Things change dramatically, if the statistics based on the 

hypothesis of long-term persistence (Koutsoyiannis, 2003a) are used with H = 0.88. This is 

depicted in the lower panel of Figure 6, where it is observed that the variation of the 30-year 

average is only slightly lower than that of the annual values and the confidence band has 

dramatically widened for both timescales. This could be expressed by paraphrasing the above 

proverb to read “Weather is what you get, climate is what you get – if you keep expecting for 

many years”. The consequences of these differences in estimating the climatic uncertainty due 

to natural variability are obviously very significant.  

 The consequences in the water resources engineering and management are even more 

significant. Particularly, since the notion of climate implies long timescales, it is to be 

expected that the practical importance of the Hurst phenomenon increases in projects whose 

operation cycles span across long periods of time. As a typical example may serve large 

reservoirs with multi-year flow regulation (Klemeš et al., 1981; see also the entry SW-776, 

Reliability Concepts in Reservoir Design). For small-to-middle range reservoirs it is generally 

regarded that the effect of the Hurst phenomenon appears to be within the margin of error of 

hydrological data used for their design and operation. However, even in hydrosystems with 

small reservoirs or no reservoirs at all, as it becomes obvious from the above discussion, the 

effect on the Hurst phenomenon is significant if the uncertainty (not only the expected value) 

of water availability is to be assessed.  

Simple algorithms to generate time series respecting the Hurst phenomenon 

Several algorithms have been developed to generate time series that respect the Hurst 

phenomenon. Among these, we discuss here the simplest ones that can be applied even in a 

spreadsheet environment. These are based on the above-discussed properties of SSS and can 

be used to provide approximations of SSS good for practical hydrological purposes.  

 A first, rather “quick and dirty” algorithm can be very easily formulated based on the 

deterministic double tent map (equations (10) and (11)). The problem with the resulting time 

series is that consecutive generated values are too regularly and smoothly related. This can be 

avoided by discarding some of the generated values xi and holding only the values xν j, for 
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some ν > 1 and for j = 1, 2, …, n, where n is the required series length. Figure 7 depicts the 

attained Hurst coefficient in a time series generated from the double tent map (equation (10)) 

either untransformed or transformed (equation (11)) for ν = 1 and 4. This figure can serve as a 

tool to estimate the parameter κ required to achieve a certain Hurst coefficient H (assuming λ 

= 0.001). A time series so generated can then be transformed linearly to acquire the required 

mean and standard deviation. By appropriately choosing the initial values α0 and u0 one can 

obtain a time series that can have a presumed general shape; this needs a random search 

optimization technique to be applied. An example of the application of this algorithm to the 

Jones data set already discussed above is depicted in Figure 8. 
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Figure 7 Hurst coefficient of a time series generated from the double tent map (equations (10) and (11)) for 

parameter values λ = 0.001, κ ranging from 0 to 2 and ν = 1 and 4. For κ approaching 2 the double tent map has a 

runaway behaviour.  

 As we saw earlier, the weighted sum of three exponential functions of the time lag 

(equation (17)) can give an acceptable approximation of the SSS autocorrelation function on 

the basic timescale. This observation leads to an easy algorithm to generate SSS. The 

following equations (from Koutsoyiannis, 2002) can be used to estimate the parameters ρ, φ 

and ξ: 

 ρ = 1.52 (H – 0.5)1.32 ,  φ = 0.953 – 7.69 (1 – H)3.85 (20)  
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 ξ = 


0.932 + 0.087 H H ≤ 0.76

0.993 + 0.007 H H > 0.76
 (21) 
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Figure 8 (Up) Plot of the Jones data series indicating the North Hemisphere temperature anomalies with 

reference to 1961–1990 mean; (middle) a synthetic time series generated by the double tent map fitted to the 

Jones data set and assuming ν = 4; (down) comparison of the synthetic and original time series in terms of their 

50-year moving averages.  

The remaining parameters c1 and c2 can be then estimated such that the approximate 

autocorrelation function (17) match the exact function (5) for two lags, e.g. lags 1 and 100. 
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(Their values are obtained by solving two linear equations). Comparison plots of approximate 

autocorrelation functions based on equations (17) and (20)-(21) versus the exact SSS 

autocorrelation functions (equation (5)) for various values of the Hurst exponent H are shown 

in Figure 9. Equations (16) and (17) may be interpreted as representing the sum of three 

independent AR(1) processes, with lag one correlation coefficients ρ, φ, and ξ, and variances 

(1 – c1 – c2) γ0, c1 γ0, and c2 γ0, respectively. Thus, the generation algorithm is as simple as the 

generation of three AR(1) series and their addition.  
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Figure 9 Approximate autocorrelation functions based on equations (17) and (20)-(21) vs. the exact SSS 

autocorrelation functions (equation (5)) for various values of the Hurst exponent H (from Koutsoyiannis, 2002). 

 The simple expressions of the statistics of the aggregated SSS process make possible a 

disaggregation approach for generating SSS (Koutsoyiannis, 2002). Specifically, let us 

assume that the desired length n of the synthetic series to be generated is 2m where m is an 

integer (e.g., n = 2, 4, 8, , …); if not, we can increase n to the next power of 2 and then 

discard the redundant generated items. We first generate the single value of Z
(n)
1  knowing its 

variance n2H γ0 (from (3)). Then we disaggregate Z
(n)
1  into two variables on the timescale n / 2, 

i.e. Z
(n / 2)
1  and Z

(n / 2)
2  and we proceed this way until the series Z

(1)
1  ≡ X1, …, Z

(1)
n ≡ Xn is generated 

(see explanatory sketch in Figure 10). 

 We consider the generation step in which we disaggregate the higher-level amount Z
(k)
i  (1 < 

i < n / k) into two lower-level amounts Z
(k / 2)
2 i – 1 and Z

(k / 2)
2 i  such that 

 Z
(k / 2)
2 i – 1 + Z

(k / 2)
2 i  = Z

(k)
i  (22) 
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Thus, it suffices to generate Z
(k / 2)
2 i – 1 and then obtain Z

(k / 2)
2 i  from (22). At this generation step we 

have available the already generated values of previous lower-level time steps, i.e., Z
(k / 2)
1 , …, 

Z
(k / 2)
2 i – 2 and of next higher-level time steps, i.e., Z

(k)
i + 1, …, Z

(k)
n / k (see Figure 10). Theoretically, it 

is necessary to preserve the correlations of Z
(k / 2)
2 i – 1 with all previous lower-level variables and 

all next higher-level variables. However, we can get a very good approximation if we 

consider correlations with only one higher-level time step behind and one ahead. Under this 

simplification, Z
(k / 2)
2 i – 1 can be generated from the linear relationship 

 Z
(k / 2)
2 i – 1 = a2 Z

(k / 2)
2 i – 3 + a1 Z

(k / 2)
2 i – 2 + b0 Z

(k)
i  + b1 Z

(k)
i + 1 + V (23) 

where a2, a1, b0 and b1 are parameters given by  

 







a2

a1

b0

b1

 = 







1 ρ1 ρ2 + ρ3 ρ4 + ρ5

ρ1 1 ρ1 + ρ2 ρ3 + ρ4

ρ2 + ρ3 ρ1 + ρ2 2(1 + ρ1) ρ1 + 2ρ2 + ρ3

ρ4 + ρ5 ρ3 + ρ4 ρ1 + 2ρ2 + ρ3 2(1 + ρ1)

–1

  







ρ2

ρ1

1 + ρ1

ρ2 + ρ3

 (24) 

with ρj given by (5), and V is an innovation with variance  

 Var[V] = γ
 (k / 2)
0 (1 – [ρ2, ρ1, 1 + ρ1, ρ2 + ρ3] [a2, a1, b0, b1]T ) (25) 

where the superscript T denotes the transpose of a vector. 

 All parameters are independent of i and k and therefore they can be used in all steps. When 

i = 1 there are no previous time steps and thus the first two rows and columns of the above 

matrix and vectors are eliminated. Similarly, when i = n / k, there is no next time step and thus 

the last row and column of the above matrix and vectors are eliminated.  

 The power law of the power spectrum of SSS allows the generation of an SSS time series 

Xi filtering a series of white noise Vi by the symmetric moving average (SMA) scheme 

(Koutsoyiannis, 2000): 

 Xi = ∑
j = –q

q
 a|j| Vi + j = aq Vi – q + … + a1 Vi – 1 + a0 Vi + a1 Vi + 1 + … + aq Vi + q (26) 
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Figure 10 Explanation sketch of the disaggregation approach for generation of SSS. Grey boxes indicate random 

variables whose values have been already generated prior to the current step and arrows indicate the links to 

those of the generated variables that are considered in the current generation step (from Koutsoyiannis, 2002). 

where q theoretically is infinity but in practice can be restricted to a finite number, as the 

sequence of weights aj tends to zero for increasing j. Koutsoyiannis (2002) showed that the 

appropriate sequence of aj is  

 aj ≈ 
(2 – 2 H) γ0

3 – 2H   (|j + 1|H + 0.5 + |j – 1|H + 0.5 – 2 |j|H + 0.5) (27) 

The sequence length q must be chosen at least equal to the desired number of autocorrelation 

coefficients m that are to be preserved. In addition, the ignored terms aj beyond aq must not 

exceed an acceptable tolerance β σ. These two conditions result in  

 q ≥ max







m‚ 



2 β

H2 – 0.25

1 / (H – 1.5)

 (28) 

Thus, q can be very large (on the order of thousands to hundreds of thousands) if H is large 

(e.g. > 0.9) and β is small (e.g. < 0.001). Approximate autocorrelation functions based on 

equations (26) and (27) versus the exact SSS autocorrelation functions (equation (5)) for 

various values of H and q are shown in Figure 11.  

 This method can also generate non Gaussian series with skewness ξΧ by appropriately 

choosing the skewness of the white noise ξV. The relevant equations for the statistics of Vi, 

which are direct consequences of (26), are  
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Figure 11 Approximate autocorrelation functions based on equations (26) and (27) vs. the exact SSS 

autocorrelation functions (equation (5)) for various values of the Hurst exponent H and of the number of weights 

q (from Koutsoyiannis, 2002). 

 










a0 + 2 ∑
j = 1

s
 aj  E[Vi] = µ,    Var[Vi] = 1,      











a0
3+ 2 ∑

j = 1

q
 aj

3  ξV = ξΧ γ0  
3/2 (29) 

Concluding remarks 

More than half a century after its discovery, the Hurst phenomenon, has been verified to be 

almost omnipresent in several processes in nature (e.g. hydrology), technology (e.g. computer 

networks) and society (e.g. economics). However, still its consequences are not widely 

understood or are ignored; to quote Klemeš (1974), still it is regarded by many as “a ghost to 

be conjured away”.  

 For example, in stochastic hydrological simulations that are used in hydrosystem 

modeling, the Hurst phenomenon is generally not reproduced. The most widespread 

stochastic hydrology packages, have not implemented any types of models that respect the 

Hurst phenomenon. However, today there exist methodologies, implemented into software 

packages, which can reproduce the Hurst phenomenon even in complicated situations, such as 

in multivariate setting with multiple timescales and asymmetric probability distributions 

(Koutsoyiannis, 2000; Koutsoyiannis and Efstratiadis, 2001; Langousis and Koutsoyiannis, 
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2003). In addition, as described above, the reproduction of the Hurst phenomenon in 

univariate problems is quite simple.  

 In hydrological analysis, it has been a common practice to detect falling or rising 

monotonic ‘trends’ in the available records, assume that these are deterministic components, 

and then ‘subtract’ them from the time series to obtain a ‘detrended’ time series, which is 

finally used in subsequent analyses. This common technique, which is described in several 

hydrological texts, is obviously a disrespect of the Hurst phenomenon. The ‘trends’ are in fact 

large scale fluctuations, i.e. the basis of the Hurst phenomenon. There could be regarded as 

deterministic components if a sound, physically-based model could capture them and also 

predict their evolution in the future. This, however, is not the case. The a posteriori fitting of 

a regression curve (e.g. a linear equation) on historical data series has no relation with 

deterministic modelling. The subtraction of the ‘trends’ from the time series results in a 

reduction of standard deviation, i.e. artificial decrease of uncertainty. This is exactly opposite 

to the real meaning of the Hurst phenomenon, which, as analyzed above, increases uncertainty 

substantially.  

 Even without adopting this ‘detrending’ technique, hydrological statistics, the branch of 

hydrology that deals with uncertainty, in its current state is not consistent with the Hurst 

phenomenon. Typical statistics used in hydrology such as means, variances, cross- and auto-

correlations and Hurst coefficients, and the variability thereof, are based on classical statistical 

theory, which describe only a portion of natural variability and thus its results may 

underestimate dramatically the natural uncertainty and the implied risk. 

 The situation is even worse in climatology, which again uses the classical statistical 

framework but on longer timescales (e.g. 30 years). As demonstrated above, the consequences 

of the Hurst phenomenon in the natural variability increase as the timescale increases. Recently, 

many researchers are involved in the detection of anthropogenic climatic changes mostly using 

classical statistical tests, i.e. without taking into account the Hurst phenomenon. If statistical 

estimators respecting the Hurst phenomenon are used, which is a choice more consistent with 

nature, it is more unlikely that such tests will result in statistically significant changes. 
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