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Introduction

® 1914 (Hazen): Empirical foundation of hydrological
frequency curves known as “duration curves”

#® 1922,1923 (von Bortkiewicz, von Mises): theoretical
foundation of probabilities of extreme values

# 1958 (Gumbel): convergence of empirical and theoretical
approaches

#® Today: the estimation of hydrological extremes continues
to be highly uncertain

“... the increased mathematisation of hydrological frequency analysis
over the past 50 years has not increased the validity of the estimates of
frequencies of high extremes and thus has not improved our ability to
assess the safety of structures whose design characteristics are based on
them. The distribution models used now, though disguised in rigorous
mathematical garb, are no more, and quite likely less, valid for
estimating the probabilities of rare events than were the extensions ‘by
eye’ of duration curves employed 50 years ago.” (Klemes, 2000)
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The notion of distribution of maxima

@ Parent variable: Y (e.g. the daily rainfall depth)
@ Parent distribution function: F(y)
# Variable representing maximum events

X=max{Y, Y, ..., Y}

# Distribution function of maxima: H, (x)
#® Exact distribution of maxima for constant n:

H,(x) = [F(x)]"

@ Exact distribution of maxima for randomly varying n,
following a Poisson process

H' (x) = exp{-v[1 — F(x)]}
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The notion of asymptotic or limiting
distribution of maxima

@ Asymptotic or limiting distribution for n — eo or v — oo
(Generalised extreme value distribution — GEV; Jenkinson, 1955)

H(x) = exp{-[1 + k(x/A = ¢)]71/~} (kK x = kAP - 1/x)
@ In hydrology, un upper bound of x is not realistic, so k>0

@ If x >0, H(x) represents the (three-parameter) extreme value
distribution of maxima of type II (EV2)

@ In the special case x =0, H(x) represents the extreme value
distribution of maxima of type I (EV1 or Gumbel)

H(x) =expl-exp [-(x/A-9)]} (-0 <x<+e)

@ In the special case where the lower bound is zero (x ¢ = 1), H(x)
is two-parameter EV2 (Fréchet distribution)

H(x) = exp{-[A/(x x)]"/*} (x=0)

D. Koutsoyiannis, Exploration of long records of extreme rainfall and design rainfall inferences 4




Why does the type of extreme value
distribution (EV1 or EV2) matter?

® EV1 results in risk significantly higher than EV2 for
engineering structures

# That is, for small probabilities of exceedence
(1 - H), or large return periods [T=1/(1 - H)],
EV1 yields the smallest possible quantiles x;; in
comparison to those of EV2 for any value of x

@ For T =10%10° (used e.g. in the design of major hydraulic
structures), the design value estimated by EV1 could be
half that of EV2 or less
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What is the prevailing model in
hydrological practice?

@ Definitely, EV1

#® For example, most hydrological textbooks do not
mention EV2 at all

# Also, in most hydrological studies the adoption of EV1
is “automatic” (especially for extreme rainfall)

# Recently, however, many researchers have expressed
scepticism about the appropriateness of EV1
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Why EV1 is so prevailing in hydrology?
Theoretical reasons (To be discussed later)

Simplicity: The mathematical handling of the two-
parameter EV1 is much simpler than that of the three-
parameter EV2

Accuracy of estimated parameters: Two parameters are
more accurately estimated than three

Practical reasons: EV1 offers a linear probability plot
(Gumbel probability plot) of observed x;; vs. observed
zy; = —In(-In H) (Gumbel reduced variate); in contrast, a
linear probability plot is not possible for the EV2, unless
one parameter is fixed

Institutional reasons: Many institutions suggest, or even
require, the use of EV1
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Are there theoretical reasons favouring
EV1 against EV2?

# Most types of parent distributions functions used in
hydrology, such as exponential, gamma, Weibull,
normal and lognormal belong to the domain of
attraction of the Gumbel distribution

@ More specifically, rainfall depth at fine time scales
(hourly, daily) has been modelled by the gamma or
Weibull distributions

#® However, the adoption of these distributions is rather
empirical, not based on theoretical reasoning

#® More recent studies advocate a shift from these
distributions to Pareto type distributions, which belong
to the domain of attraction of EV2

# No concrete conclusions have been drawn to date
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Assuming that theoretical reasoning supports
EV1, what distribution shall | use in my design?

1

#® Intuitive answer: EV1

08 |
# Correct answer: The | | | ‘

exact distribution of

maxima, H,(x) or H (x)
# The difference of H,(x)

from EV1 may be large

#® Practical answer: EV2

[it y1€1dS gOOd Gumbel reduced variate
approximation of H,(x I Y i

PP n( ) Convergence of distribution
of maxima for parent
distribution Weibull with
shape parameter k =0.5
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Standardised distribution quantile
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Note: The distribution quantiles have been standardised by x 9999 corresponding to z; =9.21
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How stable is EV1 if distributional
parameters change?

# Let us assume that rainfall depth at fine time scales
(hourly, daily) follows a distribution belonging to the
domain of attraction of EV1 (e.g. gamma or Weibull)

@ However, the parameters of distribution are not
constant all the time but vary due to:

= seasonal effects
» overyear (large scale) fluctuations

# Parameter variations may change the domain of
attraction to EV2
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Theoretical example of the shift of domain of

attraction

Assumptions:
Probability density function of Y;
conditional on «a;:

filyla) = oy~ e~iv [1(0)
Probability density function of a;:
() =pra;~tesai/l(t)

Results:
Unconditional density function of Y:

fy) =11/ B BO +7)] (y/p)°~1/ (A +ylp)+?
(Beta distribution of the second kind)

Exact distribution of maxima for
constant n:

H,(x) = [By+ 4 (6, 7) / B (6, 7)]"

Asymptote:
EV2 (Fréchet distribution )

Standardised distribution quantile

0.01 ~

0.001 i i i i i

1 :

0.1 -

-2 0 2 4 6 8 10

Gumbel reduced variate

Convergence of distribution of
maxima for gamma parent
distribution with shape parameter
0 =0.5 and scale parameter
randomly varying following a
gamma distribution with 7 =3 and
p =1 (Fréchet probability plot)
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Why inappropriateness of EV1 has not

become evident?

# Even if one is willing . 0 g=s==§====¥=-===3 o
totry EV2asa = \ S
potential model, itis g 005 E
very likely that he/she g \ 4
will reject it due to & P S e e S S
significant bias of e i
estimators |

@ For small samples, the 015 T samplesize | 1 TR Tel 2
most common method - gg ‘ °§
of moments hides 02 1 —aBO b TN T =
completely EV1 o |

# Even the less biased -0.25 - ; ! ; ; :
;-:;/O;élselﬁisi?eth()d 0 005 01 015 02 025 03
erroneous acceptance - — Shepe parameter, «
of EV1 (e.g. for k =0.15 Bias in estimating the shape
and m =20 the parameter k of the GEV
frequency of not distribution
rejecting the EV1 (Obtained by Monte Carlo simulation)

distribution is 80%!)
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Empirical
Investigation:
Data set

# 169 stations from

Europe and North e

America

# Record lengths
100-154 years

# 18065 station-
years in total

# 6 major climatic
zones
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Top ten raingauges (in terms of record

length)

Zone Years
Latitu- Longi- Eleva- Record Start End with
Name /Country . .
de (°N) tude (°) tion (m) length year  year missing
[State
values
Florence 6/Italy 43.80 11.20 40 154 1822 1979 4
Genoa 6/ltaly 44.40 8.90 21 148 1833 1980
Athens 6/Greece  37.97 23.78 107 143 1860 2002
Charleston City 2/USA/SC 32.79 —79.94 3 131 1871 2001
Oxford 5/UK 51.72 -1.29 130 1853 1993 11
Cheyenne 1/USA/WY 41.16 104.82 1867 130 1871 2001 1
Marseille 6/France 43.45 5.20 6 128 1864 1991
Armagh 5/UK 54.35 —6.65 128 1866 1993
Savannah 2/IUSAIGA 32.14 -81.20 14 128 1871 2001 3
Albany 1/USA/INY 42.76 —-73.80 84 128 1874 2001
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Preliminary investigation of statistics of
annual maximum daily rainfall
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Investigation of empirical distributions and
comparison with EV2 and EV1 distributions
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Demonstration of the differences of EV1 and
EV2 estimates of quantiles for high return

periods

Return period, years o
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Averages over all raingauges and dispersion
characteristics of the parameters of the GEV distribution

Parameter Value
shape Mean 0.103
parameter, - standard deviation 0.085
" Min ~0.080
Max 0.373
Percent positive 92%
scale Mean 15.52
parameter, - gtandard deviation 5.81
A (mm1) .
Min 4.86
Max 32.13
location ~ Mean 3.34
parameter, - standard deviation 0.43
v Min 2.42
Max 4.47

Estimation
method:
L-Moments
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Empirical

distributions of
dimensionless
sample statistics

Empirical distribution
functions computed from:

the 169 historical annual
maximum daily rainfall series

169 synthetic samples with
lengths and means equal to those
of historical series generated
from the GEV distribution with
constant ¥ =0.103 and ¢ = 3.34

169 synthetic samples with
lengths and means equal to those
of historical series generated
from the GEV distribution with
x and ¢ randomly varying

Fr,(z2)

Fry(3)

Fr,(z4)

following uniform distributions 0 b= :
02 -01 0 01 02 03 04 3.5 0.6 2 5
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. Return period, years o o o 8
Hypothesis of -es 3888888
constant P e e e e
. . = «  Empirical oo A
dimensionless § 7+ —— Evalleastsquares 111t L
= -—-- EV2/Moments Lo Lo Lo
parameters E gL EV2/L-moments  |4-—4-—d4- -4 odo - N
e ---o--- EV2/Max likelihood || 1| N
(shape x and 8 g5 |- EViLmoments [\ gl
location p) 2P R SO S LIS g e
: Co A
® Rescaling of each R e S P L R
records by its mean S IS U SRS SUNNS ™. U SO AU N U SN SO
® Unification of all
records (18065 data P e
values) 0 ‘ ‘ ‘ ‘ ‘ —
. . 2 0 2 4 6 8 10 12
® Accurate estimation Gumbel reduced variate
of x and
Estimation method
Parameter Max likelihood Moments L-moments Least squares
K 0.093 0.126 0.104 0.148
A 0.258 0.248 0.255 0.236
W 3.24 3.36 3.28 3.54
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A note on series above threshold (partial

duration series)

#® [If the maximum annual series
follows EV2, i.e.,

H(x) = exp{-[1 + k(x/A=¢)]V/*} —
Then the partial duration series = ,
follows the generalised Pareto,

G(x) = 1= [1 + x(x/A =)'+
with same parameter values

@ This is absolutely validated
with the data set of this study

#® Thus either of the two series
(annual maxima, partial
duration) can be used
interchangeably

Return period, years o = o 8
o o o o o o o
(ol o) Qo 9O 9 (=] o (=] (=] (=]
o 9 O O o O O o o o o o
NN OB+~ AN © ~ 0 ~ N o] -~
8 I I I I I I I [l T
Empirical | TL
71 Pareto/Least squares |-~~~ ------ S s -
- - -~ Pareto/Moments | b
6 Pareto/L-moments

---0--- Pareto/Max likelihood

Rescaled rainfall depth

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
A Pareto reduced variate
Empirical distribution of the union of the
168 series of rescaled rainfall depths over
threshold (17922 station-years) in
comparison with the Pareto distribution
with parameters estimated from the

unified series of annual maxima
(Pareto probability plot with « = 0.15)
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From EV1to EV2: P

ractical considerations

General EV
formula

1 EV2,k=0.15 EV2, general
case

Calculation of

[In Hy 1511 | [(-In H) 1]

quantile xp=A(@zy+tY) | zy=-In(-In H)| 2y 015 Zy= -
Construction of .
linear Plot x;; against z; (Nsrtﬂz?;s/\lili)f ot
probability plot
Estimation of A

7 = F 1 - 2
moments A=c o ¢ =0.78 ¢ =0.61 a=r [g ( 125
method - I*(1 - x)™
Estimation of A, ¢y =1/ [ - k)
L-moments A=c, A, c, =1.443 =123
method 2k - 1)]
Estimation of ¢ Y =pu/A—cy c3=0.577 c3=0.75 c3=[I'(1-x) - 1]/x
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An example of GEV linear probability plot
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Additional support of present findings

#® Hershfield’s (1961) data set, Return period, years e o o 8
comprising 95 000 station-years, S o082 288 88 8 8 8
. . . TErANO-FrANOD- N O~ N e} -~ N 'e) -
in a later study (Koutsoyiannis, 16 T : : — :
1999) was found to have very - . : . A -

similar behaviour

# Chaouche (2001) exploited a data
base of 200 rainfall series of

Hershfield-standardised rainfall depth

various time steps (minute-month) § &+ ffffffffffffffffffff
from the five continents, each sl
including more than 100 years of P }
data. Using multifractal analyses AT
he showed that 2 ] E:glg (Koutsoyiannis, 1999) |
= a Pareto/EV2 type law o ML I
describes the rainfall amounts 2 3 8 B 18 »3 28 0B
for large return periods _/l ,\_ GEV reduced variate
- gclglgxiﬁggf;;?fo%: ;iz\lfels GEV p'rok?abil'ity plots pf the empirical gnd
EV2 distribution functions of standardised
greater than an hour rainfall depth k for Hershfield’s (1961) data
» this exponent is almost space set as determined by Koutsoyiannis (1999),
invariant and fitted EV2 distributions with x = 0.13

(Koutsoyiannis, 1999) and x = 0.15
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Conclusions

The EV1 distribution should be avoided when studying hydrological
extremes

The theoretical and empirical reasons that made the EV1 distribution
prevail in hydrology may be not valid

The three-parameter EV2 distribution is a better alternative

The shape parameter x of EV2 is very hard to estimate on the basis of
an individual series, even in series with length 100 years or more

However, the results of the analysis of 169 long series of rainfall
maxima allow the hypothesis that « is constant (x = 0.15) for all
examined zones

@®  The location parameter ¢ of EV2 is fairly constant (average ¢ = 3.54,
coefficient of variation 0.13). However, there is no need to regard it
as a fixed constant as it can be estimated with relative accuracy on
the basis of an individual series

@  The scale parameter A of EV2 varies with the station location. There
is no need to seek a generalised law for it as it can be estimated with
relative accuracy on the basis of an individual series

® In engineering practice, the handling of EV2 can be as easy as that of
EV1 if the shape parameter of the former is fixed to the value x = 0.15

® @& & @
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More information ...

® This presentation is available on line at
http://www.itia.ntua.gr/e/docinfo/624/

# The full documentation can be found in a couple of
papers in Hydrological Sciences Journal, August 2004
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