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Hydrological modelling and multiobjective
parameter estimation: The motivation

Complex (semi- or fully-distributed) models generate multiple output variables 
at various sites → need for faithful reproduction of all model responses, 
that are representative of the watershed behaviour

Due to the large number of parameters and their highly nonlinear interactions, 
alternative sets with similarly good performance may be detected (the 
“equifinality” problem) → need for establishment of “behavioural” (i.e., 
realistic, reliable and stable) parameter sets

Models are too weak against data and structural errors → need to assess 
the sensitivity of parameters and the model predictive uncertainty

Multiple error measures, when aggregated to a single objective function, 
formulate response surfaces that are strongly related to the aggregation 
scheme → need to distinguish the optimisation criteria, to avoid scaling 
problems and to investigate possible contradictory interactions

Automatic calibration methods, involving too extended, high-dimensional and 
non-convex search spaces, are easily trapped by local optima or other 
peculiarities → need for reducing the parameter boundaries, to assist the 
searching procedure
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Multiobjective optimisation: The story so far

“Philosophical” foundation (1880-1900): the concept of Pareto-Edgeworth
optimum, applied in sociology and welfare economics

Mathematical foundation (1950-1960): formulation of the vector maximum 
problem by Kuhn and Tucker and first engineering applications

Plain aggregating approaches (1970): a priori definition of the best 
compromise decision set, through the formulation of utility functions based on 
weighting coefficients, articulation of preferences, goal-vectors, etc. 

Population-based non-Pareto approaches (1980): formulation of sub-sets, 
each one evaluated according to different criterion (by switching objectives), 
and next shuffled and evolved through crossover and mutation (VEGA)

Dominance-based evolutionary approaches (1990): use of ranking 
procedures, based on the principle of Pareto optimality, and techniques to 
maintain diversity through fitness sharing, to generate representative trade-
offs among conflicting objectives (MOGA, NSGA, NPGA)

Modern approaches: revision of multiobjective evolutionary schemes, with 
emphasis on efficiency, using faster ranking techniques, clustering methods 
and elitism mechanisms (SPEA, SPEA-II, NSGA-II, PAES, MOMGA, etc.)

Efstratiadis and Koutsoyiannis, The MEAS method and its application in calibrating hydrological models     4

Multiobjective evolutionary algorithms: 
General principles

1. According to the principle of dominance, a rank measure ri is assigned to 
each individual or group of individuals, where the best (lower) value 
corresponds to non-dominated points, thus guiding the search towards the 
Pareto front; a variety of rank values protects from high selection pressure.

2. A density measure σi is assigned to individuals, using sharing functions or 
nearest neighbour techniques, to maintain diversity within population, thus 
favouring the generation of well-distributed sets.

3. The selection process is implemented applying typical mechanisms (e.g., 
roulette, tournament), on the basis of dummy fitness of the form φi = φ(ri, σi).

4. The evolution process is implemented using the typical genetic operators.

f1

f2 A well-distributed 
set, representative 
of the Pareto front

In multiobjective evolutionary 
search, due to the use of the 
concept of dominance in fitness 
evaluation, a discrete response 
surface is created, which is 
reformed at each generation.
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Applying multiobjective evolutionary algorithms 
for model calibration: Some drawbacks

Search is computationally demanding, especially in the case of complex 
models with many parameters.

There is too little experience regarding problems with more than two criteria.

Fitting criteria are conflicting only in case of ill-posed structures or data.

The concept of dominance is not necessarily consistent with the concept of 
“equifinality”; hence multiobjective search may result to non-behavioural, 
albeit Pareto optimal, parameter sets, providing extreme performance, i.e. too 
good against some criteria, too bad against the rest ones.

A best-compromise parameter set is required for operational purposes.

f1

f2

f1

f2
“Smooth” non-
dominated front; all 
points correspond 
to “behavioural”
parameter sets 

Only a small part 
of the Pareto front 
corresponds to 
“behavioural”
parameter sets 
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The  multiobjective evolutionary annealing-
simplex (MEAS) method

Phase 1: Evaluation
A performance measure (fitness) is assigned, consisting of:

• a rank measure, based on a strength-Pareto scheme, which both ensures 
convergence to the real Pareto front and diversity preservation;

• an indifference measure for further discrimination of indifferent solutions in 
case of multiple (more than two) objectives;

• a feasibility measure, for guiding search toward a desirable region of the 
Pareto front, thus providing acceptable trade-offs among conflicting objectives.

Phase 2: Evolution
Evolution is implemented according to transition rules that are based on a 
simplex-annealing approach, where:

• a downhill simplex pattern, combining both deterministic and stochastic 
transition rules, is employed for offspring generation;

• an adaptive annealing cooling schedule is used to control the degree of 
randomness during evolution.
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The  MEAS method: Fitness  assignment through
a strength-Pareto approach
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Strength = 
number of 
dominated 
individuals

Rank = sum 
strength of all 
dominators

Non-dominated 
individuals have 
zero rank

The concept is based on the SPEA 
and SPEA-II methods (Zitzler and 
Thiele, 1999; Zitzler et al., 2002).

For each individual, both 
dominating and dominated points 
are taken into account.

Formulates a integral response 
surface that changes whenever a 
new individual is generated.

Provides a large variety of rank 
values (larger than any other known 
ranking algorithm), as well as a sort 
of “niching” mechanism, to preserve 
population diversity.

A non-integral term is added to 
fitness, to penalise individuals 
excelling in fewer criteria than other 
indifferent ones, with identical rank
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The MEAS method: Restricting the feasible 
objective space

f1

f2

ε2

ε1

Constraint 
vector ε

Non-feasible, 
albeit optimal 
sub-front

Based on a concept inspired from the goal-programming method.

Requires the specification of a constraint vector ε = (ε1, …, εm) denoting the 
boundaries of a desirable (“feasible”) region of the objective space.

Ensures a better insight on the most promising parts of the Pareto front, 
where the best-compromise parameter set is suspected to be sited.

Computational steps
1. The maximum fitness value is 

computed, i.e. Φ = max φ(i).

2. Each individual i is checked whether it 
lies within the feasible space; if xij > εj
for the jth criterion, a square distance 
penalty ∆εij = (xi – εi)

2 is added to φ(i).

3. All infeasible individuals are further 
penalised by adding Φ; hence, they 
become worse than any other feasible 
individual, either dominated or not.

Optimal 
sub-front

Feasible 
objective 
space
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The MEAS method: A selection procedure 
based on a simulated annealing strategy

f(i) = φ(i) + p(i) + r T

Deterministic component, y(i) Stochastic component, s(i)

Penalty measure

Dominance 
term, φ(i)

Feasibility 
term, p(i)

Unit random 
number, r

Current system’s 
temperature, T

Favours the survival 
of feasible and non-
dominated solutions 

Provides flexibility, 
to escape from local 
optima and handle 
peculiarities of non-
convex spaces  
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The MEAS method: Evolving population

1. According to an elitism concept, the population is divided to non-dominated 
(φ < 1) and dominated (φ > 1) individuals.

2. The system temperature is regulated in order to not exceed Tmax = ξ ∆y, 
where ξ ≥ 1 parameter of the annealing cooling schedule and ∆y the 
difference between the best and worst fitness of current population.

3. From the entire population n + 1 points are picked up, thus forming a 
simplex in the n-dimensional search space; at least one simplex vertex is 
selected from the dominated set, given that the latter is not empty.

4. The “weakest” individual w is detected by means of maximisation of f.

5. A crossover scheme is employed on the basis of a downhill simplex pattern; 
if a better point x΄ (“offspring”) is located, it replaces w and the temperature is 
reduced by λ, where λ < 1 parameter of the annealing cooling schedule.

6. If recombination fails (i.e., any better solution cannot be found), the offspring 
is generated via a random perturbation (mutation) of w, i.e. x΄ = w + ∆x.

For an earlier, single-objective implementation of the evolutionary annealing-simplex 
method see: Efstratiadis and Koutsoyiannis (2002), Rozos et al. (2004)
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The MEAS method: Simplex configurations

Outside contraction

Inside 
contraction

Multiple expansion 
(one-dimensional 

minimisation)

Centroid
Reflection

Weakest 
vertex, w

Offspring, x΄
Offspring 

Trial 3
(offspring) 

Offspring Trial 1 
(reflection)

Trial 2
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Performance assessment of MEAS method:
Test function SCH-2
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Performance assessment of MEAS method:
Test function KUR

Taken from Kursawe
(1991)

3 control variables, in 
the range [-5, 5]

Non-convex Pareto front 

Population size = 100

Convergence to a non-
dominated set after 
37563 function 
evaluations
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Performance assessment of MEAS method:
Test function POL

Taken from Poloni
(1997)

Two control variables, in 
the range [-π, π]

Non-convex and 
disconnected Pareto 
front

Population size = 100

Convergence to a non-
dominated set after 2218 
function evaluations
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Performance assessment of MEAS method:
Test function ZDT-2

Taken from Zitzler et al.
(2000)

30 control variables, in 
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Convergence to a 
locally non-dominated 
set after 16080 function 
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Performance assessment of MEAS method:
Test function ZDT-3

Taken from Zitzler et al.
(2000)

10 control variables, in 
the range [0, 1]

Disconnected Pareto 
set: 0 ≤ x1 ≤ 1 and xi = 
0, for i = 2,.., 10

Convex and 
disconnected Pareto 
front 
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Convergence to a non-
dominated set after 
12944 function 
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Performance assessment of MEAS method:
Test function ZDT-6

Taken from Zitzler et al.
(2000)

10 control variables, in 
the range [0, 1]

Pareto set: 0 ≤ x1 ≤ 1 
and xi = 0, for i = 2,.., 10

Non-convex and non-
uniformly distributed 
Pareto front 
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Multiobjective calibration of a complex 
hydrological model: Study area

Watershed area ~2000 km2, with highly non-linear 
interactions between surface and groundwater 
processes and man-made interventions.

Main modelling issues:

a semi-distributed schematisation of the 
hydrographic network;

a conceptualisation of surface processes, 
based on spatial elements with homogenous 
characteristics (hydrological response units, 
HRU) and fitting to each one a soil moisture 
accounting model of six parameters;

a multi-cell groundwater scheme, with two 
parameters assigned to each cell;

a water management model, estimating the 
optimal system fluxes (flows, abstractions).

Model components: 5 sub-basins, 6 HRU, 35 
groundwater cells
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Multiobjective calibration of a complex 
hydrological model: Main assumptions

Observed series: daily discharge measurements at the basin outlet (Karditsa
tunnel), sparse (1-2 per month) discharge measurements at six main karstic 
springs, contributing more than 50% of total runoff

Control period: October 1984-September 1990 (calibration period), October 
1990-September 1994 (validation period)

Calibration criteria: determination coefficients of monthly discharge series at 
the basin outlet and the main spring sites (number of objectives = 7) 

Control variables: soil moisture capacity (K) and recession rate for 
percolation (µ), assigned to each HRU, conductivity (C) of each virtual cell 
that represents spring dynamics (search space dimension = 18)

Feasible search space: 0 < Ki < 1000 (in mm), 0 < µi < 1 (dimensionless), 
0.000001 < Ci < 0.5 (in m/s)

Algorithmic inputs: sample size = 50, maximum function evaluations = 5000

Other model parameters: obtained through an earlier single-objective 
optimisation scenario, based on a weighted objective function and handled by 
combining automatic and manual calibration methods (Rozos et al., 2004)
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Multiobjective calibration of a complex hydrological 
model: Characteristic trade-offs
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Trade-offs represent: (a) modelling errors due to the complexity of processes 
(negative correlation of some spring hydrographs with precipitation); and (b) 
data errors, due to the construction of control series based on few observations
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Multiobjective calibration of a complex hydrological 
model: Restricting the objective space
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Concluding remarks

Despite the impressive progress of last years regarding the development of 
evolutionary multiobjective optimisation techniques, limited experience
exist on operational applications of hydrological interest, and most of them 
restricted to two-dimensional objective spaces.

When fitting hydrological models on numerous observed responses,
irregular Pareto fronts are formed due to structural and data errors.

In case of complex, ill-posed hydrological models with many parameters, a 
multiobjective calibration approach is necessary to:

reduce uncertainties regarding the parameter estimation procedure;

investigate acceptable trade-offs between optimisation criteria; 

guide the search towards promising areas of both the objective and the 
parameter space.

The MEAS algorithm is an innovative scheme, suitable for challenging 
hydrological calibration problems, which combines: (a) a fitness evaluation 
procedure based on a strength-Pareto approach and a feasibility concept, 
(b) an evolving pattern based on the downhill simplex method, and (c) a 
simulated annealing strategy, to control randomness during evolution.
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This presentation is available on-line at:
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