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Abstract The perception of a changing climate, which impacts also hydrological processes, is 

now generally admitted. However, the way of handling the changing nature of climate in 

hydrologic practice and especially in hydrological statistics has not become clear so far. The 

most common modelling approach is to assume that long-term trends, which have been found 

to be omnipresent in long hydrological time series, are “deterministic” components of the 

time series and the processes represented by the time series are nonstationary. In this paper, it 

is maintained that this approach is contradictory in its rationale and even in the terminology it 

uses. As a result, it may imply misleading perception of phenomena and estimate of 

uncertainty.  Besides, it is maintained that a stochastic approach hypothesizing stationarity 

and simultaneously admitting a scaling behaviour reproduces climatic trends (considering 

them as large-scale fluctuations) in a manner that is logically consistent, easy to apply and 

free of paradoxical results about uncertainty.  
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1. Introduction 

Όλα τριγύρω αλλάζουνε κι όλα τα ίδια µένουν … 

Μανόλης Ρασούλης 

(Everything around changes, yet everything remains the same … 

                     Manolis Rasoulis)   

As the development of hydrological science and technology relies greatly on measurements of 

the natural processes, its historical evolution can be paralleled to the hypothetical example of 

an experimentalist investigating in a laboratory a law relating two quantities x and y, as 

depicted in Figure 1 (adapted from Xanthopoulos, 1974). In a first phase, the observation 

window is too small (Window A in Figure 1) and the experimentalist may conclude that the 

quantity y is not related to x and it may have a constant value a plus/minus an error term. In a 

second phase, when the observation window becomes wider (Window B in Figure 1), a clear 

relationship between x and y emerges, which may be modelled by a parabolic law. In a third 

phase, the window becomes even wider (Window C), and the parabolic law is abandoned in 

favour of a cosine law. Probably, in a next phase even the cosine law may prove inadequate 

and a more complex law could be formulated.   
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Figure 1. Depiction of a hypothetical example of successive experimental attempts to discover a law 

relating quantities x and y.  
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 The job of a hydrologist is much more difficult than that of a laboratory experimentalist. 

For, the hydrologist cannot repeat any experiment or expedite the rate of experiments to 

quickly investigate a broader range of variations; instead, the hydrologist should keep 

observing until nature will produce a wider range of phenomena. The evolution of a 

hydrological process is unique. 

 Having moved from the laboratory environment of the experimentalist to the natural 

environment of the hydrologist, let us assume that the quantity x is time, expressed in discrete 

units of years, and the quantity y is, for instance, the annual runoff of a certain river basin. 

Obviously, the longer is the observation period, the more truthful is the picture of the runoff 

variation through time. It is natural to expect that, as time goes by and the observed time 

series becomes longer, our perception of the runoff process will change and become more and 

more accurate. 

 In the 1950s, only limited hydrological time series were available worldwide and these 

were short, with typical length 10-50 years. A typical situation is shown in Figure 2(a), where 

the time series of the annual runoff of the Boeoticos Kephisos River basin of the period 1907-

1950 is plotted. The location of the river is to the north of Athens (Greece) and its basin is 

about 2 000 km2. The annual runoff has been expressed in equivalent water depth in the 

catchment. The natural interpretation of this graph is to hypothesize a stable multiyear 

behaviour with annual random fluctuations around a constant mean (plotted as a thick 

horizontal line in Figure 2(a)). 

 Fortunately, and despite of the present time tendency to abandon hydrometric stations to 

reduce costs, the discharge measurements on this river continue until today; firstly owing to 

the convenient access and simple trapezoidal geometry of the river section, and secondly 

owing to the importance of the river which is part of the Athens water supply system. So, this 

runoff time series, which is depicted in complete length in Figure 2(b), has become the 

longest runoff sample in Greece. The whole picture now reveals behaviour quite different 

from the one of Figure 2(a). The mean seems to be not stable, but there is a long lasting 

falling trend extended from 1921 to present time (thick line AB in Figure 2(b)). What caused 

this trend? There is a simple answer, illustrated in Figure 2(c): A similar trend in rainfall. We 
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have performed an experiment (Koutsoyiannis and Efstratiadis, 2004) using a detailed 

hydrological model of this river basin (Rozos et al., 2004) fed by the historical rainfall. The 

model was able to reproduce perfectly the falling trend in runoff, and this is a sufficient 

reason to say that we have an explanation for that falling trend.  
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Figure 2. Plots of (a) the time series of annual runoff  of the Boeoticos Kephisos River basin, Greece, 

between the years 1907-1950; (b) the same time series extended to year 2002; (c) the time series of rainfall 

at the same basin for the period 1907-2002.  

 Naturally, the next question is: What caused the trend in rainfall? This is much more 

difficult to answer. To study this question we must move from the hydrological basin to the 

atmosphere. At that time we must also leave the catchment scale and consider the global 
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(planet) scale, as the atmosphere has no borders like the divide of a catchment. For a 

hydrologist this may be too difficult or even impossible, and thus the task should be addressed 

to other scientists, such as climatologists.  In climatology, it is well known that such a change 

in a climatic variable is not a unique behaviour at this very location, i.e. it is not an exception 

but it is the rule. This idea was endorsed by more recent evidence provided by 

paleoclimatological studies.  

 The hydrologist, however, has other important questions, whose answers cannot wait until 

climate modellers are able to explain the specific behaviour of rainfall at this catchment or at 

the global scale. These questions deal mainly, not with the explanation of the past, but with 

prediction of the future for the purposes of the design and management of hydrosystems. 

Undoubtedly, a concrete deterministic prediction of future evolution of the process of interest 

must be regarded as an impossible task. Therefore, a prediction of future uncertainty is the 

best target that a hydrologist can hope to accomplish. However, such a prediction depends 

seriously on the information of the past. Thus, we can anticipate that the estimate of future 

uncertainty will be much more faithful in case that the complete time series of Figure 2(b) is 

available than in case of the short information of Figure 2(a). Most important, the modelling 

approaches that must be followed in each of the two cases will be different. The stable mean 

in Figure 2(a) implies that the uncertainty estimation can be approached by the classical 

hydrological statistics (i.e. estimating standard deviation, fitting a certain distribution, 

estimating confidence limits, etc.). But, what about the changing mean case of Figure 2(b)? 

Obviously, the interpretation and modelling of the changing mean affects seriously the design 

and management of hydrosystems. Here two different modelling approaches have been 

followed: (1) the nonstationarity approach, and (2) the scaling approach. These are the theme 

of this paper and are discussed in detail in the next two sections.  As will be demonstrated, the 

two modelling approaches differ dramatically in their logic and interpretation of natural 

phenomena, and most importantly, in the estimates of uncertainty they produce, which 

according to the second approach are much higher than in the first. Thus, the comparison of 

the two modelling approaches, which is the target of the paper, is not merely a theoretical 

issue but it has significant practical consequences, given that, when dealing with the uncertain 
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natural behaviour, an engineer’s duty is to quantify uncertainty as faithfully as possible and to 

incorporate this quantification in management decisions. 

2. The nonstationarity approach 

2.1 Typical procedure 

This is the most common modelling approach followed in hydrologic practice when a pattern 

like that in Figure 2(b) is brought to light. In fact, this approach is so common that most 

hydrological books mention it as the only modelling approach to follow in such a case. The 

rationale of the typical approach has been expressed by Eagleson (1970, p. 155-156), who 

considered each hydrologic process to be composed of three parts: 

“1. A deterministic part which is periodic and results from natural physical periodicities. 

2. A deterministic part which is aperiodic. This is commonly called “trend” and may be 

considered to be due to a gradual temporal change in the physical parameters of the 

processes controlling weather. 

3. A stationary random part.” 

Here we can observe several tacit assumptions that we will discuss further in subsequent 

sections. Among these are the identity “random = stationary”, the dichotomies “hydrologic 

process = deterministic + random”, “deterministic = periodic + aperiodic” and “aperiodic = 

deterministic + random” (as it is well known that random is aperiodic too). This description of 

hydrological processes appeared earlier (Chow, 1964, p. 8.10), albeit in less definite context, 

and later (e.g. Yevjevich, 1972, pp. 17-20; Kottegoda, 1980, p. 26), sometimes with few 

changes. For example Salas et al. (1980, p. 33) added a fourth component related to “almost 

periodic” changes.  

 Technically, the modelling approach followed in hydrologic practice includes the 

following steps whose details can be found in most widespread hydrological texts (e.g. 

Dawdy and Matalas, 1964; Kottegoda, 1980, pp. 22-34; Salas, 1993, pp. 19.5-19.7, 19.17-

19.19) and partly in business statistics texts (e.g. Freund et al., 1988, p. 583-598): 
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1. Perform statistical tests to diagnose whether the trend is statistically significant or not. 

2. If the tests confirm that the trend is significant, continue with the following steps, 

otherwise treat the series as being random.  

3. Fit a function to the trend (such as a linear expression of time) and perform additional 

statistical tests to verify that the parameters of the function are statistically significant. 

4. Call the trend a deterministic component of the time series and call the time series a 

nonstationary one. 

5. “Detrend” the time series (i.e., subtract the trend from the original series) and use the 

“detrended” series (the residuals) for assessment of uncertainty or for modelling of the 

process.  

 It is the opinion of this author that this modelling approach is contradictory in its rationale 

and its terminology, in its separate steps and as a whole. As a result, it may imply misleading 

perception of the phenomena and uncertainty estimation. This opinion is explained in next 

subsections, separately for each of the steps of the approach. 

2.2 Use of statistical tests 

Typically, a trend is detected using the nonparametric Kendall’s test (e.g. Kottegoda, 1980, p. 

32) with test statistic τ := 4p/[n(n – 1)] – 1,  where p is the number of pairs of observations (xj, 

xi; j > i) in which xj < xi. In a random series, τ has mean 0, variance 2(2n + 5)/[9n(n – 1)], and 

distribution converging rapidly to normal. In the case of Boeticos Kephisos runoff, 

application of the test results in τ = 0.40 with standard deviation 0.077, and eventually 

Kendall’s test results in rejection of the null hypothesis that a trend does not exist for an 

attained significance level as low as 8.8 × 10–8 (Koutsoyiannis, 2003); obviously, this is 

regarded as enormously high statistical evidence that a trend really exists.  

 However, there are two problems here, which make the result incorrect. Firstly, it is known 

that the validity of confirmatory tests is based on the assumption that the investigator 

developed the hypothesis prior to examining the data (Hirsch et al., 1993, p. 17.5). In this 

case, the hypothesis was formed after examining the data and seeing that there is a downward 
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trend. This problem along with other misuses of statistics in climate research has been 

discussed by von Storch (1995). Secondly, the null hypothesis contains the sub-hypothesis 

that the series is random. Specifically, the variance of the test statistic τ is calculated 

theoretically assuming that the sample examined is purely random. Obviously, the random 

prototype is not an appropriate model for a hydrological series. It is well known that 

hydrological series incorporate some stochastic structure, expressed by nonzero serial 

correlation. The neglecting of the effect of serial correlation to trend detection is put by von 

Storch (1995) as another standard example of misuse of statistics. Given these two 

fundamental errors, the rejection of such a null hypothesis does not prove the existence of a 

trend. This would be clarified further in subsection 3.3. 

2.3 The fitting of a function  

Typically, to express mathematically a trend, a polynomial function of time is used (e.g. 

Dawdy and Matalas, 1964, p. 8.81; Kottegoda, 1980, p. 26; Salas et al., 1980, p. 45). The first 

order polynomial, i.e. a linear function, is the simplest possible and therefore the most widely 

used to model hydrological trends. It also enables easy statistical testing of the significance of 

the estimated slope of the line, so it provides additional means of testing the existence of a 

trend (e.g. Kottegoda, 1980, p. 32). In our example, the significance level attained by such a 

test is of the same order of magnitude as in the Kendall’s test described above, so the test 

concurs with the existence of a statistically significant trend.   

 Apparently, the problems already mentioned in subsection 2.2 about statistical testing 

apply also here. However there are additional, more fundamental problems in this case. The 

important question here is whether any fitted equation has physical meaning or not. Without 

doubt, in the laboratory experiment discussed in the Introduction (which may have indirectly 

served as a prototype in identifying trends in hydrology), the fitting of an equation (e.g. a 

quadratic law in the case of Window B or a cosine law in case of Window C) must have a 

physical meaning. But, in the case of the Boeoticos Kephisos runoff the situation is 

dramatically different. To be more explicit, in the laboratory case the experiments may be 

repeatable, and most probably the points plotted in Figure 1 originate from numerous 
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experiments rather than from a single one. This enhances our belief to the law. Physically, the 

law expresses the dependence of quantity y on x, whereas the observed deviations of the 

points y from the fitted law y(x) may be regarded either as measurement errors or as the 

effects of factors other than quantity x. On the other hand, in the runoff case no repetition of 

measurement can be executed. Besides, the line AB in Figure 2(b) does not describe the 

dependence of runoff on time and the deviations of the rough line plot of the time series in 

Figure 2(b) cannot be regarded as measurement errors. Rather, the rough line itself expresses 

the dependence of runoff on time, but even the rough line cannot be called a physical law, 

even though, undoubtedly, it contains a certain physical meaning.   

2.4 The notion of determinism 

As mentioned in subsection 2.1, a simple function fitted to a data series, such as the linear 

function represented by line AB in Figure 2(b), is typically (according to the approach 

discussed herein) considered to be a deterministic component of the time series whereas the 

deviations of the time series from this line are supposed to be the random component. Here a 

simple question arises: Why consider the line AB in Figure 2(b) a deterministic law and the 

deviations from this line random? Why, for instance, line CD, which connects two 

consecutive points of the time series in Figure 2(b), is more random and less deterministic 

than line AB? After all, AB was established by statistical means, whereas at the same time, 

CD is a result of measurement of a physical process. 

 If the line AB were obtained, for instance, as a result of a hypothetical physically based 

model, which would be able to produce a trend for the future based on data of the past, the 

characterization “deterministic” would be justified. But this is not the case at present (e.g. 

Koutsoyiannis and Efstratiadis, 2004) and probably it will be not the case in the foreseeable 

future. Thus, the statistical approach described above remains the main tool to identify and 

describe such patterns. But given the facts that: (1) they were identified only a posteriori by 

statistical processing of historical data, and (2) they are not verifiable by any experiment (due 

to the uniqueness of the natural process), these patterns do not deserve the characterization 

“deterministic”. 
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 Here it should be clarified that the proposed point of view does not deny determinism in 

the evolution of hydrological processes. Rather, it tries to show that the modelling of the trend 

line as a deterministic law is not consistent with the modelling of the deviation from this law 

as a random or stochastic component. In other words, it is maintained that, if the modelling of 

line CD in Figure 2(b), or that of the complete rough line plot depicting the time series, is to 

be done in stochastic terms, then the modelling of the trend line AB should also be done in 

stochastic terms. Here it should be emphasized that the modelling of a physical system using a 

stochastic model is not a matter of characterizing its nature or structure: after all, every 

macroscopic physical system can be regarded as deterministic in its structure (here we must 

exclude microscopic quantum systems, in which indeterminism may be intrinsic). But there 

are cases where determinism does not help to study and predict complex macroscopic systems 

and in these cases it is better to use stochastic, probability-based, models. To quote von Plato 

(1994, p.15): 

“In classical physics probabilities are basically nonphysical, epistemic additions to 

the physical structure, a ‘luxury’ as von Neumann says, while quantum physics, in 

contrast, has probabilities which stem from the chancy nature of the microscopic 

world itself. Epistemic probability is a matter of ‘degree of ignorance’ or of opinion, if 

you permit”. 

2.5 The notion of nonstationarity  

As mentioned in subsection 2.1, according to the modelling approach examined, a time series, 

in which a trend is identified, is regarded as nonstationary. Since similar trends have been 

identified in many long time series representing hydrologic processes, there is a tendency to 

characterize hydrologic processes as nonstationary. But is this justified?  

 Before we study this question, we should clarify the notions and terms of a “process” and a 

“time series” (see explanatory sketch in Figure 3). Firstly, it is useful to distinguish the 

meaning of the term “process” in the mathematical theory of stochastic processes and in the 

context of real world (physical, chemical, biological, social, etc.), processes. In Greek, to 

avoid confusion because of the different meanings, different terms are used in the two cases. 
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Thus, “stochastic anhelixis” (στοχαστική ανέλιξις) is a “stochastic process” and “physical 

diergasia” (φυσική διεργασία) is a “physical process”. (The term “anhelixis” is etymologized 

from “helix” (έλιξ), here related to evolution, whereas the term “diergasia” is etymologized 

from “ergon” (έργον), i.e. work, as in “en-erg-y”, “ergo-nomical”, or “erg-odicity”.)  

 Secondly, we must distinguish a time series x(t) from a process X(t). The former is a 

specific trajectory or path of the latter. Thus, in a real world process (diergasia), a time series 

is a series of observations of the process. In a stochastic process (anhelixis), a time series is a 

specific realization of the process. Consequently, in both cases a time series is a sequence of 

numbers (values). In contrast, a stochastic process is a family of random variables (typically, 

indexed by time; e.g. Taylor and Karlin, 1984, p. 4; Weisstein, 1999-2005b). Here, it should 

be mentioned that this terminology and the distinction of a process and a time series is 

prevailing in most texts, either from the disciplines of stochastics (e.g. Box et al., 1994, p. 7), 

dynamical systems (e.g. Brock and Potter, 1992; Theiler et al., 1994), and hydrology (e.g. 

Chow, 1964, p. 8.9) but it is not universally accepted, which creates confusion. For example, 

in Kotz and Johnson (1988) and Weisstein (1999-2005a) the term time series is used as 

essentially synonymous to stochastic process. Some hydrological texts may make a distinction 

of the two terms but on other grounds (for example, Clarke, 1998, distinguishes two classes of 

models, time series models and stochastic models – however, according to the above 

prevailing definition both classes would be called stochastic processes). Some books in 

probability and stochastics (e.g. Karlin and Taylor, 1975; Taylor and Karlin, 1984 Papoulis, 

1991) avoid the use of time series, probably to prevent confusion, favouring the term “sample 

function” instead. Here we use both terms, as in Figure 3, with the prevailing definitions 

stated above. 
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Figure 3. Schematic for the clarification of the terms “process” and “time series”.  

 A stochastic process implies infinite realizations. Thus, for example, in a stochastic process 

(anhelixis) X(t) we can think of the mean of the process, defined as 

 µ(t) = ⌡⌠
–∞

∞

 X(t) dFX(t)(x) (1)   

where FX(t)(x) is the probability distribution function of X(t) at time t. Indeed, behind this 

definition lies the assumption of infinite potential realizations of X(t), therefore we call µ(t) 

the ensemble mean. Then we can define stationarity of the mean assuming that µ(t) does not 

vary with t [i.e., µ(t) = µ], etc.   

 Now let us come to the notion of stationarity in physics. Here, the term stationarity may 

have different meanings depending on the context. Thus, in thermodynamics we have the 

notion of a stationary system, in which the changes of kinetic and potential energies are zero 

(Çengel and Boles, 2002, p. 168). This notion is fundamentally different from, and not related 

to, the notion of stationarity discussed here. In dynamical systems we have the notion of a 

stationary point: we call a point x* stationary if it is invariant under the dynamical evolution, 

i.e. St(x*) = x*, where St denotes the dynamical transformation of the system (Lasota and 

Mackey, 1994, p. 191). In this case we would call stationary a process that is time invariant: 

X(t) = x*, which however is a trivial non-interesting case. Also in dynamical systems, we have 

the more general notion of stationary densities (Lasota and Mackey, 1994, pp. 41, 417) whose 

definition is practically equivalent to that of stationary stochastic processes. In this case, a 

density is defined in terms of a measure space, which is a generalization of a probability 
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space. Again, as in stochastic processes, infinite potential realizations of the process are 

implied (thus, we can speak of a density of potential outcomes), even though the system 

dynamics may be totally deterministic (a typical example of such dynamics, also used by 

Lasota and Mackey, 1994, for an intuitive presentation of the notion of stationary density, is 

the logistic map).    

 In conclusion, the notion of stationarity is closely associated with a model (rather than a 

real world system) either deterministic or stochastic, which implies an ensemble of infinite 

realizations. Now, let us come to a real world system per se (not a model of the system) such 

as the Boeoticos Kephisos River or its catchment.  Obviously, this system has a unique 

evolution X(t) in time t. We can measure the state of the system at certain times and obtain a 

time series of measurements x(t), which is unique. Can we define the ensemble mean? The 

answer must be, no. What we can define is the notion of temporal mean, i.e.,  

 m(t1, t2) = 
1

t2 – t1 
  ⌡⌠

t1

t2
 x(t) dt  (2) 

which is fundamentally different from the ensemble mean µ(t). There is no way to assign a 

unique quantity, say m(t), at a certain time instant t, unless we identify m(t) with x(t). So, can 

we define stationarity and nonstationarity for the real world process? The author’s opinion is, 

no. That is to say, the notion of stationarity (and nonstationarity) is well defined within the 

theory of stochastic processes (being called a stochastic process stationary if its statistical 

properties are invariant to a shift of time and nonstationary if they are deterministic functions 

of time; Papoulis, 1991, p. 297), or even in mathematical models in general, but may not have 

any meaning outside of mathematics. In the case that we would identify m(t) with x(t) and 

postulate stationarity, we would call stationary a process that is time invariant: x(t) = x*, 

which is a trivial case as discussed above.  

 But what about a given time series? Can it be characterized stationary or nonstationary? 

The typical answer in hydrological texts is positive. For example, Salas (1993, p. 5) states that 

“A hydrologic time series is stationary if it is free of trends, shifts or periodicity”. In other 

disciplines we meet more careful statements, e.g. in Theiler et al. (1994, p. 453): “While 
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stationarity has a clear-cut meaning for a stochastic process, it is a fuzzier concept when 

applied to a time series”. Probably, however, fuzziness could be removed by distinguishing 

time series generated by a model (anhelixis) or a real word process (diergasia). In the first 

case, if we know that the given time series has been generated by a certain stochastic process, 

which is known to be stationary or nonstationary, we could convey this property of the 

process to the time series and call it respectively stationary or nonstationary. But in the second 

case, maybe there does not exist any objective way to characterize it stationary or 

nonstationary. Even in the first case, in a time series generated from a stochastic process, we 

cannot say that the time series is stationary or nonstationary unless we know the generating 

process. In fact, any short time series (theoretically, any time series with finite length) can be 

generated by infinite stochastic processes, stationary and nonstationary. 

 In conclusion, a natural process (in our case a hydrological process) and a time series 

generated by measuring this process cannot be characterized as stationary or nonstationary 

because such a classification does not have a meaning. A stochastic process is always a model 

of a physical system; it is not a physical process per se. Stochastic processes allow convenient 

description and handling of several physical systems. Also, they allow the use of probabilistic 

description of uncertainty and the notion of infinite realizations, in place of the unique 

evolution of natural systems.  A stochastic process that is used to model the physical process 

can be stationary or nonstationary. In most cases, this is primarily a matter of modelling 

convenience rather than a matter of faithful representation of the natural process. In other 

cases, nonstationarity of the process may be implied theoretically from its definition. This is 

the case for example in cumulative processes (such as a process modelling cumulative 

rainfall, where X(t + τ) ≥ X(t) for any τ ≥ 0). Such a process is nonstationary by definition but 

it may have stationary intervals. 

 The opinion that a stationary model can be used to describe a hydrological process that is 

obviously affected by numerous time varying factors may seem strange to many. Therefore, 

we will discuss it further with the help of an example from rainfall modelling. Rainfall is 

affected by several mechanisms and events including the strangest ones such as volcano 

eruptions. Even if we ignore these complex influences and we only consider the most 
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common ones, like fronts, depressions and convection, it suffices to understand that the 

formation of a certain front is a deterministic process with a unique temporal existence; i.e. it 

happens today and not tomorrow or in a month. What will happen in a month is the formation 

of a different front, just as the Pinatubo eruption is different from the Santorini eruption. Does 

this imply nonstationarity? As explained before, we cannot characterize the physical process 

as stationary or nonstationary. However, we can model the rainfall process either as a 

stationary, cyclostationary or nonstationary stochastic process, depending on the modelling 

target, the additional information or tools we have available, and the modelling time scale (the 

relation of the time scale has been discussed by Klemeš, 2002). If we had a deterministic 

model that could predict the generation of fronts and depressions (or the volcano eruptions 

and their effects to rainfall), then we would model it as a nonstationary process, for example 

with varying mean µ(t) in time t, where the function µ(t) would be derived by the 

deterministic model. If we did not have such a deterministic model, we could assume that the 

occurrences of fronts, depressions, eruptions, etc. can be modelled, for instance, as random 

points in time. In such a case we would superimpose a stochastic model for storm occurrence 

and another model for each individual storm’s structure, and it is very probable that the 

resulting compound stochastic process would be a stationary stochastic process. 

 This is the case for example in the Neymann-Scott and the Bartlett-Lewis point processes 

that have been used in stochastic rainfall modelling. If in each of these models the storm 

origins could be fixed by, say, a deterministic storm occurrence model, then the models would 

be nonstationary. If the storm origins are not known but assumed to obey a Poisson process, 

then the models are stationary. Thus, the stationarity is again a matter of ‘degree of 

ignorance’, not a matter of any essence in the physical process. 

 Obviously, solid information or knowledge (as opposite to ignorance) of a certain event 

affecting a process may justify the use of a nonstationary model. For example, to model river 

flow downstream of a dam we would use a nonstationary model with a shift in the statistical 

characteristics before and after the construction of the dam. Even in this case, however, 

caution is needed to understand and describe the causal physical mechanisms that affect the 

process; merely the occurrence of an event and the calculation of statistics may not suffice to 
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justify the use of a nonstationary model. A good counterexample, described by Klemeš, 

(2002), refers to the drop of the river Nile flows in the beginning of the 20th century, which 

was incorrectly attributed to the first filling of the old Aswan dam (1902-1903) whereas this 

reflected a similar drop in precipitation around the turn of the century over a vast region 

including much of the tropical Africa and the West Indies – a drop that can hardly be 

attributed to the Aswan dam.   

2.6 The detrending of the time series 

The above discussion about the use of the term “nonstationarity” for a time series that seems 

to have a trend, and the term “deterministic” (component) for this trend, is not merely an issue 

of terminology, mathematical logic, or philosophy. It has also significant practical 

consequences. More explicitly, if one follows the nonstationarity approach, i.e. calls the time 

series nonstationary and the trend deterministic, the next natural step is to separate 

randomness from deterministic behaviour, i.e., to detrend the series. In the example of Figure 

2, during the period 1921-2002 the standard deviation, which is a measure of uncertainty, is 

68.2 mm. If we detrend the series, the resulting standard deviation becomes 56.3 mm. This 

naturally means that the “deterministic” component explains an appreciable percentage 32% 

[= 1 – (56.3/68.2)2] of the process variability.  

 So, the practical consequence, according to this modelling approach, is that trends decrease 

uncertainty. This would be correct if the identified trend was indeed a deterministic 

component, so that one could apply to the future the same law that was established from past 

data. But is that the case in our example? Will this linear trend continue in the future? No one 

knows (in fact it is very unlikely because, if it continues, soon the runoff will become 

negative!). And if no one knows, we do not have reasons to believe that the uncertainty has 

indeed decreased by fitting this “deterministic” equation to the original time series and calling 

the time series nonstationary. 

 In conclusion, the nonstationarity approach implies several logical inconsistencies and 

finally yields a paradoxical impression of decrease of uncertainty. The only merit of this 

modelling approach is that, by detrending the original series, we obtain a time series that can 
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be regarded as a random sample (because it is free of trends), so that we can use classical 

statistics to process it further.  

3. The scaling approach 

3.1 The notion of scaling 

The scaling modelling approach is the antipode of the nonstationarity approach. Instead of 

trying to adapt the series so as to obey classical statistics, it adapts classical statistics so as to 

be consistent with the observed behaviour of natural time series. It models the trend as a 

(large-scale) stochastic component and assumes stationarity. In fact, it does not require the 

separation of the time series into two or more components, so it does not attempt to detrend 

the original series. It admits that the existence of trends is the normal behaviour of real world 

time series. And it shows that trends increase dramatically the uncertainty rather than decrease 

it. 

 Before we proceed to the description of the scaling behaviour, it may be useful to re-

examine our example time series, that of the Boeoticos Kephisos runoff, and compare it to a 

longer series, so as to acquire an idea of the existence and behaviour of trends on a longer 

term. For this purpose, we have chosen the longest available hydrological time series, the 

Nilometer series, which gives an index of the annual minimum water level of the Nile river 

for the years 622 to 1284 A.D. (663 observations, recently published by Beran, 1994 and 

available online from http://lib.stat.cmu.edu/S/beran). In Figure 4(a) we have reproduced the 

Boeoticos Kephisos runoff time series from Figure 2(b). Just below, in panel (b) we have 

plotted a hundred-year part of the Nilometer time series, where it can be seen that a trend 

similar to that of Boeoticos Kephisos runoff is present in the Nilometer time series between 

years 700-780 A.D. In panel (c) we have plotted the complete Nilometer series as well as its 

5- and 25-year averages. Here, it can bee seen that trends (mostly viewed from the 25-year 

scale) exist through the entire span of the time series and their behaviour is irregular. More 

specifically, the downward trend of the years 700-780 A.D. changes to an upward trend just 

after 780 A.D. 
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Figure 4. (a) Plots of (a) the time series of Boeoticos Kephisos annual runoff; (b) a hundred-year part of 

the Nilometer time series; (c) the complete Nilometer time series.  

 So, moving from the hundred-year observation window to 663-year window our perception 

of the process changes; this move can be paralleled to the shift from Window B to Window C 

in the initial example of Figure 1. Can we speak now about deterministic trends? Rather, 

instead of speaking of trends, it may be more consistent to speak of fluctuations at multiple 

time scales. And this harmonizes with the fact that climate changes on all time scales.  

 Now, in classical statistics we have the fundamental law  
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 StD[X
 –

n] = 
σ
n
 (3) 

where X
 –

n is the sample average estimated from a sample Xi of size n, i.e., X
 –

n := (X1 + … + 

Xn) / n, StD[ ] denotes the standard deviation of a random variable, and σ is the standard 

deviation of each of Xi (assuming stationarity, so that all Xi have common mean, standard 

deviation, etc.). Given a time series of sufficient length m, we can test in a simple way 

whether this law is fulfilled or not. To this aim, we can estimate from the time series the 

standard deviation StD[X
 –

n] for several values of n. Assuming n = 1, it is easily seen that 

StD[X
 –

1] ≡ StD[Xi], so this is the estimator of σ; for this estimate m data values are available. 

For n = 2 (and assuming for simplicity that the series length m is even) we can construct (m/2) 

samples X
 – 

(1)
2  = (X1 + X2)/2, X

 – 
(2)
2  = (X3 + X4)/2, …, X

 – 
(m/2)
2  = (Xm – 1 + Xm)/2. From these we can 

estimate StD[X
 –

2]. Proceeding this way, we can estimate StD[X
 –

n] for n up to, say, m/10 (in 

order to have 10 samples for the estimation of standard deviation). Plotting the estimate of 

standard deviation StD[X
 –

n] versus n (preferably on a logarithmic plot) we can test graphically 

the validity of the statistical law (3). Such plots for the Boeotikos Kephisos and the Nilometer 

time series are given in Figure 5. The non fulfilment of law (3) is more than clear. Instead, 

both plots follow a more general law of the form   

 StD[X
 –

n] = 
σ

n1 – H (4) 

where H is a constant between 0.5 and 1. As shown in Figure 5, H = 0.79 for Boeoticos 

Kephisos and H = 0.85 for Nile. 

 Now, instead of modifying our time series to make it a random series (e.g. by detrending 

it) in order to fulfil the statistical law (3), it may be more wise to abandon the postulate of 

pure randomness and devise a stochastic process that has the property (4) from the outset. 

This is mathematically possible and such a process can be called a simple scaling stochastic 

process (SSS process). In fact, (4) can serve as a definition of an SSS process, sufficient for 

the purpose of this paper. (For more generalized definition of the process in discrete time in 

terms of probability distribution rather than merely standard deviation see Koutsoyiannis, 

2002, 2003; for a definition in continuous time see Abry et al., 1995 and Beran, 1994).  
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Figure 5. Logarithmic plots of standard deviation versus scale for the time series of (left) Boeoticos 

Kephisos annual runoff; (right) Nilometer.  

 The statistical behaviour expressed by equation (4) is none other than the Hurst 

phenomenon, known in hydrology since more than half a century ago, and the constant H is 

the Hurst exponent. Hurst (1951) who discovered this behaviour used a different formulation 

for the law, based on the so called rescaled range. The formulation in terms of standard 

deviation at the time scale n, as in equation (4), is much simpler yet equivalent to that of Hurst 

(see theoretical discussion by Beran, 1994, p. 83, and practical demonstration by 

Koutsoyiannis, 2002).  

 The Hurst or scaling behaviour has been found to be omnipresent in several long time 

series from hydrological, geophysical, technological and socio-economic processes. Thus, it 

seems that in real world processes this behaviour is the rule rather than the exception. The 

omnipresence can be explained based either on dynamical systems with changing parameters 

(Koutsoyiannis, 2005b) or on the principle of maximum entropy applied to stochastic 

processes at all time scales simultaneously (Koutsoyiannis, 2005a).  
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3.2 Typical procedure 

In subsection 2.1 it was described that the typical procedure to handle a trend by the 

nonstationarity approach contains a handful of steps. In the case of the scaling modelling 

approach, the typical procedure is even simpler; it includes three steps: 

1. Construct a double logarithmic plot of standard deviation versus scale. 

2. Estimate the Hurst coefficient H from the slope of this plot. 

3. If H ≈ 0.5 treat the series using classical statistics; otherwise use modified statistics 

appropriate for SSS processes.  

The first two steps have been already described by means of the example in Figure 5. If more 

accuracy in estimation of H is needed, improved algorithms (Beran, 1994; Koutsoyiannis, 

2003) may be used in step 2, which may simultaneously provide a better estimate of σ, the 

standard deviation at the basic scale. The modified statistics (e.g. statistical estimators and 

tests) required for step 3 are described in Koutsoyiannis (2003). If there does not exist an 

analytical solution for the statistical properties of a certain statistic in step 3 (e.g. for Kendall’s 

τ statistic discussed in subsection 2.2), stochastic simulation is the method of choice. This 

requires generation of ensembles of synthetic series from an SSS process, which can be done 

using simple generators (appropriate for spreadsheet calculations) as discussed in 

Koutsoyiannis (2002). 

3.3 Relation of the scaling behaviour to trends in hydrologic series 

There are two simple intuitive ways to verify the close relation between the scaling behaviour 

and trends in hydrologic series. The first is to detrend an observed time series and reconstruct 

a standard deviation versus scale plot such as that of Figure 5. It will be seen that the scaling 

behaviour disappears and the slope of the arrangement of empirical points approaches 0.5, as 

predicted by the classical statistical law (3). The second is to generate some synthetic series 

with a Hurst coefficient greater that 0.5 (say 0.8) and plot them. It will be seen that falling or 

rising trends are very common.  
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 The second method can be extended in a more systematic manner to perform statistical 

tests based on stochastic simulation. Let us consider again Kendall’s τ statistic described in 

subsection 2.2, by means of which it was decided that there exists a statistically significant 

trend in the Boeoticos Kephisos runoff series. The same test and the same statistic can be used 

in an SSS framework as well. The difference is that the standard deviation of τ is no longer 

given by the classical statistical formula (subsection 2.2). The easiest way to calculate the 

standard deviation of τ is to perform simulation.  In this respect, in Koutsoyiannis (2002) an 

ensemble of 100 time series was generated, each with n = 91 and H = 0.78, and in each of 

these series that 78-year period which gave the maximum value of τ (in absolute value) was 

located (note that fewer years of data were available then, which explains the slight 

differences in the length of trend period and the value of H). The standard deviation of τ over 

the 100 series was 0.252 (more than three times greater than the value 0.077 that was 

calculated by the classical statistical formula) and the attained significance level of Kendall’s 

test was 5.5% (almost six orders of magnitudes higher than the one of classical statistics!). 

This means that the trend is not statistically significant at the usual 5% significance level. In 

simpler words, trends are so common in time series generated by an SSS process that 

Kendall’s test deems a 78-year falling trend in a 91-year data series a regular behaviour. 

 The relation of trends, or better of large-scale fluctuations, to the scaling behaviour, or 

equivalently to the Hurst phenomenon, was firstly explored 30 years ago by Klemeš (1974). 

Klemeš analyzed several variants of the ‘changing mean’ mechanism which assumes that the 

mean of the process is not a constant determined by the arithmetic mean of the record, but 

varies through time. Specifically, he performed numerical experiments with Gaussian random 

processes that have mean changing according to either a deterministic or a random rule and he 

found that the composite process behaved Hurst-like. Here, it should be mentioned that 

Klemeš referred to all his ‘changing mean’ models as models with nonstationarity in their 

mean, even though this is strictly true only for the models with deterministic change of the 

mean. Even though he kept the term ‘nonstationary’ for all changes, he noted that some of his 

models were in fact stationary. However, this note has sometimes been missed and led to a 

misconception about his work by some authors (regrettably, including this one).  
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 More recently, in Koutsoyiannis (2002) this thinking was extended on the setting of 

multiple timescales of fluctuation of mean, also giving emphasis on the stationarity of the 

composite process. Specifically, it was demonstrated that a Markovian process, the simplest 

process that implies short-range dependence and obeys the classical statistical law (3), 

becomes virtually indistinguishable from an SSS process if there occur fluctuations of its 

mean at least at two time scales (e.g. one of the order of 10 years and one of the order of 100 

years). The fluctuations were assumed random and stationary, again with Markovian 

structure, which implies that the final model, i.e. the superimposition of the three individual 

models, is stationary.  

3.4 The uncertainty under the scaling hypothesis 

Contrary to the nonstationarity approach, which as demonstrated in subsection 2.6 implies 

that a behaviour characterized by trends decreases uncertainty, the scaling approach shows 

that the uncertainty increases dramatically due to this behaviour. This is known to engineering 

hydrologists since the discovery of the Hurst phenomenon, as the discovery was related to the 

design of reservoirs and the Hurst behaviour implies larger storages of reservoirs (see e.g. 

Klemeš et al., 1981). Perhaps it is not equally known to scientific hydrologists and mainly to 

climatologists who insist using classical statistics more than half a century after the discovery 

of the scaling behaviour, even though the most impressive effects of this behaviour emerge at 

long time scales that are used in climatic studies.  

  In brief, there are two factors that increase the uncertainty under the scaling behaviour. The 

first applies to all time scales and is related to the bias of the classical statistical estimator of 

standard deviation in the case of an SSS process. The second, which is more important, 

applies to time scales higher than 1 (the basic time scale) and is related directly to the 

modified law (4). In our Boeoticos Kephisos runoff example, the classical estimate of 

standard deviation of runoff at the annual scale, estimated for the entire 96-year series, is 69.4 

mm. A modified SSS estimator (Koutsoyiannis, 2003) results in a value 74.5 mm, i.e. in an 

increase of variance by 15%, which may be not very important. The difference becomes more 

important if we go to larger scales. Let us consider for instance the scale of 30 years, which is 
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typically regarded in climatology as a time scale sufficient to smooth out transient 

characteristics of a time series and yield a value representative of the climate. Also, let us 

assume for simplicity that the values 69.4 mm and 74.5 mm, estimated by the two approaches, 

are the true standard deviations for each of the two approaches (i.e., there is no error in 

estimation, which, however, is not correct, thus resulting in underestimation of uncertainty). 

The classical statistical law (3) implies a standard deviation of the climatic variable X
 –

30, 

StD[X
 –

30] = 69.4/300.5 = 12.7 mm. The corresponding value of the SSS law (4) is StD[X
 –

30] = 

74.5/301 – 0.79 =  36.5 mm.  

 Now if we had adopted the nonstationarity approach, according to which the annual 

standard deviation was reduced to 56.3 mm (see section 2.6), then StD[X
 –

30] would be 

56.3/300.5 = 10.3 mm. This shows that the climatic uncertainties for the time scale of 30 years, 

as they result from the nonstationarity and the scaling modelling approaches differ by a factor 

of about 3.5! The differences would be even higher if the uncertainty due to parameter 

estimation were also considered. Furthermore, in the scaling approach the variability of the 

climatic variable X
 –

30 is no less than half the annual variability. This is consistent with the 

perception of a changing climate and simultaneously it does not require any additional 

mechanism, either deterministic or random, to explain the change.  

 As already discussed, the quantification of uncertainty is not just a theoretical issue of 

general scientific interest, but it affects seriously the design and management of 

hydrosystems. The well known impact to the design of large reservoirs was already 

mentioned in the beginning of this section. To emphasize the impact to water resource 

management we will refer to a recent experience from the Athens water supply system. This 

is a huge system extending on an area of about 4000 km2 and comprising four reservoirs and 

several aquifers. One of the reservoirs, the natural Lake Hylike, is fed by the Boeoticos 

Kephisos River. Recent attempts to rationalize the management of the system, initially were 

based on the classical statistical approach, according to which the decreases in rainfall and 

runoff (Figure 2(b) and (c)) were regarded “deterministic trends” (e.g. Nalbantis et al., 1993). 

However, a persistent (7 years) drought during 1987-93 for the entire system (seen in Figure 

2(b) for Boeoticos Kephisos), which shook Athens, could be hardly described (reproduced) by 
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the classical approach, whose uncertainty estimates were too narrow as discussed above. This 

triggered the shift to the scaling modelling approach, which can easily reproduce persistent 

droughts. Soon it was discovered that the scaling approach could also reproduce changing 

means, so there was no need to consider any “external” deterministic trend. Based on this 

approach, a decision support system was constructed (Koutsoyiannis et al., 2003), which is in 

use since 2000 and operates in satisfactory manner (as verified for instance by the good 

performance in achieving water supply adequacy for the Olympic year 2004; Koutsoyiannis, 

2004).  

 The above presentation of uncertainty estimation according to the scaling approach was 

deliberately made simple, in accordance to the scope of this paper. In an operational 

application, such as in the management of the Athens water resource system, the uncertainty 

estimation and its implementation to management decisions is more complicated. In this case, 

the scaling approach, far from ignoring the series of past observations (which for instance 

may indicate a local trend), does full exploit them to estimate uncertainty conditional on the 

observed past so as to support decisions for future. The method of choice to accomplish this is 

Monte Carlo simulation. A conditional simulation methodology (appropriate for a process 

with scaling behaviour), according to which all known history of the process is incorporated 

in the generation of future trajectories, has been described in detail elsewhere (Koutsoyiannis, 

2000).    

4. Conclusion  

The perception of a changing climate, which impacts also hydrological processes, is now 

generally admitted. However, the way of handling the changing nature of climate in 

hydrologic practice and especially in hydrological statistics has not become clear so far. The 

most common modelling approach is to assume that long-term trends, which have been found 

to be omnipresent in long hydrological time series, are “deterministic” components of the 

time series and the processes represented by the time series are nonstationary. In this paper, 

we attempted to show that this approach is contradictory in its rationale and even in the 

terminology it uses. As a result, it may imply misleading perception of phenomena and 
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estimates of uncertainty.  Besides, it was maintained that a stochastic modelling approach 

hypothesizing stationarity and simultaneously admitting a scaling behaviour reproduces 

climatic trends (considering them as large-scale fluctuations) in a manner that is logically 

consistent, easy to apply and free of paradoxical results about uncertainty. In fact the scaling 

approach implies that the uncertainty is greatly increased due to large-scale fluctuations. 

 Obviously, the scaling approach is a modelling approach, and no model is perfect. Its 

stationary character is sufficient to describe large-scale natural climatic fluctuations but it may 

not be appropriate for cases where there is evidence of causative effects of a certain event on 

some phenomenon. For example, a stationary process is not appropriate to model runoff in a 

basin with known large scale changes of the natural hydrosystem (e.g. construction of dams) 

or the land use in the basin (e.g. deforestation, urbanization, elimination of floodplain by 

dikes). In such cases, a scaling stochastic model should be coupled with a deterministic 

hydrological model that will be able to capture the deterministic mechanisms of changes (not 

based on statistical analyses). Another case where the stationary approach may be insufficient 

is related to anthropogenic climate change scenarios, as these may imply a change that is not 

already reflected in past data. Theoretically, it is possible to adapt the scaling approach adding 

a nonstationary component, whose mathematical form should be provided by deterministic 

climatic models. But this will have meaning only when climatic models will be able to 

establish reliable relationships between hydro-climatic processes and factors affecting them 

and explain the already verified scaling behaviour of the past. Until then, a good step to a 

more faithful description of uncertainty is to adapt the classical statistical thinking and 

implementation towards exploiting the scaling hypothesis, which is more consistent to what is 

observed in nature.  
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