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Abstract The well-established physical and mathematical principle of maximum entropy, 

interpreted as maximum uncertainty, is used to explain the observed dependence properties of 

the rainfall occurrence process, including the clustering behavior and persistence. The 

conditions used for the maximization of entropy are as simple as possible, i.e. that the rainfall 

processes is intermittent with dependent occurrences. Intermittency is quantified by the 

probability that a time interval is dry, and dependence is quantified by the probability that two 

consecutive intervals are dry. These two probabilities are used as constraints in a multiple 

scale entropy maximization framework, which determines any conditional or unconditional 

probability of any sequence of dry and wet intervals at any time scale. Thus, the rainfall 

occurrence process including its dependence structure is described by only two parameters. 

This dependence structure appears to be non-Markovian. Application of this theoretical 

framework to the rainfall data set of Athens indicates good agreement of theoretical 

predictions and empirical data at the entire range of scales for which probabilities dry and wet 

can be estimated (from one hour to several months).  
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Only entropy comes easy  

Anton Chekhov  

1. Introduction 

1.1 Stochastic description of rainfall intermittency 

The most significant peculiarity of the rainfall process, in comparison to other 

hydrometeorological processes, is its intermittent character on fine (sub-monthly) time scales. 

The analysis of intermittency and the modeling of the occurrence process of rainfall has 

attracted the interest of many and continues to do so. It was recognized in early stages of 

analysis and modeling attempts that the rainfall occurrences are not purely random. In other 

words, rainfall occurrence cannot be modeled (effectively) as a Bernoulli process in discrete 

time or, equivalently, as a Poisson process in continuous time. 

Both discrete time and continuous time representations of the rainfall occurrence process, 

which in fact are closely related [e.g. Foufoula-Georgiou and Lettenmaier, 1986; Small and 

Morgan, 1986], have been investigated and are still in operational use. The most typical tool 

of the category of discrete time representations is the Markov chain model [Gabriel and 

Neumann, 1962; Feyerherm and Bark, 1964; Hershfield, 1970; Todorovic and Woolhiser, 

1975; Haan et al., 1976; Chin, 1977; Katz, 1977a, b; Kottegoda and Horder, 1980; Roldan 

and Woolhiser, 1982]. In this model, any time interval (e.g. day) can be in one of two states, 

dry or wet, and it is assumed that the state in a time interval depends on the state in the 

previous interval (see section 4 for mathematical details).  

 It was observed, however, that Markov chain models yield unsatisfactory results for 

rainfall occurrences, especially for dry intervals [De Bruin, 1980]. Also, the interannual 

variance of monthly (or seasonal) total precipitation is greater than predicted by Markov chain 

models, an effect termed “overdispersion” [Katz and Parlange, 1998]. Extended versions of 

the binary state Markov chains using a higher number of states may improve performance. 

Additional states in such model versions have been defined based on combination of states of 

two consecutive periods [Hutchinson, 1990] or on accounting for the rainfall depth of each 

interval [Haan et al., 1976]. A more effective enhancement is to use transition probabilities 
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taking into account more than one previous interval, which leads to stochastic binary chains of 

order higher than one [Pegram, 1980; Stern and Coe, 1984; Katz and Parlange, 1998; Clarke, 

1998, pp. 51-55]. In more recent developments, to take account of a long number of previous 

time intervals and simultaneously avoid an extremely high number of transition probabilities, 

it was proposed that, instead of the sequence of individual states of these intervals, one could 

use conditional probabilities based on aggregation of states of previous intervals [Sharma and 

O’Neill, 2002]. Similarly, one could use a discrete wetness index based on the number of 

previous wet intervals [Harrold et al., 2003]. An extension of the Markov chain approach to 

multiple sites has been recently studied by Pegram and Seed [1998]. 

 The dominant tools of the continuous time representation are the cluster-based point 

processes [Waymire and Gupta, 1981a, b, c]. These are essentially based on the prototype of 

the spatial distribution of galaxies devised by Neyman and Scott [1952] to describe their 

property of “clustering” relative to the Poisson process. With reference to storms, if they were 

regarded as instantaneous pulses positioned at random points in time, then the logarithm of 

probability that the interarrival time exceeds a value x, or the log survival function, would be 

proportional to x. However, empirical evidence suggests that the log survival function is a 

nonlinear concave function of x which indicates a tendency for clustering of rainfall events 

relative to the Poisson model [Foufoula Georgiou and Lettenmaier, 1986]. This clustering has 

been modeled by a cascade of two Poisson processes, corresponding to two characteristic time 

scales of arrivals of storms and storm cells.  

 The Neyman-Scott process with instantaneous pulses was the first applied to rainfall 

occurrence [Kavvas and Delleur, 1981; Rodriguez-Iturbe et al., 1984], later succeeded by the 

Neyman-Scott rectangular pulses and the very similar Bartlett-Lewis rectangular pulses 

models [Rodriguez-Iturbe et al., 1987]. A major problem of these models was their inability 

to reproduce the probability of zero rainfall at multiple time scales [Velghe et al., 1994]. In 

this respect, Foufoula-Georgiou and Guttorp [1986] note that the Neyman-Scott model 

parameters are scale dependent and thus cannot be attributed a physical meaning. To 

ameliorate this, modifications of both the Neyman-Scott model [Entekhabi et al., 1989] and 

the Bartlett-Lewis model [Rodriguez-Iturbe et al., 1988; Onof and Wheater, 1993, 1994] were 
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proposed. These are in fact based on the randomization of the mean interarrival time of the 

one of the two Poisson processes. Evaluation and comparison of several cluster-based 

rectangular pulses models for rainfall are done by Velghe et al. [1994] and Verhoest et al. 

[1997] whereas a comprehensive review of Poisson-cluster models and the more recent 

developments has been provided by Onof et al. [2000].  

 Apart from rainfall occurrence, the point process models describe the entire rainfall 

process using one or two additional parameters. However, in some cases [e.g. Gyasi-Agyei 

and Willgoose, 1997] they have been used to simulate merely rainfall occurrences and then 

have been combined with other models that simulate rainfall depths. Other modeling 

approaches for the rainfall process (including its intermittency) are reviewed in Srikanthan 

and McMahon [2001]. More recently, multifractal simulation techniques have been also used 

for the modeling of the complete rainfall process [e.g. Marshak et al., 1994; Olsson, 1996, 

Menabde et al., 1997]. But require more analysis, particularly in their ability to reproduce the 

rainfall occurrence process and specifically the dry period structure at different scales. 

1.2 Seeking an explanation of clustering and persistence 

 The terms “clustering” and “overdispersion” express the fact that rainfall occurrences are 

not independent in time but they are positively autocorrelated. Probably “clustering” is 

understood as focusing on small scales (clustering of events) whereas “overdispersion” may 

be more appropriate at large scales (at which the increased variance becomes more 

observable). “Persistence” is another term for the same behavior, which has been used in 

hydrology to express positive autocorrelation both on small scales (short-term persistence) 

and on large scales (long-term persistence). We may think that long-term persistence in the 

case of the binary processed examined here may not be the same as in the case of real valued 

processes (e.g. in the process of rainfall depth) and may not indicate a long-range dependence 

with the rigorous mathematical meaning [e.g. Beran, 1994] of the latter term. Furthermore, 

long-term persistence in not necessarily understood as long memory of the system. As 

demonstrated by Klemes [1974] and more recently by Koutsoyiannis [1992], even in the case 

of real valued processes, long-term persistence is more consistently understood as the effect 
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of climatic fluctuations on one time scale [in Klemes, 1974] or on several time scales [in 

Koutsoyiannis, 1992], rather than the result of some memory mechanism. 

 Whichever term is used, the problem we have to study in analysis and modeling of the 

rainfall occurrence process relates to the dependence structure of the process. Several 

questions have to be answered in such a study, among which are: (a) What is an appropriate 

yet parsimonious quantification of the dependence structure? (a theoretical question); (b) 

What does empirical evidence suggest about this dependence structure (an empirical 

question); and (c) Why does this empirically observed structure occur? (a theoretical 

question). All these questions are investigated in this paper but the emphasis is on the last one, 

the type “why”. Generally, questions of this type are rarely posed and answered in 

hydrological stochastics. However, answers to such questions, additionally to providing 

explanations of natural phenomena, would help build improved models or choose the most 

appropriate of a spectrum of models.  

 With reference to the modeling approaches discussed earlier, we could claim that they do 

not involve type “why” questions. We could say that one model outperforms another, in terms 

of being more consistent with empirically observed properties, but this does not involve 

necessarily any explanation of the natural behavior. Before we proceed to the main type 

“why” question posed above, it would be useful to discuss how the performance of each of 

these models compare to each other and why. Generally, we could classify the models into 

three types: (a) independence, which includes the Bernoulli and Poisson cases, characterized 

by one parameter only; (b) simple dependence, which includes Markov chains and the 

original cluster-based models, characterized by 2-4 parameters (for merely the occurrence 

process); and (c) complex dependence, which includes the modified cluster-based models, 

characterized by 4 or more parameters. As we proceed from category (a) to (c) the 

performance is improved. An apparent reason for this is the increased number of parameters. 

For example, the five adjustable parameters of the occurrence process within the modified 

Bartlett-Lewis rectangular pulse model provide much more flexibility in fitting to any set of 

empirical probabilities, in comparison to the two independent parameters of the binary 

Markov chain model. More than this, it could be said that physical realism is improved as we 
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proceed from category (a) to (c). Category (a) is dominated by a single characteristic time 

scale (e.g. the inverse of the frequency of event occurrences), whereas in category (b) at least 

one time scale is added (due to the Markov dependence or the second Poisson process 

employed) and in category (c) a third time scale of fluctuation appears indirectly (due to the 

random fluctuation of the frequency of the second Poisson process). It seems unreasonable to 

assume that natural processes are dominated by a single time scale. Thus the larger the 

number of time scales involved in a model, the more proximity of the model to reality. As 

shown in Koutsoyiannis [2002], from a practical point of view, three time scales of fluctuation 

may be enough to approximate a phenomenon theoretically characterized by an infinite 

number of scales, such as the Hurst phenomenon.  

 In conclusion, the models discussed may yield better or worse descriptions of the natural 

rainfall occurrence process but they do not explain it, i.e. they are descriptive rather than 

explanatory. Here the explanation is sought via the principle of maximum entropy (ME), 

which is a well established principle in physics and mathematics. The notion of entropy in a 

stochastic context and the ME principle are briefly discussed in section 5. Recently 

Koutsoyiannis [2005a, b] successfully applied the ME principle to explain the distributional 

and dependence properties of hydrological processes, including the scaling behavior both in 

state and time. Several type “why” questions regarding behaviors of hydrological processes 

were considered and were all answered by a single and simple answer: each of the observed 

behaviors maximizes entropy for the given conditions of process variation and dependence, 

for the appropriate time scale or range of time scales.  

 The notion of entropy is used in many scientific disciplines including stochastic processes, 

information theory, statistics, statistical mechanics, thermodynamics, dynamical systems and 

fluid mechanics. Depending on the discipline, entropy may be regarded as a measure of 

uncertainty, information, discrimination, order or disorder, and complexity [e.g. Georgii, 

2003]. Despite the common logical and historical root of the entropy concept in all these 

disciplines, the different technical variants and different views of entropy result in major 

difficulties and gaps in communication between the different disciplines [Greven et al., 2003, 

p. xi]. However, it is worth noting that, in a physical context, different (though intuitively 
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related) to the stochastic context of the present study (described in section 5), the relevant 

hypothesis of Maximum Entropy Production (according to which the rate of entropy 

production is at a maximum), explains the long-term mean properties of the global climate 

system and those of turbulent fluid systems [Ozawa et al., 2003]. The same hypothesis also 

seems to be applicable to the atmospheres and perhaps to mantle convection in planets other 

than Earth.  

 The interpretation of entropy used here is the standard one in the theory of stochastic 

processes, i.e. that entropy is a measure of uncertainty or ignorance [e.g. Papoulis, 1991]. In 

this respect, maximization of entropy is equivalent to maximization of uncertainty. Coming 

back to the question of the dependence structure observed in the rainfall occurrence process, 

we will endeavor to study if this structure is explained by the ME principle, assuming 

conditions or constraints for maximization which are as simple as possible (sections 6-8). In 

this respect, the scope of the present study is exploratory and explanatory. Thus, the tools 

suitable to this context are graphical depictions and comparisons emphasizing the general 

“shapes” of dependence behaviors (sections 3 and 9). No emphasis is given to operational 

applications, except for a discussion of the potential operational usefulness, after further 

research, of the results in rainfall modeling and in engineering applications (section 10). 

2. Definitions, notation and basic assumptions 

 The rainfall occurrence process can be described by a binary valued stochastic process, 

with the values 0 and 1 representing dry and wet conditions, respectively. Here, a discrete 

time approach on multiple time scales will be considered. The scale index k is assumed to be a 

positive integer with the value k = 1 representing some basic scale δ. Without loss of 

generality and unless stated otherwise, in this paper the basic scale will be assumed to be the 

hourly scale (δ = 1 h), so, for instance, the daily scale will be represented as k = 24. Using this 

convention, the rainfall occurrence process will be denoted as X
 (k)
i  with i denoting discrete 

time in units k δ (see Figure 1(a)). At the basic scale the superscript indicating scale will be 

omitted, i.e. Xi ≡ X
 (1)
i . Obviously, the random variable X

 (k)
i  will have value 0 if all its 

components Xj at the basic time scale are 0 and value 1 if one or more of its components are 1.  
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 Let p(k) denote the probability that an interval of length k is dry, i.e., p(k) := P{X
 (k)
i  = 0}. 

The probability that the interval is wet is P{X
 (k)
i  = 1} = 1 – p(k). Clearly, this notation implies 

that the probabilities do not depend on the time position i but depend only on the time scale k. 

This reflects a stationarity assumption that will be used throughout this paper. This, however, 

does not put limitations as it is always possible to confine the analysis into appropriate 

climatically homogeneous periods (months or seasons, thus assuming cyclostationarity rather 

than stationarity). The sequence p(k), k = 1, 2, …, will be referred to as the probability dry 

sequence. At the basic scale, the superscript (1) may be omitted for convenience, so p ≡ p(1). 

Simultaneously, the symbol p will be used with one or more subscripted indices that denote 

states of consecutive time steps. For example, at the basic time scale, p0 = P{Xt = 0} (and thus 

p0 ≡ p ≡ p(1)), p1 = P{Xt = 1} (and thus p1 ≡ 1 – p ≡ 1 – p(1)), p00 := P{Xt = 0, Xt – 1 = 0} (and 

thus p00 ≡ p(2)), etc. More generally, for any scale k, any number of consecutive time intervals 

q (each of length k), and any indices j0, j1, j2, …, jq – 1 each taking values 0 and 1, the 

following notational convenience is used (see demonstration in Figure 1(c)) 

 p
(k)
j0 j1 …jq – 1:= P{X

 (k)
i  = j0, X

 (k)
i – 1 = j1, X

 (k)
i – 2 = j2, …, X

 (k)
i – q + 1 = jq – 1} (1) 

For q consecutive time intervals there are 2q possible states and an equal number of state 

probabilities. The index permutations j0, j1, j2, …, jq – 1 characterizing each of these states, can 

be ordered in a convenient manner. That is, we observe that any index permutation represents 

the binary digit form of some integer l ranging from 0 to 2q – 1. Such a binary form will be 

denoted as <j0 j1 … jq – 1>; for instance, if q = 3, and j0 = 0, j1 = 1 and j2 = 0, then <j0 j1 j2> = 

<010> = 0×23 + 1×22 +0 = 4 = l. In this manner we can define the vector p
(k)
q  of all possible 

state probabilities, i.e., 

 p
(k)
q  := [p

(k)
00…00, p

(k)
00…01, …, p

(k)
11…11] T (2) 

whose lth element is p
(k)
j0 j1 …jq – 1, where <j0 j1 … jq – 1> = l – 1 and the superscript T denotes the 

transpose of a vector or matrix. For example, for k = 1 and q = 1, 2, 3, we get 

 p1 = [p0, p1]T, p2 = [p00, p01, p10, p11] T, p3 = [p000, p001, p010, p011, p100, p101, p110, p111] T (3) 
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 Furthermore, considering a sequence of q consecutive time steps, each of scale k, the 

probability of having exactly n out of q wet intervals, where 0 ≤ n ≤ q, will be denoted as 

p
 (k)
n \ q  (see Figure 1(c)). Obviously, 

 p
 (k)
n \ q  = ∑

j0‚ j1‚ …‚ jq – 1

 
  p

 (k)
j0 j1 …jq – 1 U(j0 + j1 + j2 + … + jq – 1 = n) (4) 

where U(B) = 1 if logical condition B is true and U(B) = 0 if condition B is false.  

 The vector p
(k)
q  represents the order q (joint) probability mass function of the process X

 (k)
i  

and hence the dependence structure of the process. If the process is stationary, as assumed in 

this study, some recursive constraints are imposed to the elements of p
(k)
q . For example for q = 

3 and k = 1 we can write P{Xt = 0, Xt – 1 = j1, Xt – 2 = j2} + P{Xt = 1, Xt – 1 = j1, Xt – 2 = j2} = 

P{Xt – 1 = j1, Xt – 2 = j2} = P{Xt = j1, Xt – 1 = j2} or p 
0 j1 j2 + p 

1 j1 j2 = p 
j1 j2. Similarly, p 

 j1 j2 0 + p 
 j1 j2 1 

= p 
j1 j2. Extending this for any scale and order, the following equalities hold:  

 p
(k)
0 j1 …jq – 2 0 + p

(k)
0 j1 …jq – 2 1 = p

(k)
0 j1 …jq – 2 ,     p

(k)
1 j1 …jq – 2 0 + p

(k)
1 j1 …jq – 2 1 = p

(k)
1 j1 …jq – 2 

 p
(k)
0 j1 …jq – 2 0 + p

(k)
1 j1 …jq – 2 0 = p

(k)
 j1 …jq – 2 0 ,    p

(k)
0 j1 …jq – 2 1 + p

(k)
1 j1 …jq – 2 1 = p

(k)
 j1 …jq – 2 1 (5) 

where the left- and right-hand sides contain elements of p
(k)
q  and p

(k)
q – 1 respectively. If we sum 

all four equations in (5), both sides will be equal to 2 p
(k)
 j1 …jq – 2, which means that one of the 

four equations is linearly dependent on the others. By taking all permutations j1 … jq – 2, a 

number 4 × 2q – 2 of such equations can be written, of which 3 × 2q – 2 are independent. Thus, if 

p
(k)
q – 1 is known, the number of additional parameters (probabilities) required to define p

(k)
q  is 2q 

– 3 × 2q – 2 = 2q – 2. Consequently, the total number of independent parameters (probabilities) 

to define the order q probability mass function is 1 + 1 + … + 2q – 2 = 2q – 1. For instance, for q 

= 10 the vector p
(k)
q  contains 210 = 1024 elements and involves 29 = 512 independent 

parameters. 

At scale k, assuming that q past states are known, the conditional or transition probability 

for one time step ahead is denoted as 

 π
(k)
m|j0 j1 …jq – 1:= P{X

 (k)
i + 1 = m|X

 (k)
i  = j0, X

 (k)
i – 1 = j1, X

 (k)
i – 2 = j2, …, X

 (k)
i – q + 1 = jq – 1} (6) 
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(see explanation in Figure 1(d)). The set of transition probabilities can be ordered in a similar 

manner as the state probabilities. In this way, we define the vector  

 π
(k)
q  := [π

(k)
0|00…00, π

(k)
0|00…01, …, π

(k)
0|11…11] T (7) 

whose lth element is p
(k)
0|j0 j1 …jq – 1, where <j0 j1 … jq – 1> = l – 1. For example, for k = 1 and q = 

1 and 2 we get 

 π1 = [π0|0, π0|1]T,  π2 = [π0|00, π0|01, π0|10, π0|11]T (8) 

Notice that the vector of transition probabilities π
(k)
q  refers to transition to future state 0 only. 

Normally, in a Markov chain model a matrix (rather than a vector) of transition probabilities 

is used which contains probabilities to all future states. However in a binary Markov chain 

this vector suffices, because  

 π
(k)
1|j0 j1 …jq – 1 = 1 – π

(k)
0|j0 j1 …jq – 1 (9) 

  The sequences of vectors of state probabilities p
(k)
q  and transition probabilities π

(k)
q  are 

closely connected to each other. From the definition of conditional probability [e.g. Papoulis, 

1991, p. 27] we find 

 p
(k)
m j0 j1 …jq – 1 = π

(k)
m|j0 j1 …jq – 1 p

(k)
j0 j1 …jq – 1 (10) 

Using (9), we easily obtain that  

 p
(k)
q + 1 = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤p

(k)
q  ° π

(k)
q

p
(k)
q  – p

(k)
q  ° π

(k)
q

 (11) 

where ° denotes the Hadamard (element-by-element) product of a vector or matrix. For 

example, for q = 2 and k = 1,  

p3 = [p000, p001, p010, p011, p100, p101, p110, p111] T =  

= [p00 π0|00, p01 π0|01, p10 π0|10, p11 π0|11, p00 (1 – π0|00), p01 (1 – π0|01), p10 (1 – π0|10), p11 (1 – π0|11)] T (12) 

Thus, the sequence of vectors p
(k)
q  for different q is related to the sequence of π

(k)
q  in a 

recursive manner. 
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 The description of the dependence structure of the process in terms of p
(k)
q , albeit complete, 

is not very efficient due to excessive number of parameters; the situation worsens more if 

multiple time scales k are considered. In subsequent sections it will be demonstrated how we 

can establish a parameter parsimonious approach with the help of the ME principle.  

3. Empirical basis and indicators of dependence 

 As an empirical basis for this study, the data set of rainfall in Athens, Greece is used. 

Athens is a dry place with mean annual rainfall around 400 mm. January is the wettest month 

and August the driest. Characteristic indices of the rainfall occurrence process for these two 

months (representative of winter and summer respectively), for May and October 

(representative of spring and autumn respectively), as well as for the four-month (June-

September) dry season and the entire year are shown in Table 1. The available data, digitized 

at the hourly scale, extend from 1927 to 1996. This makes a total of 70 years of 

measurements, which reduce to about 66 years if missing values (spread through the years) 

are not counted. Additional daily data exist before 1927 but were not used. For the stationarity 

property to hold, the data should be divided into climatically homogenous periods, which, as 

usual, were assumed to be the twelve months. Assuming that, in this case, the estimation of 

empirical probabilities can be done with some accuracy up to the scale of half a month, the 

range of the study time scales extends from k = 1 to 360 (= 15×24). Another option, is to 

consider multi-month climatic seasons. This option was also used in this study especially for 

the dry season. This was done to (1) include multi-month dry periods in the analysis, given 

that long dry periods (in fact exceeding four months – up to about 130 days) are observed in 

the available data set; (2) extend the observable range of time scales; and (3) acquire more 

accurate estimates, given that the seasonal 4-month set contains 4 times more data values than 

each monthly data set. In addition to the monthly and seasonal subsets, the total set of all data 

through all months was also examined, even though stationarity does not hold for the entire 

year. This was done to (1) form a picture of an “average” behavior throughout all year; (2) 

test if the “average” behavior is explained by the entropic framework of this study, given the 

exploratory and explanatory (rather than operational) character of the current analysis; and (3)  
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acquire even more accurate estimates, given that the annual data set contains 12 times more 

data values than each monthly data set. It is noted that the practice of considering all data 

regardless of month or season is not infrequent in hydrological applications such as analysis 

of extremes and construction of rainfall intensity/duration/frequency curves. As will be 

demonstrated later, the last task is closely connected to rainfall intermittency, so the results of 

the analysis at the annual basis will be useful.  

 A common indicator of dependence of a stochastic process is the autocorrelation 

coefficient (ρ
(k)
j  := Corr[X

 (k)
i , X

 (k)
i + j] for lag j and scale k) and its variation. In a multiple time 

scale analysis, there are two ways, virtually equivalent to each other, of studying the 

autocorrelation structure [Koutsoyiannis, 2002]: (a) to study the variation of autocorrelation 

with time lag j at fixed time scale k, and (b) to study the variation of autocorrelation with time 

scale k for fixed time lag j, usually for j = 1. The second approach is more convenient and 

suitable for the current study due to its multiple time scale setting. Denoting ρ(k) ≡ ρ
(k)
1 , we can 

easily obtain  

 ρ(k) = 
p(2k) – (p(k))

2

 p(k) – (p(k))
2 (13) 

(The derivation of this equation is based on the obvious relationships E[X
 (k)
i ] = E[(X

 (k)
i )

2
]= p

(k)
1  

= 1 – p(k), and E[X
 (k)
i  X

 (k)
i + 1] = p

(k)
11 = 1 – 2p(k) + p(2k), where E[ ] denotes expected value). Thus, 

the sequence p(k) suffices to estimate ρ(k) either empirically (from a given data set) or 

theoretically (for a given model of p(k)).  

 In the radically simplifying assumption of complete independence of X
 (k)
i , the following 

obvious relation holds 

 p(k) = pk (14) 

Thus, a single parameter p (0 < p < 1) suffices to describe completely the entire distribution 

function of the process X
 (k)
i  of any order and scale. As discussed in the introduction, this 

simple model is not appropriate for rainfall. Notwithstanding, a comparison of the model to a 

real world rainfall data set is useful as it may serve as a starting point to describe the 

dependence structure.  
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 As anticipated, in the independence case, combining (14) and (13) we obtain ρ(k) = 0 

regardless of k. Apparently, this is far from reality. As shown in Figure 2 (left panel), which 

depicts the empirical lag one autocorrelations for the Athens data set for the dry season and 

for the entire year, the autocorrelation is positive even for scales k as high as 3000. The 

arrangement of empirical points indicates a pattern decreasing with scale. It is noted for 

comparison that in a real valued (rather than binary) Markov process ρ(k) tends hyperbolically 

to zero for increasing scale whereas, in contrast, in fractional Gaussian noise, ρ(k) is kept 

constant [Koutsoyiannis, 2002]. Thus, in the case examined ρ(k) does not necessarily manifest 

a long-term persistence pattern. 

 Therefore, a different indicator is required here to explore the possible long-term 

persistence of the rainfall occurrence process. Let us try the dependence indicator  

 τ(k) := 
–ln p(k)

–ln p(2k) (15) 

which involves the same quantities as in (13), but in a simpler expression. Due to (14), in the 

independence case τ(k) is independent of k, equal to ½. Clearly, values of τ(k) in the interval 

(0.5, 1] indicate a positive dependence structure. As shown in Figure 2 (right panel), which 

depicts values of τ(k) versus k for the Athens data set for dry season and for the entire year, this 

dependence indicator is always greater than ½. For scales smaller than around 10, the 

empirical τ(k) decreases with k but then it seems to stabilize to a value greater than ½. The 

deviation of this value from ½ is assumed here as reflecting long-term persistence of the 

process.  

 Both indicators ρ(k) and τ(k) are nonlinear expressions of probability values at two time 

scales; therefore, their estimation from empirical data becomes highly uncertain as estimation 

errors are amplified when performing the algebraic manipulations on the two time scales. (As 

seen in Figure 2, the plots for the dry season is more scattered than those for the entire year; in 

addition, the plots for each of the months, for which the empirical probabilities were 

estimated from 1/12 of the entire data set, are too scattered and therefore have been not 

included). To establish a more robust indicator of long-term persistence, we write equation 

(14) in the equivalent form  
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 –ln p(k) = (–ln p) k (16) 

It can be observed that the left side of (16) is the discrete analogue of the so called log 

survival function of the interarrival time in continuous time modeling using point processes 

[e.g. Foufoula-Georgiou and Lettenmaier, 1986]. (That is to say, the probability that the 

interarrival time exceeds k time steps equals the probability that k steps are dry, i.e. p(k)). The 

difference here is that we used minus-logarithms in order for all involved quantities to be 

positive. Thus, in a Cartesian or in a double logarithmic plot of –ln p(k) versus k the 

independence model will be depicted as a straight line with slope 1. Departures from this line 

manifests dependence of the process. Particularly, a departure from slope 1 at large scales can 

be interpreted as an indicator of long-term persistence.  

 In Figure 3, the empirical estimates of –ln p(k) for several months as well as for the dry 

season and the entire year are plotted versus scale k in a double logarithmic diagram. The 

relationship (16) is also depicted in Figure 3 and it can be seen that it departs significantly 

from the empirical points. It can be also seen that the following inequality holds:  

 –ln p ≤ –ln p(k) ≤ (–ln p) k (17) 

where the equality case of the right-hand side corresponds to (16).  

 For large time scales k, an almost straight line arrangement of empirical points appears in 

Figure 3 in all plots referring to monthly, seasonal and annual basis. This suggests that for 

large k a relationship of the form  

 –ln p(k) ~ k η (18) 

should exist, where η is a positive constant less than 1. The exponent η may serve as an 

appropriate indicator of long-term persistence for a binary valued process, similar to the well 

known Hurst exponent H, which is an indicator of the long-term persistence in a real valued 

process [e.g. Koutsoyiannis, 2002]. Obviously, there are some quantitative differences 

between H and η. In the case of H, the independence corresponds to the value H = 0.5 and the 

positive long-term persistence corresponds to H > 0.5 up to 1. In the case of η, the 

independence corresponds to the value η = 1 and the positive long-term persistence 
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corresponds to η < 1 down to 0 (as indicated by (17)). This will be clarified better in later 

sections.  

4. The Markovian dependence case and the Markov chain model 

 The simplest possible dependence structure is the Markovian one. Let us recall that a 

process with Markovian dependence is defined from the property [e.g. Papoulis, 1991, p. 635]  

 P{Xi + l = xi + l| Xi = xi, Xi – 1 = xi – 1, …, X1 = x1} = P{Xi + l = xi + l| Xi = xi} (19) 

which indicates that the future of the process (time i + l with l > 0) is not influenced by the 

past (time i – 1 and earlier) when the present (time i) is known.  

 Because by definition p(k) = P{Xi = 0, Xi – 1 = 0, …, Xi – k + 1 = 0} = P{Xi = 0| Xi – 1 = 0, …, 

Xi – k + 1 = 0 } P{Xi – 1 = 0, …, Xi – k + 1 = 0} = π0|0 p(k – 1) (due to the Markovian property), we may 

conclude that  

 p(k) = π0|0 p(k – 1) = p π
k – 1
0|0  (20) 

or 

 –ln p(k) = –ln p – ln π0|0 (k – 1)  (21) 

This is a characteristic property of the Markovian process. It is easily observed that for large 

k, –ln p(k) ~ k, so that, with reference to equation (18), the exponent η is 1, as in the 

independence case. This suggests that the Markov chain model cannot describe the long-term 

persistence of the actual rainfall process. 

 Equation (20) can be used to estimate the parameter π0|0 from any two probabilities p(k), say 

p(2) and p = p(1), in which case π0|0 = p(2) / p. The other model parameter π0|1 can be estimated 

from (5) (written as p00 + p01 = p0 or equivalently p(2) + π0|1 p1 = p0), from which it is found 

that π0|1 = (p – p(2)) / (1 – p). In conclusion, given the two probabilities dry for scales 1 and 2, 

i.e. p(2) and p, the probability dry sequence p(k) is completely determined by (20) and the 

dependence structure is completely determined by the Markovian assumption (19).  

 It is important to observe that if the property (20) holds for a single time scale then it holds 

for any time scale as manifested by the following equation, which is a consequence of (20): 
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 p(j k) = p(j) ⎝⎜
⎛

⎠⎟
⎞p(2 j)

p(j)

k – 1

  (22) 

For j = 1 this becomes identical to (20) and for j > 1 this represents the same property for a 

change of the basic scale δ to δ΄ = j δ. It should be mentioned, however, that the process is not 

strictly Markovian on scales other than the basic scale, as it can be shown that transition 

probabilities, conditional on the previous period being wet, do not obey (19).  

 Comparison of the Markovian model with empirical data of Athens shows significant 

differences from reality; the model fitting was based on p(2) and p of the Athens data set on an 

hourly basic time scale. Specifically, Figure 3, shows significant departures of –ln p(k) for 

scales 10 and above (i.e. five times greater than the largest scale used in the fitting) and 

insufficiency in describing the long term persistence (because it yields η = 1). This happens 

for all bases of analysis, monthly, seasonal and annual. Furthermore, Figure 2 shows 

significant departures at the seasonal and annual basis in terms of dependence indicators ρ(k) 

and τ(k) at scales even lower than 10. Needless to say, however, that the Markovian model is 

much closer to reality than the independence model.  

5. The entropy concept  

 If we abandon the Markovian property (the order one model) and assume a non-Markovian 

dependence, the probabilities that will appear in the model are too many (i.e. 2q for a model of 

order q), as discussed above. The concept that we can use to reduce drastically the required 

number of parameters is the entropy and the appropriate tool is the ME principle. 

 The concept of entropy originated in the middle of the 19th century in the work of Clausius 

(although the name εντροπία appears already in ancient Greek, etymologized from τροπή, i.e. 

change, turn, drift), and was fundamental to formulate the second law of thermodynamics. In 

the late 19th and early 20th century, Boltzmann, then complemented by Gibbs, gave it a 

statistical mechanical content, showing that entropy of a macroscopical stationary state is 

proportional to the logarithm of the number w of possible microscopical states that correspond 

to this macroscopical state. Shannon generalized the mathematical form of entropy and also 

explored it further. At the same time, Kolmogorov founded the concept on more mathematical 
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grounds on the basis of the measure theory [see e.g. Papoulis, 1991, p. 535; Müller, 2003a; 

Keane, 2003; Tsallis, 2004.) 

 For a discrete random variable X taking the values xj (j = 1,…, w) with probabilities pj ≡ 

p(xj) such that 

 ∑
j = 1

w
 pj = 1  (23) 

the entropy (more precisely the Boltzmann-Gibbs-Shannon entropy), is by definition [e.g. 

Papoulis, 1991, p. 558] the quantity 

 φ := Ε[–ln p(Χ)] = –∑
j = 1

w
 pj ln pj   (24) 

The entropy φ can be interpreted as the uncertainty about the variable X and equals the 

information gained when it is observed. The above definition can be extended to the case of a 

continuous random variable, but this is irrelevant here. 

 The ME principle postulates maximization of (24) subject to some constraints. It is easily 

seen if the only constraint is (23), then ME results in equal probabilities pj = 1/w. For 

instance, the ME principle yields equal probabilities of 1/6 for each outcome in a die, a result 

that is also produced by the “principle of insufficient reason”, which is attributed to Jakob 

Bernoulli. Conceptually, the two principles are equivalent [Jaynes, 1957; Papoulis, 1991] but 

the ME principle is more effective in problems involving asymmetric constraints, as will be 

discussed later. Also, it is more effective in problems involving stochastic processes in either 

an unconditional or conditional setting. 

 Let us consider the case of a stationary process Xi, whose distribution is determined in 

terms of its qth order joint probability mass function p(xq) defined as 

 p(xq) := P{Xq = xq},   xq = [x1, …, xq]T,  Xq = [X1, …, Xq]T (25) 

where upper- and lower-case symbols denote respectively random variables and their values. 

The qth order joint entropy is defined as: 

 φq := Ε[–ln p(Χq)] = –∑
 

 p(xq) ln p(xq)   (26) 
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where the sum is taken over all possible values of xq. The joint entropy φq can be interpreted 

as the uncertainty about the variables X1, …, Xq and equals the information gained when they 

are observed. 

 The conditional entropy of order q of the process Xi is defined as [Papoulis, 1991, p. 566]: 

 φcq := Ε[–ln p(Χ1|X0, …, X–q + 1)]   (27) 

where p(Χ1|X0, …, X–q + 1) denotes the conditional probability of Χ1 given the previous q items 

X0, …, X–q + 1. Using the so called chain rule [Papoulis, 1991, p. 564] it is shown that  

 φcq := φq – φq –1   (28) 

The limit as q tends to infinity (i.e. the conditional entropy when the entire past is observed) is 

called simply the conditional entropy φc, i.e.,  

 φc := limq → ∞ (φq – φq –1)  (29) 

The difference of unconditional and conditional entropies, i.e., 

 φ – φc =: ψ (30) 

is a non-negative number that represents the information gain when past and present are 

observed. As will be discussed below, in a multiple scale entropy maximization framework, 

all the three quantities φ, φc and ψ should be evaluated for several scales. 

6. Application to the rainfall occurrence procedure  

 In the following we will assume a binary chain model not necessarily Markovian, i.e. with 

order q that can be higher than one. Sometimes in the literature this model is referred to as a 

Markov chain of order q [e.g. Clarke, 1998, p. 46], which, however, is misleading because it 

does not satisfy the Markovian property (19); here the model is referred to as qth order 

stochastic binary chain.  
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 The order 1 entropy of the rainfall occurrence process X
 (k)
i  at scale k can be determined 

according to the definitions of the previous section, observing that the process has only two 

states 0 and 1 with probabilities p(k) and 1 – p(k) respectively. In this case (24) takes the form 

 φ(k) = –p(k) ln p(k) – (1 – p(k)) ln(1 – p(k))   (31) 

so φ(k) is a function of merely p(k). The order q entropy at scale k, estimated from (26), can be 

written as  

 φ
(k)
q  := –(p

(k)
q )

T
 ln(p

(k)
q )   (32) 

where ln(p
(k)
q ) is meant as the vector whose elements are the logarithms of p

(k)
q . Given φ

(k)
q , the 

conditional entropy of order q, φ
 (k)
cq , the conditional entropy φ

(k)
c  for q → ∞, and eventually the 

information gain ψ(k) are estimated respectively from (28), (29) and (30). Theoretically, to 

estimate the conditional entropy φ
(k)
c  and the information gain ψ(k) we need to calculate the 

limits for q → ∞. In practice, apart from simple cases that can be confronted in an analytical 

manner (section 7), these quantities may be estimated numerically for a finite value of q. 

Numerical investigation showed that in typical cases φ
 (k)
cq  converges quickly to φ

(k)
c  so that a 

value of q as low as 8 suffices to estimate φ
(k)
c . In addition, it was observed that the difference 

(φ
 (k)
cq  – φ

 (k)
cq –1) – φ

(k)
c  decreases as an exponential function of q and this can be utilized to further 

improve the estimate of φ
(k)
c  using extrapolation.  

 As discussed above, the application of the ME principle requires some constraints to be 

defined. In the application to rainfall occurrence process, two conditions or equality 

constraints seem to be the least possible. The first is the preservation of a “mass” property of 

the process which can be represented by the mean of the process Xi at the basic scale, which 

(due to the binary nature of the process) is obviously 1 – p. The second is the preservation of 

an elementary “dependence” property of the process. For this purpose the indicator τ ≡ τ(1) is 

used. Obviously, the preservation of both mass and dependence elementary properties, 

expressed as above, is equivalent to the preservation of the probabilities dry at time scales 1 

and 2 (i.e. p and p(2)). No condition will be employed for large time scales nor for the long 

term persistence.  
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7. Entropy maximization at a single time scale 

 For the constraints set, the unconditional entropy φ at scale 1 and order 1 is fixed and given 

by (31). Also, the order 2 entropy φ2 is fixed, because p(2) is assumed known, and is given by 

(32) for q = 2. If we confine our interest at the basic scale k = 1, what we should maximize are 

higher order entropies φq at this scale. This can be done in an analytical manner, incorporating 

constraints by means of Lagrange multipliers and equating derivatives to zero. From (32), the 

derivative of φq with respect to any of the involved probabilities, is 

 
∂φq

∂pj0 …jq – 1
 = –1 – ln pj0 …jq – 1  (33) 

The various pj0 …jq – 1cannot take arbitrary values as they are constrained by (5), which can be 

written in the following simpler manner by abbreviating the index permutation j1 … jq – 2 with 

the single symbol “x”: 

 p0x0 + p0x1 = p0x,     p1x0 + p1x1 = p1x,     p0x0 + p1x0 = px0,     p0x1 + p1x1 = px1 (34) 

Denoting λ0x, λ1x, λx0 and λx1 the Lagrange multipliers of the above equations (notice that the 

indices of λ are identical to those of p of the right-hand sides of equations) and observing that 

derivatives of any of the Lagrange terms with respect to any of the involved pixj is unity or 

zero, maximization of φq yields 

  –1 – ln p0x0 + λ0x + λx0 = 0,     –1 – ln p0x1 + λ0x + λx1 = 0 

 –1 – ln p1x0 + λ1x + λx0 = 0,     –1 – ln p1x1 + λ1x + λx1 = 0 (35) 

Eliminating the Lagrange multipliers we obtain 

 ln p0x0 + ln p1x1 = ln p0x1 + ln p1x0 (36) 

from which we conclude that  

 
p0x0
p0x1

 = 
p1x0
p1x1

 = 
p0x0 + p1x0
p0x1 + p1x1

 = 
px0
px1

 (37) 
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Equation (37) relates order q probabilities with those of order q – 1, and together with (34) 

suffices to determine all order q probabilities if those of order q – 1 are known. Specifically, 

we can directly obtain that for any i and j (each being 0 or 1) 

 pixj = 
pix pxj

px
,  (38) 

where px = px1 + px0 = p0x + p1x, i.e. represents probabilities of order q – 2. Now, since from 

the conditions set all probabilities of order 1 and 2 are known, recursive application of (38) 

determines all probabilities of any order, which successively maximize all φq.  

 Equation (38) can be also written as pixj / pxj = pix / px. Since the terms of both sides 

represent transition probabilities, (38) can be also written as 

 πi|xj = πi|x  (39) 

This shows that the transition probability does not depend on the rainfall occurrence on the 

most distant time interval (i.e. πi|x0 = πi|x1 =πi|x). Recursive application of (39) leads to the 

conclusion that the transition probability depends on one previous time interval only. In other 

words, the maximization of entropy at a single scale results in Markovian dependence. 

8. Entropy maximization at multiple time scales  

 The maximization of entropy of a stochastic process at a single scale is not quite 

reasonable from a physical point of view. As discussed in more detail in Koutsoyiannis 

[2005b], what is needed is the application of the ME principle on a multiple time scale setting. 

This, however, is not easy, as it should take into account conditional and unconditional 

entropies at all scales, whose maximization is antagonistic. After a detailed study and 

examination of several options, Koutsoyiannis [2005b] proposed the following framework, 

whose successful application produced (explained) the Hurst phenomenon: 

1. The quantity to be maximized is a compound measure of unconditional entropy over 

all scales. 

2. The maximization should be done with the inequality constraint that the information 

gain ψ(k) is a non-increasing function of scale k. 
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 Point 1 indicates that all time scales, rather than a single dominant scale, are important for 

entropy optimization. The compound measure could be the sum of entropies on all scales, 

from 1 to infinity. Numerically, this could be approximated by the sum of a finite number (m) 

of entropy terms, given that as time scale tends to infinity the entropy will tend to zero (since 

the probability dry also tends to zero). Thus, if m is large then results will not be sensitive to 

m. The postulate in point 2, which is an essential element of the ME procedure, has been put 

to avoid physically unreasonable solutions. For, violation of the non-increasing information 

gain ψ(k) would lead to illogical results in terms of predictability of the future. For example, 

considering scales 1 and 2, violation of ψ(1) ≥ ψ(2) would mean that observation of the present 

and past gives more information for the future prediction on two time steps ahead (i.e. ψ(2)) 

than it gives for prediction of one time step ahead (i.e. ψ(1)). 

 This framework requires the evaluation of the quantities φ(k), φ
(k)
c  and ψ(k) for a range of 

scales extending from 1 to a large number m (theoretically infinite). An analytical solution for 

this setting seems to be too difficult or even intractable. For a numerical solution, assuming 

that φ
(k)
c  is estimated for order q, the problem will depend on a number 2(q – 1)m of terms p at 

the basic scale. If the scales of interest extend to about m = 3 × 103, as happens in the problem 

examined here, and if q = 8 provides an acceptable accuracy, then a number 106300 of terms p 

is needed. In an entropy maximization framework all these terms are unknowns whose values 

are to be estimated by maximizing entropies φ(k) conditional on non increasing ψ(k). Such a 

maximization, however, is practically intractable. The variables p are too many and the 

quantities φ(k) and ψ(k) are nonlinear functions of the terms p, where the nonlinearity is 

introduced from equations (31) and (32).  

 A practical approximate solution that was followed here includes the following steps:  

(a)  Separate the effect of the probability dry p(k) at any scale k from all other probabilities; as 

implied by (31), p(k) determines completely the unconditional entropy φ(k) at each scale.  

(b) Introduce a parametric expression of p(k), i.e. a mathematical expression of p(k) involving 

a number of parameters (as done in a similar situation in Koutsoyiannis [2005b]).  

(c) For known parameters of this parametric expression, estimate φ(k) and then all involved 

probabilities p so as to maximize entropies φ
(k)
q  for progressing orders q.  
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(d) Given all probabilities, estimate, φ
(k)
c  and ψ(k) for all scales of interest.  

(e) Locate the optimal parameters of the expression of p(k) by repeating steps (c) and (d) for 

trial values of parameters determined by a nonlinear optimization algorithm, so as to 

maximize the sum of φ(k) over all scales subject to the constraint of non increasing ψ(k).  

Obviously, this technique cannot assure locating the maximum of entropy nor can it provide a 

mathematical proof for the derived ME solution. However, it can yield an approximation of 

the ME solution.  

 For step (b), several different expressions for p(k) were devised and tried; here only one will 

be discussed to reduce the paper length. This involves four parameters, i.e.  

 p(k) = {1 + (p –s – 1)[1 + (ξ –1/η – 1)(k – 1)]η}–1/s
 (40) 

where the parameter s ≥ 0 and the other parameters p, η and ξ range in the interval [0, 1]. It 

can be directly verified that p(1) = p for any η, s and ξ; thus the parameter p is identical to the 

probability dry at the basic scale (hence the symbol p). To allow backward extendibility, i.e. 

extrapolation of the expression for time scales smaller than the basic scale down to zero 

(which is meaningful in the case of the rainfall occurrence process), parameters ξ and η must 

satisfy the inequality 1 – (ξ –1/η – 1) ≥ 0, or ξ ≥ 1/2η.  

 Clearly, for s > 0, (40) implies a hyper-exponential (power-type) tail of the probability p(k) 

as scale k increases. In the special case s = 0 application of de l'Hôpital’s rule results in 

 p(k) = p [1 + (ξ –1/η – 1)(k – 1)]η (41) 

Thus, when s = 0 the tail is of exponential type (more specifically it could be called Weibull 

type as the exponent increases as a power of k; interestingly a resembling type was proposed 

by De Bruin [1980]). Equation (41) can be also written as  

 –ln p(k) = –ln p [1 + (ξ –1/η – 1)(k – 1)]η (42) 

 If the probability dry is known at two scales k and l then parameter ξ can be estimated from 

 ξ = ⎣⎢
⎡

⎦⎥
⎤(l – 1)α1/η – (k – 1)

(l – 2)α1/η – (k – 2)

 η

 (43) 
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where 

 α := 
[p(k)]

–s
  – 1

[p(l)]
–s

  – 1
,  if s > 0;          α := 

–ln p(k)

–ln p(l),  if s = 0 (44) 

It can be observed that if k = 1 and l = 2 (which is the case in our optimization framework, 

since p and p(2) are put as constraints) then ξ = α; if, in addition, s = 0, then ξ = τ.  

 For s = 0 and η = 1, the resulting dependence structure is Markovian, as verified by 

comparing the expressions (21) and (42). For s = 0, η = 1 and ξ = 0.5, the independence model 

emerges, as verified by comparing the expressions (16) and (42). For s = 0, η < 1 and large k, 

the resulting –ln p(k) from (42) becomes proportional to k η. This agrees with (18) and signifies 

a relatively heavy tail of p(k), which becomes even heavier if s > 0. For s → ∞ and ξ 

determined from (43), it can be shown that p(k) → p(2), i.e. the probability dry becomes 

constant for any k ≥ 2. For s → ∞ and ξ = 1, (40) results in the heaviest possible tail since p(k) 

= p, i.e. constant for any k ≥ 1, which corresponds to complete dependence. Thus, parametric 

expression (40) can yield a very rich family of shapes, which is useful for our purpose.  

 For step (c), it is observed that four elements of the vectors pq for each q are directly 

estimated from (34), given p(q) and the elements of the vector pq – 1. For all other elements, 

which do not affect the unconditional entropy φ(k), it will be conjectured that their estimation 

can be based on the single scale optimization approach of section 7. This is equivalent to 

assuming Markovian structure for all other probabilities and in this sense the model 

constructed in this way will be called quasi-Markov. Thus, step (c) becomes easy to apply, as 

recursive application of (38) or (39) yields all unconditional or conditional probabilities.  

 To evaluate the vector p
(k)
q  at scale k, normally we need to calculate the vector pk q at the 

basic scale, whose size is 2k q. To avoid such exceptionally sized vectors, in the numerical 

approach followed, some simplifications were done. First, the entropies of interest were 

evaluated for geometrically progressing scales, i.e., 1, 2, 4, 8, …. Secondly, at each scale k the 

vectors p
(k)
q  for q = 1 to 8 were evaluated only. Given the vectors p

(k)
q  at scale k, the first four 

vectors p
(2 k)
q  (for scale 2 k and for q = 1 to 4) were calculated directly from p

(k)
q  and the 

remaining four (for q = 5 to 8) were calculated with the same manner as the vectors at the 
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basic scale (by the quasi-Markov assumption). Obviously, this introduces inaccuracies, which 

are not very significant, as indicated by preliminary experiments.  

 These ideas are illustrated with some examples depicted in Figure 4, in terms of log-

probability dry (–1n p(k)), unconditional entropy (φ(k)) and conditional entropy (φ
(k)
c ), and 

information gain (ψ(k)) versus scale k for several assumed dependence structures. The first 

three examples (1, 2 and 3) correspond to the independence case with different basic 

probability dry p (0.5, 0.4 and 0.8, respectively). In each of the cases, the conditional and 

unconditional entropy are identical to each other and the information gain is zero (due to 

independence). Among the three cases, p = 0.5 (equiprobability) results in the highest entropy 

at the basic scale. However, the case p = 0.8 results in higher entropy at all other scales. So, 

equiprobability does not necessarily lead to ME if we consider more than one scale. In all 

cases, entropy is a decreasing function of scale, quickly falling off to zero.  

 The next three examples (4, 5 and 6) are similar to 1 in terms of the basic probability dry, 

which is p = 0.5, but assume some dependence as in all cases p(2) was set 0.45, much higher 

than p2 = 0.25 that corresponds to the independence case. Example 4 corresponds to the 

Markov case (η = 1), example 5 to the non-Markov case (41) with η = 0.6 and s = 0, and 

example 6 to the non-Markov case (40) with η = 1 and s = 6.5; this is the highest possible 

value of s that allows backward extendibility of (40). As we move from case 1 to 4 through 6, 

the tails of the probability dry p(k) and entropies φ(k) and φ
(k)
c  become fatter. Interestingly, 

however, case 6, which yields the highest unconditional entropy at all scales, simultaneously 

results in the least conditional entropy φ
(k)
c  for scales up to about 40. Furthermore, case 6 

results in the highest information gain ψ(k). At scales 1 and 2, all cases 4-6 result in precisely 

the same unconditional entropy φ(k), and the Markov case 4 results in the highest conditional 

entropy φ
(k)
c . In contrast, at the largest scales the ultimate non-Markov case 6 results in the 

highest unconditional and conditional entropies φ(k) and φ
(k)
c . It can be observed that case 6 

results in increasing information gain for scales 1-4, and thus it cannot be a physically 

realistic model as explained earlier. 

 As a means to test the sensitivity of the entropies φ(k) and φ
(k)
c  and the information gain ψ(k) 

on the assumption used for determination of the elements of the vectors p
(k)
q  (apart from the 
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first elements of the vectors i.e. the probabilities dry p(k) which are determined from (40)) 

some other non Markovian options were also tried, one of which is described in the Appendix 

(electronic data supplement). The investigation showed that (a) the deviation of probability 

dry p(k) (first element of p
(k)
q ) from the Markov case is more significant than is the Markovian 

or non-Markovian structure of the remaining probabilities (other elements of p
(k)
q ), and (b) the 

resulting maximized parameters of (40) that determine probability dry p(k) are almost the same 

for all examined options used to estimate the remaining probabilities. This increases the 

confidence that the solutions obtained by the above procedure are close to maximum entropy 

solutions. 

9. Application of the multiple scale ME framework  

 For known p and p(2) (i.e. equal to the observed frequencies of dry intervals) and assuming 

quasi-Markov structure, it is easily seen that the parametric model (41) depends only on two 

parameters, i.e. η and s, since parameter p is known and parameter ξ is estimated from (43) as 

a function of p, p(2) and s. Thus the optimization problem includes only two control variables 

(free parameters) and it can be easily solved using a nonlinear solver; here a widespread 

solver by Frontline Systems (www.solver.com) combining classical and evolutionary 

optimization techniques was used. The objective function was the sum of φ(k) over scales k = 1 

to 213 (=8192), which depends on p(k) and eventually is a function of η and s. The evaluation 

of the function is not difficult but can be done only numerically. More complicated is the 

computation of the information gain for each scale, which is required to evaluate the 

constraint of non-increasing ψ(k). This is done numerically too in the manner described in 

section 6 (equation (32) and below).  

 The application of this framework with the Athens data set was done on monthly, seasonal 

and annual basis; for brevity only the latter case is described in full detail. The observed 

values of p and p(2) are respectively 0.945 and 0.933 (at hourly basic scale). The maximization 

procedure resulted in parameter values s = 0 and η = 0.63. The obtained log-probability dry 

(–1n p(k)) , unconditional entropy (φ(k)), conditional entropy (φ
(k)
c ), and information gain (ψ(k)) 

versus scale k are shown in Figure 5. The ME solution is marked as case 2; another four cases 
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are also shown for comparison, clarification and explanation of the reason why case 2 is the 

optimal solution. Case 1 is the Markov case (η = 1, s = 0), which for large scales corresponds 

to entropy much lower than in the ME case. In both cases 1 and 2 the constraint of non-

increasing ψ(k) is satisfied as shown in the last panel of the figure. In case 3 we assumed again 

η = 1 as in case 1, but we increased s from 0 to 0.5. The resulted sum of entropy over all 

scales increased but the information gain became an increasing function of scale, for scales 

16-128. The relevant constraint was violated and thus case 3 is not an acceptable solution. 

Cases 4 (η = 0.55, s = 0) and 6 (η = 0.63, s = 0.5) correspond to changes of each the 

parameters of the ME solution (case 2). Both cases 5 and 6 result in higher sum of entropy 

than in case 2. However, both violated the constraint on non-increasing information gain. 

Thus, they too are unacceptable solutions. 

 Figure 6 depicts the probability dry p(k) versus scale k for the above ME solution (case 2). 

Apart from the two empirical data values p and p(2) that were used to estimate the ME 

solution, all other empirical data values of p(k) for scales k up to 3072 (128 days) are also 

plotted in Figure 6. The agreement of the empirical data with the theoretical ME model is very 

good for all this wide range of scales, from which only two values were used to fit the model. 

As an additional model validation, the entropy maximization was repeated assuming as basic 

scale the daily one (so that p and p(2) correspond to one and two days). The resulting ME 

solution had negligible deviations from the case 2 that was estimated for the hourly scale. 

Apart from the annual plots, Figure 6 depicts also similar plots for the dry season. The 

entropy maximization was done in the same manner as in the annual case. The agreement of 

theoretical model with data is again impressive.  

 Furthermore, Figure 7 shows comparisons in terms of the lag one autocorrelation 

coefficients ρ(k) and dependence indicators τ(k), for the entire year and the dry season. This is 

similar to Figure 2 except the ME results were plotted in addition. It can be shown that 

equation (41) implies a ρ(k) which, as k → ∞, tends to zero exponentially (more precisely, it 

tends to zero as p–(1 – 2r)(ξ –1/η – 1)η k η
) and τ(k) tends to the constant value τmin = 2–η, which for η < 

1 is greater than ½. In both cases, the ME results are in good agreement with real data. 
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 Furthermore, Figure 8 provides comparisons of the log probability dry p(k) versus scale k, 

for the entire year, the dry season, as well as for four months. This is similar to Figure 3 

except the ME results were plotted in addition to those of Markov and independence cases. In 

all cases the parameter s was found to be close to zero. Small deviations of s from zero could 

be attributed to numerical inaccuracies. Besides, they could not be verified with empirical 

data as their effect becomes significant only on very large time scales, practically out of the 

range of empirical points. Therefore, it was conjectured that the exponential form (41) (rather 

than the hyper-exponential form of (40)) applies. The parameters η obtained by the 

maximization procedure for s = 0 are shown in Table 1. As shown in Figure 8, in all cases, the 

ME results are in good agreement with real data, better than in the other models. Some 

departures appearing in some of the very last points may be due to the fact that the empirical 

values have been estimated from one or two samples only. The ME model captures the long 

term persistence, i.e., the theoretical slope (which is equal to η) agrees with the slope of the 

arrangement of empirical points. However, in January the model underestimates the slope of 

the arrangement of empirical points.  

  As an additional validation, the probabilities of having exactly n out of q wet days in a 

sequence of q days were estimated from (4) for the three theoretical models (which were fitted 

on the hourly scale) as well as empirically from the data. The results for q = 2, 4 and 8 are 

intercompared in Figure 9 for four months and for the entire year. The independence and 

Markov models (especially the former) do not agree with empirical data, whereas the ME 

model is more consistent with reality. Some overestimations appear for the longest wet 

sequences (i.e. n = q) and some more discrepancies appear in January.  

10. Discussion 

 Even though the purpose of this study is exploratory and explanatory, the results found 

may be useful for several modeling and engineering purposes. The fact that the ME principle 

applied with only two empirically estimated parameters is able to describe adequately the 

dependence structure of the rainfall occurrence process for time scales extending to more than 

three orders of magnitude may help especially in parameter estimation of models and in 
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inferring statistical properties from observed to non observed scales. For example, in 

frequently met cases where only daily data are available, the ME principle can provide 

estimates of properties of the rainfall occurrence process at sub-daily scales.  

 The theoretical framework of sections 6-8 can be directly utilized in a simulation 

framework as it can assign transition probabilities of a binary chain model of any order, based 

on the sequence of probabilities dry. This chain model can then be used for simulation of 

rainfall occurrences directly. For a complete rainfall generator, an additional model for 

rainfall depth is needed. The two models may cooperate in a hybrid scheme as for instance in 

the study of Gyasi-Agyei and Willgoose [1997]. The ME principle can also help in building a 

model for rainfall depth, as demonstrated in Koutsoyiannis [2005a, b].  

 Particularly, the results of this study could be useful to disaggregation of rainfall into finer 

time scales. This concerns both the parameter estimation phase, as explained before, as well 

as the simulation phase. For the latter, an adaptation of the ideas studied in Koutsoyiannis 

[2001, 2002] related to the linking of the current period with previous and next periods and in 

Glasbey et al. [1995] and Koutsoyiannis and Onof [2001] related to the adjusting of some 

initially generated values will be helpful.  

 In addition, engineering applications such as the construction of consistent rainfall 

intensity/duration/frequency relationships would benefit from the ME framework. These 

determine the rainfall intensity i(k, T) averaged over time scale k and exceeded on a return 

period T (i.e. with probability 1/T on an annual basis). Therefore, they should be more 

correctly called intensity/timescale/return-period relationships (the term duration is 

misleading). Typically, it is assumed that  

 i(k, T) = a(T) b(k)  (45) 

where a(T) and b(k) are mathematical expressions, such as 

 a(T) = T κ,  b(k) = (k + θ)–η  (46) 

historically established with empirical considerations. Recently, it was attempted to give them 

a more theoretical foundation, based on scaling assumptions and multifractal analysis [e.g. 
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Veneziano and Furcolo, 2002]. However, probabilistic considerations combined with the ME 

principle may derive such expressions in an easy manner and simultaneously provide 

physically and mathematically sound explanations for the relationships. Specifically, if Y(k) is 

a random variable representing the rainfall depth at scale k, application of the ME principle in 

Koutsoyiannis [2005b] showed that this variable should have Pareto-type distribution, thus 

verifying and explaining an earlier investigation [Koutsoyiannis, 2004a, b] based on a large 

database of rainfall maxima worldwide. The form of a(T) is then derived in the manner 

described in Koutsoyiannis et al. [1998] and is slightly different from (46) (i.e. a(T) = T κ – ψ).  

 Now, if µ is the mean of the average intensity Y(k)/k, which is independent of scale because 

E[Y(k)] ~ k, and µ*(k) is the mean of the same quantity conditional on being wet, then obviously 

µ*(k) = µ/(1 – p(k)). Assuming some similarity over scales in the distribution of Y(k) conditional 

on being wet (so that (45) should have meaning), it may be concluded that b(k) ~ µ*(k). If the 

probability dry p(k) is expressed as in (41) and we approximate it taking the first two terms of 

its Taylor expansion (assuming small scales in order for the higher order terms of the Taylor 

expansion to be negligible), 

 p(k) = p [(k + θ)/(1 + θ)]η = 1 + [(k + θ)/(1 + θ)]η ln p + … (47) 

where θ := (2 – ξ –1/η) / (ξ –1/η – 1), then we conclude that for small scales, indeed, b(k) ~ 

1/(1 – p(k))  ~ (k + θ)–η as in (46). This gives a sufficient explanation for (46). It is important 

that this analysis preserves the term θ, thus validating the common engineering practice for 

small scales, which are important for the design of urban drainage networks that have small 

concentration times; other methodologies based on scaling assumptions may fail to include 

this term and result in pure power-law behavior. It should be noted, however, that this 

analysis is done here on an explanatory basis. In an operational basis, the problem needs to be 

addressed in a more thorough and comprehensive manner, given that the assumption of 

similarity over scales is not valid in reality. This will be reported in another occasion.  

 To proceed from the explanatory character of this study to an operational utilization of its 

results, several research steps have to be accomplished with possible objectives: 
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• to develop a more accurate method of entropy maximization, given that the approach 

presented is only approximate; as the maximum entropy approach is essentially a 

statistical physics approach, numerical methods (mostly Monte Carlo methods) 

already established in statistical physics, such as the so called simulated annealing and 

the Ising model (e.g. Binder and Heermann, 1992; Newman and Barkema, 2002) 

should be explored; 

•  to test the methodological framework against a large empirical base including rainfall 

data sets from a wide range of climates worldwide; 

• to proceed from the exploratory to a more operational character of the method, e.g. 

adapting the parameter estimation procedure using more than two probabilities dry, 

and including additional constraints referring for instance to probabilities wet.  

• to integrate the rainfall occurrence model with a model of rainfall depth (as discussed 

above) so as to enable rainfall simulation studies, rainfall disaggregation and even 

consistent derivation of intensity/timescale/return-period relationships; and 

• to study estimation uncertainties and especially  those implied from uncertainty in the 

characterization of a time interval as dry or wet based on the recorded rainfall depth 

[Koutsoyiannis et al., 2003].  

11. Summary and conclusion  

 The well-established physical and mathematical principle of maximum entropy (ME), 

representing maximum uncertainty, is used to explain the observed dependence properties of 

the rainfall occurrence process, including the clustering behavior and persistence.  

 The results of the application of the ME principle can be summarized as follows: 

(a) Maximum entropy + Dominance of a single time scale + Time dependence → 

Markovian time dependence  

(b) Maximum entropy + Equivalence of time scales + Time dependence → Non-

Markovian dependence (long-term persistence) 
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 Simple conditions (optimization constraints) were used for entropy maximization, i.e. that 

the rainfall processes is intermittent with dependent occurrences. Intermittency is quantified 

by the probability that an interval of a certain length (basic scale) is dry, and dependence is 

quantified by the probability that two consecutive intervals of same length are dry. In 

addition, in case (b) an inequality constraint was used that the information gain when past and 

present is observed should be a non-increasing function of time scale, which assures physical 

reasonability. These constraints involve only two empirically estimated parameters, which 

along with the ME principle suffice to determine any conditional or unconditional probability 

of any sequence of dry and wet intervals at any time scale. The dependence structure in case 

(b) appears to be non-Markovian but not hyper-exponential (power type) in terms of 

probability dry versus time scale.  

 Application of this theoretical framework to the rainfall data set of Athens indicates good 

agreement of theoretical predictions and empirical data at the entire range of scales for which 

probabilities dry and wet can be estimated (from one hour to several months). The attitude of 

this application is explanatory rather than operational, even though a number of operational 

applications could emerge after further research. 

  The general conclusion of this study is the dominance of maximum entropy, or 

maximum uncertainty, in the rainfall occurrence process. A recent study [Koutsoyiannis, 

2005a, b] indicated the dominance of the same principle in other hydrological and 

meteorological processes, and provided explanations for marginal distributional properties 

(from Gaussian to power-type) of variables and for the long-range dependence structure of 

processes (Hurst phenomenon).  Thus, the results of the present study harmonize with more 

general results of the applicability of the ME principle in natural processes. 
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Table 1 Characteristic indices of the rainfall occurrence process in Athens, Greece, for 

representative months, for the dry season and for the entire year. 

Period of 

year 

Probability 

dry at scale 

1 h, p 

Probability 

dry at scale 

2 h, p(2) 

Dependence 

indicator  

τ = –ln p / –ln p(2) 

Exponent η of 

probability dry in 

expression (41)  

January 0.891 0.865 0.796 0.52 

May 0.964 0.953 0.762 0.72 

August 0.995 0.993 0.785 0.88 

October 0.940 0.926 0.805 0.62 

Dry season 0.989 0.986 0.801 0.83 

Year 0.945 0.933 0.816 0.63 
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Figure 1 Sketch demonstrating the notation of processes and probabilities. Notice that the 

order of subscripted indices of probabilities is from most recent to oldest, which is inverse to 

that of the visual sequence of wet and dry intervals (from oldest to most recent).  
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Figure 2 Lag one autocorrelation ρ(k) and dependence indicator τ(k) vs. scale k, as estimated 

from the Athens rainfall data set and predicted by the models of Markov dependence and 

independence, (up) for the dry season and (down) for the entire year.  
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Figure 3 Log-probability dry (–1n p(k)) vs. scale k, as estimated from the Athens rainfall data 

set and predicted by the models of Markov dependence and independence, for each of the four 

months indicated, for the dry period and for the total year.  
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1. Independence, p = 0.5
2. Independence, p = 0.4
3. Independence, p = 0.8
4. Markov, p = 0.5, p(2) = 0.45
5. Quasi-Markov, p = 0.5, p(2) = 0.45, η = 0.6, s = 0
6. Quasi-Markov, p = 0.5, p(2) = 0.45, η = 1, s = 6.5
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Figure 4 Log-probability dry (–1n p(k)), unconditional entropy (φ(k)), conditional entropy (φ
(k)
c ) 

and information gain (ψ(k)) versus scale k for the six indicated hypothetical cases.  
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1. Markov: η = 1, s = 0
2. ME: η = 0.63, s = 0
3. Quasi-Markov: η = 1, s = 0.5
4. Quasi-Markov: η = 0.55, s = 0
5. Quasi-Markov: η = 0.63, s = 0.5
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Figure 5 Log-probability dry (–1n p(k)), unconditional entropy (φ(k)), conditional entropy (φ
(k)
c ) 

and information gain (ψ(k)) versus scale k for the five indicated cases, all corresponding to p = 

0.945 and p(2) = 0.933, which are the empirical probabilities dry of the Athens data set for the 

entire year. 
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Figure 6 Probability dry p(k) vs. scale k, as estimated from the Athens rainfall data set and 

predicted by the model of maximum entropy for the entire year (full triangles and full line) 

and the dry season (empty triangles and dashed line). 
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Figure 7 Lag one autocorrelation ρ(k) and dependence indicator τ(k) vs. scale k, as estimated 

from the Athens rainfall data set and predicted by the models of maximum entropy, Markov 

dependence, and independence, (up) for the dry season and (down) for the entire year.  
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Figure 8 Log-probability dry (–1n p(k)) vs. scale k, as estimated from the Athens rainfall data 

set and predicted by the models of maximum entropy, Markov dependence, and 

independence, for each of the four months indicated, for the dry season and for the total year. 
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Figure 9 Probability p
 (24)
n \ q  of having n out of q wet days (scale k = 24) vs. n for q = 2, 4 and 8, 

as estimated from the Athens rainfall data set (for the indicated months and the entire year) 
and predicted by the models of maximum entropy (ME), Markov dependence and 
independence. 

 


