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“Yoov, Uoov Ze0 kard TAC apoupnc TV ABnvaiwv
Do rain, do rain Zeus against the earth of Athenians (Ancient Greek prayer)
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Parts of the presentation

1. The Athens water resource system
History — Components — Technical characteristics

2. Hydrologic issues
Diagnosis — Explanation — Operational synthesis

3. Hydrosystem operation issues
Parameterization — Simulation — Optimization

4. Decision support tool integration

Data acquisition — Software systems — Management plans
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Evolution of water consumption — Milestones

. 1920 —
Hadrianean aqueduct

Marathon works 1930 —

Stagnation/problems due to 1240 7
2nd World War and Civil War 05

Hylike aqueduct
1960 —

1970 —

Drought

Mornos reservoir & aqueduct s

Severe drought 1990 —
Evinos-Mornos connection tunnel

2000 —

0 100 200 300 400 (hm?)

| | |

consumption
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The hydrosystem: Main components and evolution

Mornos | =
| reservoir

reservoir |
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Classification of water resources

] SURFACE WATER GROUNDWATER

Primary Secondary Backup
Basin (Reservoirs) | (Reservoirs) (Boreholes)

Evinos Evinos

350 kn? 302 hmly | D\

Mornos Mornos

597 km? 319 hmdly

Boeoticos Kifisos Yliki —_| B. Kifisos, middle course

_ Yiliki 353 hm3y 28 1136 hmaly

2400 km? # | \iiki region 85 hmdly | £

Haradros Marathon

120 km? 10 hm3ly e

North Parnetha Viliza 26 hmely
Mavrosouvala 36 hmd/y

Area |Inflow [Pumping capacity VIX High spill ‘ High leakage || #| Pumping
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Hydrosystem: Current structure

0 EE ; : L Hylike lake
e X < Evinos reservoir To Copais irrigation +45 10 +78 m » 587 hm?
SB Q]  +455t0 +500 m e 104 hm®
W o ™ Boeoticos Kifisos Spill/Leakage
2400 km?e 353 hm?® ; To Paralimni-Euboicos

Ecologic
discharge

Mornos reservoir
+382 to +435 m e 643 hm3

Tunnel outlet
+440 m

Haradros
120 km? ¢ 10 hm3

Marathon reservoir
+186 to +223 m
e 41 hm3

Mornos aqueduct
188 km e 16 m¥%/s

Y
To consumption

+ Boreholes (with connecting pipes) + Pumping stations + Small hydroelectric power plants
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2. Hydrologic issues
2A. Diagnosis



Back in 1990s — Initial empirical observations

The historic time series of
Boeoticos Kephisos runoff
(Hydrologic years 1907/08-
1986/87)

A multi-year «trend» is
observed

A similar «trend» in the
rainfall time series

Explains the «trend» in
runoff

Rainfall (mm)

The next years were dry

Intense and persistent
drought: Mean flow half
that of the historic
average, duration 7 years

Runoff (mm)
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100 -

—— Annual runoff ==——"Trend"

0
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—— Annual rainfall —"Trend"
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Annual runoff Average 1988-94

Awerage 1908-87
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Return period of the persistent drought

¢ Assessment was done
using classic hydrologic
statistics

¢ At the annual scale, the
drought was a record
minimum but with
typical magnitude

¢ Aggregated at larger
scales, it appeared
something extraordinary

¢ Similar behavior was
observed for maxima on
aggregate scales

100000

Return period (years)

{1}

10000 -

1000 -

100 -

—— Minimum
10 - I o — Maximum

Emprirically expected

: i i i i
0 2 4 6 8 10
Scale, k
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Comparisons with even longer series

400
E 300

The complete historic time \ & A

series of Boeoticos g 200 - /

Kephisos runoff £

—— Annual runoff = "Trend"
0 I I I I I
1900 1920 1940 1960 1980 2000
1350

A part Of the NiIometer é Annual minimum level =—"Trend"
series (an index of the 212501

minimum annual level in g

the Nile River* £

A similar «trend» pa

The complete Nilometer 5

series (622-1284 AD, 663 9

years) §

Upward and downward o

fluctuations on all §

scales 900 |

Annual minimum level = 30-year average
800 I I I T T T

* J. Beran (1994), Statistics for Long-Memory 600 700 800 900 1000 1100 1200 1300
Processes, Chapman & Hall, New York, USA Year AD
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The fluctuations on many scales and the “Hurst phenomenon”

¢

¢

The “weird” (as compared to purely random processes) behavior of hydrologic
and other geophysical processes was discovered by the English engineer

E. H. Hurst™ (1950) in the framework of the design of the High Aswan Dam in Nile
= Hurst phenomenon

The Polish-French mathematician and engineer B. Mandelbrot (1965-1971)
related it to the biblical story of the seven fat and the seven thin cows = Joseph
effect

The behavior has been characterized with several other names = long-term
persistence, long-term memory, long-range dependence

Most of these names, even though correct, may be misleading for the
conceptualization and understanding of the natural behavior and the causing
mechanisms. Probably a better name = multi-scale fluctuation

The behavior was verified to be omnipresent, not only in geophysical processes
(hydrologic, climatic), but also in biological (e.g. tree rings), technological (e.g.
computer networks), social and economical (e.g. stock market)

In water resources design and management, it has unfavorable effects (increase
of uncertainty)

*H. E. Hurst (1950), Long-Term Storage Capacity of Reservoirs, Proc. American Society of Civil Engineers, 76(11)
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Easy detection and main effect of Hurst phenomenon

¢ Fundamental law of classic statistics StD[>_(n] = %

X = average of n variables
o = standard deviation of
each variable
n = aggregation scale
(or sample size)

¢ Modified law traced natural processes StD[>_<n] = nﬁafn ,H>0.5

¢ Example A

To have X 1/0=10° : =
o .St'ID[Xn] /t‘i t, 10% Bomb in the
o | ot
P = =(). .
or the moairied law Wi C|Imat0|Ogy
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Incongruity of natural processes with typical random processes :
(a) The Nilometer series

1500
1400 +-
o)
o 1300 -
) : . £
The Nilometer time series > = 1200 -
% 1100 -
= 1000 -
L Annual minimum level = 30-year average N
800 I I I I I I
. 600 700 800 900 1000 1100 1200 1300
_ 9 Year AD
I
a@) 1.75 -
2 2, 1400 -
— )
2
Q lv—-vv_
S
- o 1000 -
1.25 - ¢ Empirical E
Classical statistics E "Annual minimum level" = 30-year average
Scaling 800 I I I I I I
1 k 600 700 800 900 1000 1100 1200 1300
0 0.5 1 15 —— Year AD
Log n A white noise time series (for comparison)
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Incongruity of natural processes with typical random processes :
(b) The Boeoticos Kephisos time series

Runoff (mm)

400
300 - The time series of the
200 | Boeoticos Kephisos runoff
100 +--------Af------omeeeeeo L TR y
0 I I I I I
1900 1920 1940 /960 1980, 2000
2
>
g Statistical characteristics of all processes
()}
1.8 - Sample - 0
statistic Runoff (mm) | Rainfall (mm) | Temperature (°C)
n 96 96 96
1.6 - m (mm) 197.6 658.4 17.0
o Empirical S (mm) 87.6 158.9 0.72
Classical statistics
Seelling C, 0.36 0.44 0.34
1.4 ‘ ‘ ‘ ‘ ry 0.34 0.10 0.31
0 0.2 0.4 0.6 0.8L U T 079 064 072
ogn
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Mathematical description of the Hurst phenomenon

¢

4

¢

¢

The mathematical description of the Hurst phenomenon is done on grounds of
probability theory and particularly theory of stochastic process
The simple relationship

StD[X ] = A

entails a definition (good for our purposes) of a model (stochastic process) reproducing
the Hurst phenomenon; n is meant as a scale of aggregation (rather than sample size)

(Hurst used a different formalism, in terms of the so called rescaled range, which is
complicated and probably misleading)

Today the stochastic process with the above property is called a Self-Similar process
with Stationary intervals or a Simple Scaling Stochastic process (abbreviated as an
SSS process)

The SSS process was introduced by the Russian mathematician A. Kolmogorov* (1940)
who called it Wiener Spiral

A significant contribution on the SSS process is due to the American mathematician
J. Lamperti (1962) who called it a Semi-Stable Process

The link of the SSS process with the Hurst phenomenon is due to B. Mandelbrot (1965),
who called it Fractional Brownian Noise

* A. N. Kolmogorov (1940), Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum, Comptes Rendus (Doklady) Acad.
Sci. USSR (N.S.) 26, 115-118
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Back to Boeoticos Kephisos — Adoption of the SSS process

¢ The trend is a natural
and usual behavior

¢ The persistent
drought is not
extraordinary; it is a
natural and expected
behavior

100000

10000 -

1000 -

Return period (years)

100 -

—— Minimum, classic
o- — Maximum, classic

10 —A— Minimum, SSS

N— Maximum, SSS

Emprirically expected

0 2 4 6 8 10
Scale, k
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Implications on uncertainty: Boeoticos Kephisos runoff

Probability of nonexceedence

0.5

Distribution quantile (mm)

Distribution quantile (mm)

0.01 0.05 0.2

—e—PE
- -o—- - MCCL/classic
|| —e— MCCL/SSS 1
—4— MCCL/SSS 2

0.8 0.95 0.99

—o— PE/classic
- -o- - MCCL/classic
| —e— PE/SSS

—e&— MCCL/SSS 1

Reduced normal variate

{1}

Statistical model

Total uncertainty in runoff (due
to variability and parameter
estimation)

% of average

Annual scale | 30-year scale
Classic 200 50
SSS 270 200

Classic model

Climate is what you expect
Weather is what you get

SSS model

Weather is what you get ... immediately
Climate is what you get
... if you keep expecting a long time
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2. Hydrologic issues
2B. Explanation



A climatic toy model: A simple system with nonlinear dynamics
may produce the Hurst phenomenon

& A simplified climatic system is I=x,_ 1= Xx
represented as a circuit with two
feedback mechanisms, a positive
(amplifying the departure from a
stationary state x*) and a negative
(reducing this departure)

¢ The combined action of the two
mechanisms could be represented
by a generalized tent transform:

O=x,—x*
1 AN
/7

far 1) K| Al o) —

Negative feedback f t‘ Positive feedback
IT-folx, 1)1 21 IT-fi(x, 1)1 <1

1

(2-a)min(x,_4, 1=X,_4)
X; =

0.8

State at time ¢

T—a min(x_q 1-X_4)
where0sx, <1, a<2

¢ The parameter a could be assumed
to vary in time, following the same
tent transform with a constant 01

parameter :B 0 0.2 0.4 0.6 0.8 1
State at time t — 1

)
0.6 H{-f---

0.4

0.2
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Demonstration continued: Toy model fitted to two long time series
1300

1200 A /%
The Nilometer time series > 1100 \%\ W

x
g N/ W
'q,:J 1000 | | S — S—
g 000 | | — Historic, 50-year moving average ]
9 — Toy model, 50-year moving average
< 800 | | | | |
600 700 800 900 1000 1100 1200 1300
10 } } } } Year AD
: —— Historic, 20 000-year moving average
The Vostok (Antarctlca) —~ 5 || — Toy model + a Milankovitch (104 000 years) cycle,
ice core deuterium data o 9 20 000-year moving average
set going back to 422 766 20
years before present” g e 0> A
Reconstructed S g
temperature difference CE 5.
with reference to the mean | | | |
recent time value 10 ’ ’ ’ ’
400 000 300 000 200 000 100 000 0

Years before present

* Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., et
al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999.
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Towards a more general explanation:  Why light follows the red

Nature loves extremes ... paths from A to B (AB, ACB,
D ADB) and not other (the

black) ones (e.g. AEB, AFB)?

e The red paths are those that (a)
reach the mirror and (b) form an
angle of incidence equal to the
angle of reflection

(True for most cases; not true for
C AB; not general or informative)

e The red paths have minimum
travel time (or length)

(Not true for ADB)

e The red paths have extreme
(minimum or maximum) travel
time (or length)

A semi-cylindrical mirror
(True)
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The light example —no mirror
Contours of the distance s(x, y)

assuming a = 0.5

1.5
y

1,

B: (+a,0) A: (-a,0) -
0

Assume that light can travel from A to B s
along a broken line with a break point F
with coordinates (X, y). -
(This is not restrictive: later we can add a
second, third, ... break points) -1.5 -
The travel distance is s(x, y) = AF + FB -1 0.5 0.5 1.5
where x
AF =~/(x— a)’ + y° Line of minimum distance s(x, y) = 1

Infinite points F essentially describing

FB=+/(x+a) +y the same path
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The mirror assuming radius r =1

The light example with mirror Local maximum: s = 2 24

& The mirror introduces an inequality =
constraint in the optimization: the g
point F should not be behind the
mirror £

¢ Two points of local optima emerge on 0
the mirror surface (the curve where ~
the constraint is binding)

Close up along the mirror

2905 _ ‘ | | | 1.5 -
1 | | | - 1.5
s 22 AN N x
1 ‘ 1 1 Global minimum: s = 1
215 - l l :
51 | | \_ Local minimum: s = 2
2,05 - | | | | Local maximum: s = 2.24
2 1 i 1 1 . —
025 0 025 05 075 1 Local minimum: § = 2
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How nature works? (ahypothesis ..)
Property

¢

She preserves a few
quantities
(mass, momentum

energy, ....)

She optimizes a single
quantity

(Dependent on the
specific system -
Difficult to find what
this quantity is)

She disallows some
states

(Dependent on the
specific system —
Maybe difficult to find)

Mathematical formulation
¢ One equation per preserved quantity:
g(s)=c, i=1,...k

where c; constants; s the size n vector of state variables (n 2 k,
sometimes n = )

¢ Asingle “optimation™;
optimize f(s)
[i.e. maximize/minimize f(s)] This is equivalent to many

equations (as many as required to determine s)
Conversely, many equations can be combined into an “optimation”

¢ [nequality constraints:

h(s)z0, j=1,..,m

¢ In conclusion, we may find how nature works solving the problem:

optimize f(s)

i=1, ...,k
h{s)20, j=1,..

ey M
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The typical “optimizable” quantity in complex systems ..

¢ ... Is entropy — entropie — Entropie — entrop|a entropia — entropi — entropia —
entroop|a entropija — aHTpoNMs — eHTponia — i — =2 K B B — — ulide
— N'OINVIR- EVIPOTTIA

¢ The word is ancient Greek (evrporria, a feminine noun meaning: turning into;
turning towards someone’s position; turning round and round)

¢ The scientific term is due to Clausius (1850)

¢ The entropy concept was fundamental to formulate the second law of
thermodynamics

¢ Boltzmann (1877), then complemented by Gibbs (1948), gave it a statistical
mechanical content, showing that entropy of a macroscopical stationary state
is proportional to the logarithm of the number w of possible microscopical
states that correspond to this macroscopical state

¢ Shannon (1948) generalized the mathematical form of entropy and also
explored it further. At the same time, Kolmogorov (1957) founded the concept
on more mathematical grounds on the basis of the measure theory
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What is entropy?

2
¢

Entropy is defined on grounds of probability theory

For a discrete random variable X taking values x; with probability mass function
p; = p(x), ] = 1,...,w, the Boltzmann-Gibbs-Shannon (or extensive) entropy is defined as

w
@ := E[-In p(X)] = —,21/0/ Inp;,  where ,21/0/ =1
= /=

For a continuous random variable X with probability density function f(x), the entropy is
defined as

@ = E[-In A(X)] = —} f(x) In f(x) dx, where }f(x) dx =1

In both cases the entropy ¢ is a measure of uncertainty about X and equals the
information gained when Xis observed.

In other disciplines (statistical mechanics, thermodynamics, dynamical systems, fluid
mechanics), entropy is regarded as a measure of order or disorder and complexity.

Generalizations of the entropy definition have been introduced more recently (Renyi,
Tsallis)
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Entropy maximization: The die example

¢ What is the probability that the outcome of a ’

¢ The entropy is: %

toss of a die willbe /? (i=1, ..., 6)
¢ := E[-In p(X)] = =p In p; = p, In p,— ... =pg I pg
¢ The equality constraint (mass preservation) is
PPyt .t ps=1
¢ The inequality constraintis p, = 0

¢ Solution of the optimization problem (e.g. by the Lagrange
method) yields a single maximum: p, =p, = ... = p;= 1/6

¢ This method, the application of the Maximum Entropy Principle
(mathematically, an “optimation” form) is equivalent to the
Principle of Insufficient Reason (Bernoulli-Laplace;
mathematically, an “equation” form)
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Entropy maximization: The loaded die example

¢ What is the probability that the outcome of a
toss of adie willbe i (i=1, ..., 6) if we know that
it is loaded, so that p, — p, = 0.27

¢ The IS principle does not work in this case
¢ The ME principle works. We simply pose an additional constraint:

Pe—P1 = 0.2 0.4
¢ The solution of the optimization o DRy
problem (e.g. by the Lagrange |
method) is a single maximum: 027, - .
0.1 - /
0
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Entropy maximization: The temperature example

¢

L 4

® 6 ¢ o 2

4

What will be the temperature in my house (T,), compared to that of the
environment (T,)? (Assume an open window and no heating equipment)

Take a space of environment (E) in contact to
the house (H) with volume equal to that of the house

Partition the continuous range of kinetic energy of
molecules into several classes i = 1 (coldest), 2, ..., k (hottest)

Denote p; the probability that @ molecule belongs to class /, and partition it to
py; and pg;, if the molecule is in the house or the environment, respectively

Form the entropy in terms of p,,; and pg;
Maximize entropy conditional on py; + pg; = p;
The result is py; = pg;

Equal number of molecules of each class are in the house and the
environment, so T, =T

This could be obtained also from the IR principle
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Formalization of the principle of maximum entropy
+ In a probabilistic context, the principle of ME was introduced by Janes

(1957)
+ In a probabilistic context, the principle of ME is used to infer unknown

probabilities from known information
¢ In a physical context, it determines thermodynamical states

¢ The principle postulates that the entropy of a random variable should
be at maximum, under some conditions, formulated as constraints,

which incorpora’te the information that is given about this variable
¢ Typical constraints used in a probabilistic or physical context are:

) @/I\ea)l\/lomentu@ %egatlwty

Sfxydx=1, E[X]= [ xfix)dx=p

—00

oo

@ependence/ Stress

Variance/Energyj
E[X?] = fxzf(x) dx = 0%+ u?, E[Xi Xi+1] f xiXi+1 f(xi, xi+1) dxidxi+1= p 0% + u?

—00
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Some results of ME interesting to hydrology

¢ Assume that a hydrometeorological variable X (e.g. temperature, rainfall,
runoff) is continuous and positive, has known mean u and known variation
o/u. Estimate the distribution function with only this information, applying the
ME principle

¢ The results are:
e Maximum entropy + Low variation — (Truncated) normal distribution
e Maximum entropy + High variation — Power-type (Pareto) distribution
e Maximum entropy + High variation + High return periods — State scaling

& The celebrated state scaling (x;~ T*,where T is the return period and x; the
corresponding quantile) is only:

¢ a consequence of the ME principle,

¢ an approximation, good for high return periods and for variables with high
variation

¢ Real world time series (especially long ones) validate the applicability of the
ME principle in hydrometeorological processes
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ME application to extreme daily rainfall worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100
years of measurements; series above threshold, standardized by mean and
unified; period 1822-2002; 17922 station-years of data

L =0.28
(mean minus
threshold)

ouy=119>1

ME distribution:
Pareto

k= 0.15

@, = 1.16

Conclusion:
Scaling
for 7> ~50 yr

X

10

0.1

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

o  Empirical
---%--- Exponential — — Truncated Normal
—e— Normal

0.1 1 10 100 1000 10000 100000
T (years)
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Entropic quantities of a stochastic process

¢ The order 1 entropy (or simply entropy or unconditional entropy) refers to the marginal
distribution of the process X;:

@ = E[-In (X))] = —f f(x) In f(x) dx, where }f(x) dx =1

¢ The order n entropy refers to the joint distribution of the vector of variables X, = (X, ...,
X.) taking values x, = (x, ..., X,):

@n = E[-In f(X,)] = — | f(x,) In f(xn) dx,
D

¢ The order m conditional entropynrefers to the distribution of a future variable (for one time
step ahead) conditional on known m past and present variables (Papoulis, 1991):

Qe = EHN XX, oo X e ) = @ = @
¢ The conditional entropy refers to the case where the entire past is observed:
Qe =My, O m
¢ The information gain when present and past are observed is:
Y.=0— q)c
Note: notation assumes stationarity
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Entropy maximization for a stochastic process

¢ The purpose is to determine not only marginal probabilities but the dependence
structure as well

+ All five constrains are used (mass/mean/variance/dependence/non-negativity)

¢ The lag one autocorrelation (used in the dependence constraint) is determined for the
basic (annual) scale but the entropy maximization is done on other scales as well

# The variation is low (0/u << 1) and thus the process is virtually Gaussian (intermediate
result). This is valid for annual and over-annual time scales

& For a Gaussian process the nth order entropy is given as @, = In\(2 me)" &,
where 0, is the determinant of the autocovariance matrix ¢, := Cov[X , X ].

¢ The autocovariance function is assumed unknown to be determined by application of
the ME principle. Additional constraints for this are:

e Mathematical feasibility, i.e. positive definiteness of ¢, (positive J,)

e Physical feasibility, i.e. autocorrelation function (a) positive and (b) non increasing
with lag and time scale
(Note: periodicity that may result in negative autocorrelations is not considered
here due to annual and over-annual time scales)
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Demonstration:
Maximization of
unconditional
entropy
averaged over
ranges of scales

Conclusion:

As the range of
time scales widens,
the dependence
tends to SSS

—~— Scales 1-4 —<— Scales 1-8
—x— Scales 1-16 —— Scales 1-32
—— Scales 1-50 —e— MA

—— AR —a— FGN

—a— GN

Autocorrelation

Conditional entropy

N
(&)

[
|

o
(6)}
|

Unconditional entropy

-0.5 ‘

1 10 10C 1 10 100
Scale

o
o

©
i
1

Information gain

02 £\

T ~ O T

1 10 100 1 10 100
Scale Scale
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Results of the ME principle in stochastic processes

¢ Maximum entropy + Low variation + Dominance of a single time
scale — Normal distribution + Time independence

¢ Maximum entropy + Low variation + Time dependence +
Dominance of a single time scale — Normal distribution +
Markovian (short-range) time dependence

¢ Maximum entropy + Low variation + Time dependence + Equal
importance of time scales — Normal distribution + Time scaling
(long-range dependence / Hurst phenomenon)

¢ The time scaling behavior is a result of the principle of maximum
entropy

¢ The omnipresence of time scaling in numerous long hydrologic
time series, validates the applicability of the ME principle
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Another peculiar dependence explained by ME

¢ Rainfall at small scales is Probability p® that an interval of k hours is dry,
intermittent as estimated from the Athens rainfall data set

¢ The dependence of the rainfall ~ and predicted by the model of maximum entropy
occurrence process is not for the entire year (full triangles and full line) and

Markovian neither scaling but the dry season (empty triangles and dashed line)
In between; it has been known

as clustering or overdispersion

¢ The models used for the
rainfall occurrence process
(point processes) are
essentially those describing
clustering of stars and galaxies

¢ The ME principle applied with

the binary State rainfa” process ¢ Data po}nts used for mc;del construction‘ 2\
in more or less the same way Model - o \

: . A Data points used for model verification \
as in the continuous state 00 ‘ ‘ ‘ \
process explains this 1 10 100 1000 10000
dependence k
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Interpretation of results

¢ The successful application of the ME principle in nature offers an explanation
for of a plethora of phenomena (e.g. thermodynamic) and statistical behaviors
including

e the emergence of normal distribution, in many (but not all) cases
e the scaling behavior in state, in other cases
e the scaling behavior in time
e the clustering behavior in rainfall occurrence
This can be interpreted as dominance of uncertainty or ignorance in nature

It harmonizes with the Socratic view: «'Ev oida, 611 oUSév oiday (One | know,
that | know nothing)

¢ This view was not a confession of modesty — Socrates regarded the
knowledge of ignorance as a matter of supremacy

¢ In this respect, the knowledge of the dominance of uncertainty can assist to
safer design and management of hydrosystems

¢ o
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2. Hydrologic issues
2C. Operational synthesis



Stochastic simulation/forecasting of hydrologic processes

¢ Question: Why simulated series?
¢ Answer:

e Analytical solutions for a hydrosystem as complex as that of Athens
are not feasible or would assume oversimplification of the system

e Of numerical methods, Monte Carlo simulation (stochastic
simulation) is the most convenient

e Detailed inflow and other (rainfall, evaporation) hydrologic series are
needed at many sites simultaneously and at several time scales for
Monte Carlo simulation the hydrosystem

e The acceptable failure probability level for Athens is of the order of
102 one failure in 100 years on the average

e For areasonable estimation error in the failure probability we need
1000-10 000 years of data

e Historic hydrologic records are too short
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Requirements for stochastic simulation

1. Multivariate model
2. Multiple time scales of operation: annual to monthly or sub-monthly

3. Multiple time scales of preservation: multi-year (reproduction of the Hurst
phenomenon) to sub-monthly (reproduction of sub-annual periodicity)

4. Preservation of essential marginal statistics up to third order (skewness)
5. Preservation of joint second order statistics

¢ autocorrelations of any type and any lag

¢ concurrent cross-correlations
6.  Parsimony of parameters

7. Performance in simulation mode (steady state simulations) and in forecast
mode, given the current and historic values (terminating simulations)

Models with such features did not exist (particularly, the ARMA type models
were not useful)
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Stochastic simulation strategy

4

Stage 1. Generate annual time series

e Use a parsimonious model yet capable of describing over-annual
scaling

e No need to describe sub-annual periodicity

Stage 2: Disaggregate the annual into sub-annual time series
e Use a parsimonious model structure such as PAR(1)

e Couple it to the annual model

e S0, no need to describe over-annual scaling explicitly

A one stage procedure to handle over-annual and sub-annual
properties simultaneously has also been studied but not implemented
operationally so far
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Annual model: The generalized autocovariance function (GAS)

¢ General GAS expression

Vi= Vo (T KB
where y;: lag j autocovariance;
V,: variance; k, a, B: parameters
¢ Fittings options
e Optimize parameters to best
fit historic autocorrelograms

e Preserve explicitly y,, y, and
Hurst exponent

e Explicit preservation of more
y;is also possible

¢ GAS behavior

e For $=0= ARMA:
Vi = Yo €xp (K [/])

e For k= (1/B8) (1-1/B)*
(1-1/26)* anda=1=
FGN

Demonstration of GAS for a = 1 and several

values of f3
>~ 1
§ B =25 B =125 — Generalized autocovariance
.8 0.1 ¢ Fractional Gaussian noise
@©
g 001 -
2 \ f
< 0.001 -
B =1 B =05
1E-04 |
1E-05
B =0.25
1E-06
1E-07
1E-08
1E-09 ¢ﬁ =0 (ARMA) B =0.125
1E_10 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Lag, j
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Annual model: Generalized generating scheme for any covariance
structure

Typical (backward) moving average (BMA) scheme: X;=...+a,V,_,+a,V,
where V; independent random variables and a; numerical coefficients

Symmetric moving average (SMA) scheme X;=...+a,V._,+a,V.+a, V., + ...
SMA has several |

advantages over BMA. R
Among them, it allows s 8 01
a closed solution for a; 2
< S 001
- 1/2 a5
s,(w) =125, (w)l" =
S 0.001
where s,(w) and s (w) the 5
Discrete Fourier Transforms & 0.0001 Y —— )
i > BMA ters, 100 t
Of the S?FIeS aj and Vj’ 0.00001 1 | BMA S:[:QZ*[Z;: infinitir;r;fms ”””””””””” * %%1»;; ””””” &
> SMA ters, 100 t
rBe()Stf]eS(:(i:l/eezeS dare applicable 0.000001 +——— SMA,Sggmgtg:’ inﬁ,mgiz?ms ‘ | -
0 20 40 60 80 100
for mu|tlvarlate prOblemS Sequence term,
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Annual model: Stochastic simulation in forecast mode

¢ In forecast mode, the observed present and past values must
condition the hydrologic time series of the future

¢ This is attainable using a two-step algorithm
1. Generate future time series without reference to the known
present and past values

2. Adjust future time series using the known present and past
values and a linear adjusting algorithm

¢ The linear adjusting algorithm:
1. Is expressed in terms of covariances among variables

2. preserves exactly means, variances and covariances
3. Is easily implemented
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Coupling stochastic models of different time scales

“Actual”

processes

~_—

Consistent

/—{ Step 4 (Output)

Auxiliary
processes

Coupling
transformation

~ o~

f(Xs, Zp, Zp)

Step 1 (Input):

Generated by the

annual model

~_—

~

Xs

Consistent

<

l

N
o

The parsimonious
PAR(1) model
could be used here

d‘ Monthly level

Step 2:
Generated by a
monthly model

C‘ Annual level

Step 3:
Constructed by
aggregating Xs

The linear
transformation

Xs = X + h (Z, - Z,)

where

h = Cov[Xs, Z,] -
{CoviZ,, Z,]}

preserves the vectors
of means, the
variance-covariance
matrix and any linear
relationship that holds
among Xs and Z,.
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Handling of skewness in multivariate problems:
Optimized decomposition of covariance matrices

¢ Consider any linear multivariate stochastic model of the form
Y=aZ+bV

where Y: vector of variables to be generated, Z: vector of variables with known values,
V: vector of innovations, and a and b: matrices of parameters

¢ The parameter matrix b is related to a covariance matrix ¢ by

bb'=c
¢ This equation may have infinite solutions or no solution (if ¢ is not positive definite)
¢ The skewness coefficients ¢ of innovations V depend on b

¢ The smaller the values of §, the more attainable the preservation of the skewness
coefficients of the actual variables Y

¢ Therefore, the problem of determination of b can be seen as an optimization problem
that combines

e minimization of skewness ¢, and

e minimization of the error ||b b™ - ¢||
¢ A fast optimisation algorithm has been developed for this problem
¢ The algorithm works even for ¢ that are not positive definite
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Models developed are not only stochastic ...

In the Boeoticos Kephisos River basin a hydrologic model of the entire hydrologic
cycle had to be developed, which was demanding due to the extended karstic
activity and the intensive withdrawals for irrigation

permeability terrain slope
hydrologic groundwater
response units cells
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3. Hydrosystem operation issues
Parameterization — Simulation — Optimization



Typical problems to be answered

¢ Find the maximum possible annual release from the system:
e for a certain (acceptable) reliability level (steady state conditions)
e for a certain combination of the system components (e.g. primary resources)

and determine the corresponding:

e optimal operation policy (storage allocation; conveyance allocation; pumping
operation)

e cost (in terms of energy; economy; other impacts)

¢ Find the minimum total cost
e for a given water demand (less than the maximum possible annual release)
e for a certain (acceptable) reliability level

and determine the corresponding:
e combination of the system components to be enabled

e optimal operation policy (storage allocation; conveyance allocation; pumping
operation)

e alternative operation policies (that can satisfy the demand but with higher cost)
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Categories of problems

¢ Steady state problems for the current hydrosystem
e (e.g., previous slide)

¢ Problems involving time
e Availability of water resources in the months to come
e Impact of a management practice to the future availability of water resources
e Evolution of the operation policy for a temporally varying demand

¢ Investigation of scenarios

e Hydrosystem structure: Impacts of new components (aqueducts, pumping stations
etc.)

e Demand: Feasibility of expansion of domain
e Hydroclimatic inputs: Climate change

¢ Adequacy/safety under exceptional events — Required measures
e Damages
e Special demand occasions (e.g. 2004 Olympic Games)
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The methodology: General aspects

Question 1: Simulation or optimization?
e Simulation versus optimization (water resources literature and practice)
e Simulation methods for optimization (more mathematical literature)

Answer: Optimization coupled with simulation

N—

Main advantages Main advantages
e Determination of optimal policies e Detailed and faithful system representation
e Incorporation of mathematical e Better understanding of the system operation
optimization techniques . .
e Incorporation of stochastic models

Question 2: Which are the control (decision) variables?
e Typically: Releases from system components in each time step

Answer: Introduction of parametric control rules with few
parameters as control variables

{15,21} D. Koutsoyiannis, The management of the Athens water resource system 54



Parameterization

Problem statement

Simulation = ,
.. . Problem | Control . Objective function
Optimization desiderata | | variables and constraints
= Parametric
£ S for systern Problem solving procedure / Global optimization
Z{% operation Simulation techniques ,| Nonlinear optimization
@ % ¥ to provide initial values methods
S PRIEIMEIEE > Stochastic simulation
of hydrologic processes J
Hydrosystem Simulation to evaluate Linear optimization
structure and > the objective function «— methods to solve simple
o operation data and constraints problems within simulation
(O
_g Hydrologic data
[ series (historic, .
c‘% real time) Problem solution
Synthetic data [« Problem Optimal Optimal value of
series desiderata parameters objective function
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Introduction to the parametric reservoir operation rule —

Some analytical solutions

Maximize release from a simple reservoir system with single water use

# Case a: no conveyance restrictions;
no leakages

e Solution: Probability of spill equal at all
reservoirs (New York Rule; Clark, 1950)

e Under certain (rather common) conditions

—

Space rule
(Bower et al., 1962)

K-S, _ ZK_V
E[CQ] Y EICQ]

about the distribution of inflows:

# Case b: no conveyance restrictions;
significant leakages; insignificant spills
e Solution:

Leakage rule (Nalbantis &
Koutsoyiannis, 1997)

VV for one reservoir
0 forall others

i

# Case c: restricted conveyance capacity;
insignificant spills; no leakages
e Solution:

—

Conveyance rule (Nalbantis
& Koutsoyiannis, 1997)
S

.V
C, >cC

Notation: i = Reservoir index, K = Storage capacity, S = Storage, V = 2.5, CQ = Cumulative inflow, E[ ] = expectation, C = Conveyance capacity
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Formulation of the parametric reservoir operation rule

| »
A | : E
1

Initial linear parametric form
S/ =a+b.V (parameters a, b)
subjectto 2a,=0,2b,=1,
since 2S =V

S
_KZ " ___ maaa

Corrected for physical constraints

0 a+bV<0
S’ = at+b.V 0<a+bh V<K

LK a+bV>K

)

Target reservoir storage (S;)

Adjusted, nonlinear form :

i an ST(1-S7IK) . - Total system storage (v = £5) | 7K
S =8+ (V—ZS,-) otal system storage ( )

2S"(1-S"1K)

\ 4

-

Two parameters per reservoir (a, b) = Control variables
Parameter values determined by optimization — depending on the objective function
Parameters may depend also on season (e.g., refilling-emptying period, or months)

2 x (reservoirs — 1) x seasons total parameters for the reservoir system
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A comparison with non-parametric optimization

Problem: Find the maximum release that can be ensured by a system of 3 reservoirs with
reliability 99% (probability of failure 1%). Use 1000 years of simulated data with monthly

time step. Assume steady state conditions.

Non-parametric optimization

Parametric rule based optimization

Number of control variables:

1000 x 12 monthly releases
x (3 — 1) reservoirs + 1 (problem target)

= 24001

Cannot be combined with simulation

All physical constraints of the system must
be entered as problem constraints

Control variables depend on inflow series

Implicit assumption of known inflows
(perfect foresight)

The optimization model needs continuous
runs with updated data

Number of control variables:

2 parameters/reservoir/ season
x (3 — 1) reservoirs x 2 seasons
+ 1 (problem target)

=9 (as an order of magnitude)

Can be combined with simulation

Physical constraints of the system are
handled by the simulation model

Control variables do not depend on inflow
series but on their statistical properties

No assumption of known inflows

Once parameters are optimized, the system
can be operated without running the model
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Application of the parametric rule — Optimal results

s 700 +

E Ko Maximization of system release | — Evinos
= (00 = K3 =587
& 500 — Mornos
£ 400 +
5 300 Minimization of cost for system | HyIike
5, release = 87% of maximum
@ 00 —
g, 10 /4¥£_______._—//---":::j:iiﬁiﬁi_“
= 0 | T | Maximization of system release

0 200 400 600 800 1000 1200 1400 but with no leakage at Hylike

Total system storage (hm3)
s 700 + _ — 700 F
K, =643 & -

£ 600 - yd E goo [ 1f27O —
S 500 $ 500 -
S 300 + 5 U T '
5 o0 K= 104 5 A
2 2 100
% 100 - % 0 :
5 3
e 0 I | A | S -100 1 1 e 1 1

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Total system storage (hm3) Total system storage (hm3)
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Considering the complete hydrosystem — Simulation

¢ Assuming that parameters a; and b, are known, the target
releases from each reservoir will be also known in the beginning
of each simulation time step

¢ The actual releases depend on several attributes of the
hydrosystem (physical constraints)

¢ Their estimation is done using simulation

¢ Within simulation, an internal optimization procedure may be
necessary (typically linear, nonparametric)

¢ Because parameters a; and b; are not known, but rather are to be
optimized, simulation is driven by an external optimization
procedure (nonlinear)
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Hydrosystem components and attributes

Reservoir
Storage, S

Target release, R

One direction aqueduct
A Conveyance capacity, C
Unit conveyance cost, u

Two direction aqueduct
Conveyance capacities, Cy,,, Cr,
6 9 Unit conveyance costs, u;,,, U

Junction

rev

Consumption point
Demand, D

7 A 4
0 >o
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Conveyance problem formulation

Given:
A  Demands (D)
* Reservoir storages (S),

» Reservoir target releases (R< S; 2R

= 2.D; from parametric rule)
Required:

* Actual (feasible) consumptions
(at consumption points)

* Actual (feasible) releases
(from reservoirs)

-O)- -O + Aqueduct discharges

« Conveyance cost

Conditions:
* |f possible, no deficits at consumption
points
6 o * |f possible, releases from reservoirs
equal to target releases
* Minimum conveyance cost
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Transformations of hydrosystem components to

— raph components
One direction Cg J P Fg J Edge
aqueduct ) > ] )
S Ceor U, ‘ Ce,, Us, Two conjugate
Two direction II]‘ > edges
aqueduct Crovs Urey « C Nod
rev s Urey ode
Junction Q ™= O Three nodes
+ Five edges
, 0 (one with known
ReServoir w0, 0 discharge, S)
h_oo &l High unit cost u, for
6 release exceeding target
o0, Uh
One node
+ two edges
(one with known
Consumption D

discharge, D)
point "]- 9
Q Uy Very high unit cost u
D, 0 i
for deficit
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Hydrosystem and its transformation to digraph

Ao
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Digraph solution by linear programming

|
Q

l

-

| ->

o

3

Determine all unknown
discharges Q; at edges i, by
minimizing total cost

TC=Z,.ju,-j Q

subject to equality constraints
for each node i

]
and to inequality constraints
for each edge jj

0<Q<C,

{12,17} D. Koutsoyiannis, The management of the Athens water resource system 65



General evaluation and extensions of the
parameterization-simulation-optimization method

¢ s parametric rule underparametrized?
e Nonlinear expressions with three parameters per reservoir did not outperform

e Homogeneous linear expressions (one parameter per reservoir, a; = 0) result in
almost same optimal solutions

e Considering seasonality (2 seasons) may improve results (slightly)

¢ How results of parametric rule based optimization compare to those of nonparametric
optimization methods?

e Generally, they are not inferior

e In the non realistic case of perfect foresight, high dimensional methods may
outperform parametric method with no foresight (slightly, by about 2%)

e |In practice, in complex nonlinear problems the parametric method yields better
solutions due to more effective locating of global optimum

¢ s the parameterization appropriate for all water uses and hydrosystems?

e Yes, but different parameterizations may be needed for different components (e.g.
aquifers)

e Successful application to hydropower systems
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Decision support tool integration
Data acquisition — Software systems — Management plans



Decision support tool structure

Geographical Information System
Database

Measuring system

Water resources prediction module

management

system

S I

Hydrosystem control module
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Measuring system Central data base

(archiving and
processing of data)

Central data
collection unit
(daily transmission
by phone)

Evinos Peripheral Mornos Peripheral Hylike Peripheral Marathon Peripheral
Data Center Data Center Data Center Data Center

Meteorological R  elovat
station (10 min step) eservorr elevation
Rainfall, Temperature, 9899
Humidity, Wind, Radiation, (1 h time step)

Sunshine duration

River flow
measuring station
(~once a month)

River level gage
(10 min time step)
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Data management and processing: Time series manipulation

telemetric RANGE CHECK raw data EIXING OF 10 minute
FROM :
rscnToogl | AW [TiMe consisTency | Irregular TIME STEP | Processed
data time step data
AGGREGATION l
dlally d < COALITION OF daily q  AGGREGATION hourly q
coalesced <SEyERAL SENSORS| @dgregate aggregate
data data data
INFILLING
OF MISSING
VALUES
FROM OTHER )
INFILLING OF
STATIONS gﬁllg AGGREGATION . monthlyd MISSING VALUES) mi?lrl]tgly
1[S aggregate FROM e
data data OTHER STATIONS data
AGGREGATIONl
METEOROLOGICAL STATIONS annual
More than 100 time series per station aggregated
About one million records per station per year data
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Software system characteristics

¢ All models written from scratch

¢ Basic development tool: Delphi (Object Pascal)
¢ Database: Oracle (more recently: PostgreSQL)
¢ Geographic system: ArcView

¢ Basic software units

e Hydrognomon: Database management, processing of
hydrologic data

e Castalia: Stochastic hydrologic simulator

e Hydrogeios: Simulation of surface and ground water
processes

e Hydronomeas: Hydrosystem control
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Hydrognomon: Processing of hydrologic time series
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Hydrognomon: Automatic lumped hydrologic modeling

™ Basin Simulation x|
File  Edit
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Q Groundwater cells

General information

Water balance timesenes [level in m, else in m3]

Hydrogelos: Detailed geo-hydrologic modeling
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oA 4 AFAF 4 AR Process type |River discharge Date: Simuated  [Ohserved | &
T Basi k-84 5475 S4.400
Q Basins Madel companent |ZﬁDﬂVVﬂ KopiTocg (4] Moz-84 7145 7.700
General information ‘Water balance timeseries [mm) AerSd £.338 10200
s larv-85 3719 30,500
Narme |f\a|<c'cvn vy TH Gy pou Date F’recipilatiorl Paot. evapor.‘ Real evapml Percolation |Infi\trati0n |F|un0lf |50\I storagelEvap. storag A Dep-85 24,180 18.500
Dkred B3 630 59 o1 00 0l 03 00 Statistical measure Calibration |Validation | fj4 "oe 2341 24500
B Moz |2098 271 270 462 0.0 25 1336 00 2 s 7.438 5.502 Anp-E5 15115 19800
AevBd|1168 210 204 546 0o 63 1637 00 ArerepelsdEtets P B Mat-85 4261 B.6O0
w85 |4752 33 B2 1222 00 1748 M4 00 Salvllidiieatdoas G SIS louv-85 o000 2,800
©epes |13 234 283 313 oo 741 2981 0o e dlliEndibie ey s ik loui-85 o.000 0.000
Properties Mop5_ |1561 433 431 859 00 5.0 2824 00 Chid Rl el el T i By 6 0,000 0.200
el R Anpd5_ |1033  g14 511 B0.3 00 446 2176 00 izl f el el SRl el e ] Ten 85 1677 2400
Al : MaiE5  |E7.3 17.7 &3 401 ] 298 1535 0o Cikt-85 7.505 £.700
w85 [21.9 1605 525 245 il 07 75 ] Performance measures Moz-85 9371 10.200
Mean elevati 957,400 : :
el w85 [17.7 1735 291 14.4 0o 02 1.6 0.0 Perfomance measure | Calibration | Valdation [weight | |fex85 12012 11.600
o Auy-85 0o 168.2 15.0 B4 0.0 0.o 382 0.0 Na liffe: i 0857 0.751 2.000 -85 12889 10.300
Lenath of main tibutary (k) ey Ten85_ |249 1025 9 57 00 03 231 00 e 0012 0188 0100 DepB8 1921 16.700
) OkT-85 | 1438 432 430 2.1 ] 1.7 536 0o St. deviaticn hiss 0048 0208 0100 Mip-85 14858 15,700
Awerage slope (%) L0 NocB5  |297.5 317 il a21 00 542 2433 00 Einf slaniten GE 007 000 Anp-56 £.202 7.300
- R henfs (1112 214 213 738 0o 456 2347 0o e e, R 0999 1.000 Meri-B5 2678 3.800
BRI AL pEe locv-86 178.1 26 25 822 0.0 57.4 2617 00 Kendall variable 0115 0.064 0.000 lowy-86 0.000 0.800
; i ' . DefEE | 3055 374 73 1120 il 1473 7344 00 Valug in obj. function 1,978 2034 o865 0.000 0.000 =2
Parentriver section  [Moivel sssigned Map86_ [1333 433 497 876 0o 694 285.8 0o v = e e
Discharge (m3/fs)
Precipitation
450 4
400
350 5
300
250
200
1504 ;
100 - :
504 i 'i' n i =t il E o T N = N RO SO oooo mm 2 o = = NN oM w\:r
(i SR EaE R RS SRR R e e
S e S R b s ey i e e s s B R R e s sE s Ee s cEEEEE R EE R EE
Coa : B E ¢ & : E v 6 2 FE £ 4 2 E g8 :EwodEEovodoEE LS EE o8 2B L S 2L S =L S = < L L
4 £ 2 4 4422484822842 3842388284423 4848z2 348 | Response O fF esponse 1 Fiesponse 2 {Responze 3 Pesponse 4\ Response B | Respanse b AResponse 7/ ]
% Basin 0 Basin 1 4B asin 2 fBasin 3 fBasin 4 /

D. Koutsoyiannis, The management of the Athens water resource system 74



Castalia:
Parameter
estimation-
Parameters of
autocorrelation
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EEASTALIA - Stohastic Simulation of Hydrological ¥anables
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Hydronomeas: Hydrosystem data management
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Hydronomeas: Visualization of hydrosystem simulation
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Hydronomeas: Stochastic forecast of hydrosystem storage
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Hydronomeas: Optimal hydrosystem control rules
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Hydronomeas: Reservoir balance
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Hydronomeas: Time profile of failure probabilities
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Hydronomeas: Reporting
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Management plans and every day operation of the hydrosystem

2

Every five years a master plan of the water supply of Athens is elaborated (the first
was issued in 2000)

Every year the master plan is revised based on current data and model runs

Every three months the annual plan is reassessed and, if necessary, updated by new
model runs

Meanwhile, the every day management is based on optimal parametric operation rules

Models are run for a 10-year lead time to account for long-term effects of today’s
decisions

The general management targets are:
e Adequacy of water resources
e Adequacy of conveyance system
e Cost effectiveness

All management is based on a probabilistic approach of forecasts/risk/reliability
assuming:

e Acceptable reliability 99% on an annual basis

e Potential for further increase of reliability taking into account elasticity of demand
and emergency measures in case of impending failure

So far, the decision support tool and its modules (thoroughly tested for the Olympics
2004) exhibited good performance
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Early stage

The Hadrianean aqueduct

Supplementary water collection and distribution in
Athens (early 20t century until 1930s)
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Marathon dam

Construction of
spillway, 1928
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Marathon dam (2)

Devastating
flood, 1926

Inauguration of
Boyati tunnel, 1928

Marathon spillway
in action, 1941
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Hylike lake and
pumping stations

Hylike lake

Hylike, main pumping station

Kiourka pumping station
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Mornos reservolir
and aqueduct

Mornos canal at
Thebes plain

Siphon at
Distomo
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Control of Mornos
aqueduct

Aqueduct
supervizing &
control centre
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Evinos dam and
tunnel

Evinos dam during construction

Construction of the Evinos-Mornos
connection tunnel
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Treatment plants

Perissos water treatment plant
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Aspropyrgos water treatment plant
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