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Do rain, do rain Zeus against the earth of Athenians (Ancient Greek prayer)
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Parts of the presentation

1. The Athens water resource system
History — Components — Technical characteristics

2. Hydrologic issues
Diagnosis — Explanation — Operational synthesis

3. Hydrosystem operation issues
Parameterization — Simulation — Optimization

4. Decision support tool integration

Data acquisition — Software systems — Management plans
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Evolution of water consumption — Milestones
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The hydrosystem: Main components and evolution
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Classification of water resources

] SURFACE WATER |  GROUNDWATER

Primary Secondary Backup
Basin (Reservoirs) | (Reservoirs) (Boreholes)
Evinos Evinos .
350 k2 302 hinely [N
Mornos Mornos
557 km? 319 hm3ly
Boeoticos Kifisos Yliki _—\;’-_ B. Kifisos, middle course
- Yliki 353 hmdly — [136 hmdly
2400 km? # | iiki region 85 hmdly | £
Haradros Marathon
120 km? 10 hmd/y
Viliza 26 hmd/y Y 4
North Pametha Mavrosouvala 36 hm3/y
Area |Inflow [Pumping capacity E High spill E High leakage / Pumping
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Hydrosystem: Current structure

Hylike lake
+45 to +78 m e 587 hm?

Spill/lLeakage
To Paralimni-Euboicos

Evinos reservoir To Copais irrigation
+455 to +500 m e 104 hm?

Boeoticos Kifisos
2400 km?e 353 hm?

Ecologic
discharge

Mornos reservoir
+382 to +435 m e 643 hm?

Haradros
120 km?2 e 10 hm?3

Tunnel outlet
+440 m

Marathon reservoir
+186 to +223 m
o 41 hm?
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+ Boreholes (with connecting pipes) + Pumping stations + Small hydroelectric power plants
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2. Hydrologic issues
2A. Diagnosis

Back in 1990s - Initial empirical observations

- . - 400
The historic time series of €
Boeoticos Kephisos runoff § 300 1
(Hydrologic years 1907/08- S 500 &
1986/87) & 100
A multi-year «trend» is —— Annual runoff ~ ——"Trend"
observed 0 ‘ ‘ ‘ ‘
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Yea
_. 1200
£
A similar «trend» in the E 1000 4
rainfall time series T 800
. . £
Explains the «trend» in S 600+
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200 T T T T
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C
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- R he i
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Return period of the persistent drought
¢ Assessment was done

using classic hydrologic 10000
statistics A
[0
¢ Atthe annual scale, the 3 10000 -
droughtwasarecord g
minimum but with % 1000
typical magnitude -
2 Aggreggted at larger 100 -
scales, it appeared | |
something extraordinary e Minimum
- . 10 7 s — - — Maxi
& Similar behavior was o e
) Emoprirically expected
observed for maxima on ; 3 3
1 \ 1 1 1
aggregate scales . ; ) ] . o

Scale, k
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Comparisons with even longer series

400

The complete historic time
series of Boeoticos
Kephisos runoff

Runoff (mm)
= N w
o o o
o o o

—— Annual runoff ~==——"Trend"

1900 1920 1940 1960 1980 2000
Year

A part of the Nilometer
series (an index of the
minimum annual level in
the Nile River*

A similar «trend»

Nilometer index
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1500 Year AD
The complete Nilometer L 1400 |- R Al R e e
series (622-1284 AD, 663 § 1300 -t
years) 5 1200 L
Upward and downward g 1100 \
fluctuations on all § 1000
scales 900 4-oooo s .
Annual minimum level == 30-year average
800 T T T T T
* J. Beran (1994), Statistics for Long-Memory 600 700 800 900 1000 1100 1200 1300
Processes, Chapman & Hall, New York, USA Year AD
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The fluctuations on many scales and the “Hurst phenomenon”

*

*

The “weird” (as compared to purely random processes) behavior of hydrologic
and other geophysical processes was discovered by the English engineer

E. H. Hurst* (1950) in the framework of the design of the High Aswan Dam in Nile
= Hurst phenomenon

The Polish-French mathematician and engineer B. Mandelbrot (1965-1971)
related it to the biblical story of the seven fat and the seven thin cows = Joseph
effect

The behavior has been characterized with several other names = long-term
persistence, long-term memory, long-range dependence

Most of these names, even though correct, may be misleading for the
conceptualization and understanding of the natural behavior and the causing
mechanisms. Probably a better name = multi-scale fluctuation

The behavior was verified to be omnipresent, not only in geophysical processes
(hydrologic, climatic), but also in biological (e.g. tree rings), technological (e.g.
computer networks), social and economical (e.g. stock market)

In water resources design and management, it has unfavorable effects (increase
of uncertainty)

* H. E. Hurst (1950), Long-Term Storage Capacity of Reservoirs, Proc. American Society of Civil Engineers, 76(11)
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Easy detection and main effect of Hurst phenomenon

¢

¢
L 4

Fundamental law of classic statistics StD[)_(n] = ﬁ,’

X = average of n variables

o = standard deviation of
each variable

n = aggregation scale
(or sample size)

Modified law traced natural processes StD[>_<n] = nﬁaﬂq ,H>0.5

Example P

To have .StD[){n]/Gl=. 10% Bomb in the i
e n=230in classic statistics :

foundation of

e n=5000 for the modified law with H= 0.8 climatology
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Incongruity of natural processes with typical random processes::

(a) The Nilometer series

The Nilometer time series

Nilometer index

Annual minimum level == 30-year average

600 700 800 900 1000 1100 1200 1300

Year AD

1400 -
T — \__/\W
"Annual minimum level" == 30-year average

2
Ix
Q 1754
7]
> s
S 3
2
1.5 1 = 1200 -
2
£
S 1000 +
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- -~ - Classical statistics \\\ =
Scaling N 800
1 ‘ ‘ ‘ -
0 0.5 1 15
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| A white noise time series (for comparison) |
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Incongruity of natural processes with typical random processes::
(b) The Boeoticos Kephisos time series

400
£ 300 The time series of the
= Boeoticos Kephisos runoff
2 200
o
100 A
0 T T T T T
1900 1920 1940 / 960 1980 2000
Year
2
%
g Statistical characteristics of all processes
(2]
218 1 027, Sample ; 0
4 : statistic Runoff (mm) [Rainfall (mm) | Temperature (°C)
Y00, n 96 96 96
16 s m (mm) 197.6 658.4 17.0
¢ Empirical s (mm) 87.6 158.9 0.72
——— - Classical statistics| N
Scaling o C, 0.36 0.44 0.34
1.4 ‘ ‘ ‘ — ry 0.34 0.10 0.31
S [ 0.79 064 072
ogn
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Mathematical description of the Hurst phenomenon

*

2

*

*

The mathematical description of the Hurst phenomenon is done on grounds of
probability theory and particularly theory of stochastic process

The simple relationship
SD[X] = . 1-#

entails a definition (good for our purposes) of a model (stochastic process) reproducing
the Hurst phenomenon; n is meant as a scale of aggregation (rather than sample size)
(Hurst used a different formalism, in terms of the so called rescaled range, which is
complicated and probably misleading)

Today the stochastic process with the above property is called a Self-Similar process
with Stationary intervals or a Simple Scaling Stochastic process (abbreviated as an
SSS process)

The SSS process was introduced by the Russian mathematician A. Kolmogorov* (1940)
who called it Wiener Spiral

A significant contribution on the SSS process is due to the American mathematician

J. Lamperti (1962) who called it a Semi-Stable Process

The link of the SSS process with the Hurst phenomenon is due to B. Mandelbrot (1965),
who called it Fractional Brownian Noise

* A. N. Kolmogorov (1940), Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum, Comptes Rendus (Doklady) Acad.
Sci. USSR (N.S.) 26, 115-118
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Back to Boeoticos Kephisos — Adoption of the SSS process

& The trend is a natural

¢ The persistent

100000

and usual behavior

. 10000 -
drought is not

extraordinary; itis a
natural and expected
behavior

1000 +

100 / 3 : : :
/ —e— Minimum, classic

! — —— — Maximum, classic

10 4 —— Minimum, SSS

| — A— Maximum, SSS
Emprirically expected

Return period (years)

0 2 4 6 8 10
Scale, k
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Implications on uncertainty: Boeoticos Kephisos runoff

Probability of nonexceedence

500 0:01 0:05 0:2 0;5 0‘.8 0.‘95 0;99
g e PE 3 ' v 4 Total uncertainty in runoff (due
S 400 ||~ MCCliclassic) | X > to variability and parameter
E - el Y X estimation)
S MCCLISSS 2 Statistical model .
g 300 % of average
g
£ 200 Annual scale | 30-year scale
3
100 1> Classic 200 50
L
0 SSS 270 200
500 t t t
€ —o— PE/classic
3 - -o- - MCCL/classic -
o 400 1)+ PpE/SSS Classic model
C — . .
- M ass 5 Climate is what you expect
5 Weather is what you get
2
g
SSS model
Weather is what you get ... immediately
Climate is what you get
... if you keep expecting a long time

Reduced normal variate

{1
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2. Hydrologic issues
2B. Explanation



A climatic toy model: A simple system with nonlinear dynamics

may produce the Hurst phen

¢ A simplified climatic system is
represented as a circuit with two
feedback mechanisms, a positive
(amplifying the departure from a
stationary state x*) and a negative
(reducing this departure)

The combined action of the two

mechanisms could be represented

by a generalized tent transform:
_(2=a)ymin (x,_4, 1-X_y)

t T—amin(X_q, T-X_4)

where0<x, <1, a<2

The parameter a could be assumed
to vary in time, following the same
tent transform with a constant
parameter 8

{5}

omenon

I=x,_1—xx
Q)
/l\\ falx, 1)

Negative feedback
11-folx, )1 21

O=x,-
N
7

1]
|

filx; 1)

[

o
J - 0

Positive feedback
I1-filx, )l <1

State at time ¢t

0.6
0.4 1
\ ! |

02 4 7/-f-/----

0.2 0.4 0.6 0.8 1

State at time -1
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Demonstration continued: Toy model fitted to two long time series

1300 i i
| L
|
1200 N % W
The Nilometer time seri ﬁ)‘ ,/D’/v
| The Nilometer time series < 1100 N N
£ N/
'q:) 1000
g 900 — Historic, 50-year moving average
e} — Toy model, 50-year moving average
Z 800 I I I I I
600 700 800 900 1000 1100 1200 1300
10 ‘ ‘ Year AD
- — Historic, 20 000-year moving average
The Vostok (Antarctlca) —~ 5 || — Toy model + a Milankovitch (104 000 years) cycle,
ice core deuterium data o9 20 000-year moving average
set going back to 422 766 2 i ; i
years before present* 3 04> i i —
Reconstructed e g | | |
. £
temperature difference QE 51~ : ‘ ™
with reference to the mean ‘ 3 3 3
recent time value 10 j 3 | 1

400 000

* Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile

300 000 200 000 100 000

Years before present
I., Bender M., Chappellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., et

al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999.

{5}
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Towards a more general explanation:  \why Jight follows the red

Nature loves extremes ... paths from A to B (AB, ACB,
ADB) and not other (the
black) ones (e.g. AEB, AFB)?

e The red paths are those that (a)
reach the mirror and (b) form an
angle of incidence equal to the
angle of reflection

(True for most cases; not true for
C AB; not general or informative)
e The red paths have minimum
travel time (or length)
(Not true for ADB)

e The red paths have extreme
(minimum or maximum) travel
time (or length)

A semi-cylindrical mirror
(True)
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The light example —no mirror
Contours of the distance s(x, )
assuming a = 0.5

15

y
1 4

B (ha0) | A (a0)

Assume that light can travel from A to B
along a broken line with a break point F
with coordinates (X, y).

(This is not restrictive: later we can add a
second, third, ... break points)

The travel distance is s(x, y) = AF + FB
where

AF =~/(x — a)? + y2 Line of minimum distance s(x, y) = 1
_ 77 Infinite points F essentially describing
FB=rx+ay+y the same path
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The light example with mirror

¢ The mirror introduces an inequality
constraint in the optimization: the Yo,

point F should not be behind the - /
st q il /f/

mirror

¢ Two points of local optima emerge on
the mirror surface (the curve where
the constraint is binding)

The mirror assuming radius r = 1 \

\] Local maximum: s = 2.24 \
1.5 -

Close up along the mirror

] Global minimum: s = 1

Local minimum: s =2

mcal maximum: s = 2.24 \

025 0 0257? Local minimum: s = 2‘
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How nature works? (a hypothesis...)

Property

¢ She preserves a few
quantities
(mass, momentum

energy, ....)

¢ She optimizes a single
quantity
(Dependent on the
specific system -
Difficult to find what
this quantity is)

¢ She disallows some
states
(Dependent on the
specific system —
Maybe difficult to find)

Mathematical formulation
¢ One equation per preserved quantity:
g{s)=c, i=1,..k

where ¢; constants; s the size n vector of state variables (n 2 k,
sometimes n = «)

¢ A single “optimation”:
optimize f(s)

[i.e. maximize/minimize f(s)] This is equivalent to many
equations (as many as required to determine s)
Conversely, many equations can be combined into an “optimation”

# Inequality constraints:
h(s)20, j=1,.,m

# In conclusion, we may find how nature works solving the problem:

optimizef()
st. g(s)=c, i=1,..k
h{s)=0, j=1,...m

J
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The typical “optimizable” quantity in complex systems ...

¢ ... is entropy — entropie — Entropie - entrop|a entropia — entropi — entrépia —
entroopla entropija — BHTPONKA — eHTpoNiA — i — = > b B B — — b
— N'ONVIXR- EVTPOTTIO

¢ The word is ancient Greek (evrpotria, a feminine noun meaning: turning into;
turning towards someone’s position; turning round and round)

¢ The scientific term is due to Clausius (1850)
¢ The entropy concept was fundamental to formulate the second law of
thermodynamics

¢ Boltzmann (1877), then complemented by Gibbs (1948), gave it a statistical
mechanical content, showing that entropy of a macroscopical stationary state
is proportional to the logarithm of the number w of possible microscopical
states that correspond to this macroscopical state

¢ Shannon (1948) generalized the mathematical form of entropy and also
explored it further. At the same time, Kolmogorov (1957) founded the concept
on more mathematical grounds on the basis of the measure theory
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What is entropy?

¢ Entropy is defined on grounds of probability theory

# For a discrete random variable X taking values x; with probability mass function
p; = p(x),j = 1,...,.w, the Boltzmann-Gibbs-Shannon (or extensive) entropy is defined as

@ = E[-In p(X)] = —,Z1p/ Inp;,  where ,Z1p,- =1
1= /=

& For a continuous random variable X with probability density function f(x), the entropy is
defined as

@ = E[-In fiX)] = —} fix) In f(x) dx, where }f(x) dx =1

¢ In both cases the entropy ¢ is a measure of uncertainty about X and equals the
information gained when X'is observed.

< In other disciplines (statistical mechanics, thermodynamics, dynamical systems, fluid
mechanics), entropy is regarded as a measure of order or disorder and complexity.

¢ Generalizations of the entropy definition have been introduced more recently (Renyi,
Tsallis)
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Entropy maximization: The die example
¢ What is the probability that the outcome of a \ ’

toss of a die willbe i? (i=1, ..., 6)
¢ The entropy is:
¢ := E[-In p(X)] = =p; In p; = p, In p,— ... =pgIn pg
¢ The equality constraint (mass preservation) is
pitp,t .t p=1
¢ The inequality constraintis p; =0

¢ Solution of the optimization problem (e.g. by the Lagrange
method) yields a single maximum: p, = p, = ... = p,=1/6

¢ This method, the application of the Maximum Entropy Principle
(mathematically, an “optimation” form) is equivalent to the
Principle of Insufficient Reason (Bernoulli-Laplace;
mathematically, an “equation” form)
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Entropy maximization: The loaded die example

¢ What is the probability that the outcome of a ’
it is loaded, so that p; - p, = 0.2?

¢ The IS principle does not work in this case

toss of a die willbe i (i=1, ..., 6) if we know that h
¢ The ME principle works. We simply pose an additional constraint:

Pe =P = 0.2 0.4
# The solution of the optimization SV pulpe
problem (e.g. by the Lagrange /
method) is a single maximum: %27

0.1 1 /_._._.

0
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Entropy maximization: The temperature example

¢ What will be the temperature in my house (T,;), compared to that of the
environment (T.)? (Assume an open window and no heating equipment)

& Take a space of environment (E) in contact to
the house (H) with volume equal to that of the house

# Partition the continuous range of kinetic energy of
molecules into several classes i = 1 (coldest), 2, ..., k (hottest)

Denote p; the probability that a molecule belongs to class /, and partition it to
py;and pg; if the molecule is in the house or the environment, respectively

Form the entropy in terms of p,; and pg;
Maximize entropy conditional on p,; + pg; = p;
The result is py; = pg;

Equal number of molecules of each class are in the house and the
environment, so T, =T,

This could be obtained also from the IR principle

* 6 0 o L 2

*
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Formalization of the principle of maximum entropy
< Ina probabilistic context, the principle of ME was introduced by Janes
(1957)

< In a probabilistic context, the principle of ME is used to infer unknown
probabilities from known information

¢ Inaphysical context, it determines thermodynamical states

¢ The principle postulates that the entropy of a random variable should
be at maximum, under some conditions, formulated as constraints,
which incorporate the information that is given about this variable

< Typical constraints used in a probabilistic or physical context are:

Mean/Momentum Non-negativity

SAx)ydx=1, E[X]= [ xflx)dx=p x>0

oo

Variance/Ener Dependence/Stress

E[X?] = [ x2 f(x) dx = 02 + 12, E[Xi Xi+1] = | xixiv1 foxs, Xiv1) dxidxion = p 0% + pi2
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Some results of ME interesting to hydrology

¢ Assume that a hydrometeorological variable X (e.g. temperature, rainfall,
runoff) is continuous and positive, has known mean u and known variation
o/u. Estimate the distribution function with only this information, applying the
ME principle

¢ Theresults are:
e Maximum entropy + Low variation — (Truncated) normal distribution
e Maximum entropy + High variation — Power-type (Pareto) distribution
e Maximum entropy + High variation + High return periods — State scaling

¢ The celebrated state scaling (x; ~ T",where T is the return period and x; the
corresponding quantile) is only:

¢ a consequence of the ME principle,

< an approximation, good for high return periods and for variables with high
variation

¢ Real world time series (especially long ones) validate the applicability of the
ME principle in hydrometeorological processes
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ME application to extreme daily rainfall worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100
years of measurements; series above threshold, standardized by mean and
unified; period 1822-2002; 17922 station-years of data

10

L =0.28 X
(mean minus
threshold)

ou=119>1

ME distribution:
Pareto

k= 0.15

@, =1.16

o  Empirical Pareto
---x--- Exponential — — Truncated Normal
—e—— Normal

Conclusion:
Scaling 0.1
for 7> ~50 yr

0.1 1 10 100 1000 10000 100000
T (years)
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Entropic quantities of a stochastic process
¢ The order 1 entropy (or simply entropy or unconditional entropy) refers to the marginal
distribution of the process X:
@ := E[-In (X)] = —f fix) In f(x) dx, where f fix) dx =1
+ The order n entropy refers to the joint distribution of the vector of variables X, = (X,, ...,
X,) taking values x, = (X4, ..., X,):
@n = E[-In f(X,)] = = [ f(x,) In f{x1) 0x,

DI‘I
& The order m conditional entropy refers to the distribution of a future variable (for one time
step ahead) conditional on known m past and present variables (Papoulis, 1991):

Gem = EHN XX, oo X s )] = 0= 04
& The conditional entropy refers to the case where the entire past is observed:

Qe =limy, 0
& The information gain when present and past are observed is:
Y=0-0
Note: notation assumes stationarity
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Entropy maximization for a stochastic process

# The purpose is to determine not only marginal probabilities but the dependence
structure as well

+ All five constrains are used (mass/mean/variance/dependence/non-negativity)

+ The lag one autocorrelation (used in the dependence constraint) is determined for the
basic (annual) scale but the entropy maximization is done on other scales as well

+ The variation is low (o/u << 1) and thus the process is virtually Gaussian (intermediate
result). This is valid for annual and over-annual time scales

& For a Gaussian process the nth order entropy is given as @, = Im\/(2 me)" &,
where 9, is the determinant of the autocovariance matrix ¢, := Cov[X,, X ].

+ The autocovariance function is assumed unknown to be determined by application of
the ME principle. Additional constraints for this are:

e Mathematical feasibility, i.e. positive definiteness of ¢, (positive 8,)

e Physical feasibility, i.e. autocorrelation function (a) positive and (b) non increasing
with lag and time scale
(Note: periodicity that may result in negative autocorrelations is not considered
here due to annual and over-annual time scales)
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Demonstration:
Maximization of
unconditional
entropy
averaged over
ranges of scales

Autocorrelation

(b)

1 10 100
Scale

Conclusion:

As the range of
time scales widens,
the dependence
tends to SSS

o
»~

Information gain
B L

Conditional entropy

—— Scales 1-4 —<— Scales 1-8
—x— Scales 1-16 —— Scales 1-32

—— Scales 1-50 —e—MA &1\&\}.\

——AR —=—FGN ! ‘
—+—GN 1 10 100 1 10 100
Scale Scale
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Results of the ME principle in stochastic processes

¢ Maximum entropy + Low variation + Dominance of a single time
scale —» Normal distribution + Time independence

¢ Maximum entropy + Low variation + Time dependence +
Dominance of a single time scale — Normal distribution +
Markovian (short-range) time dependence

¢ Maximum entropy + Low variation + Time dependence + Equal
importance of time scales — Normal distribution + Time scaling
(long-range dependence / Hurst phenomenon)

¢ The time scaling behavior is a result of the principle of maximum
entropy

¢ The omnipresence of time scaling in numerous long hydrologic
time series, validates the applicability of the ME principle
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Another peculiar dependence explained by ME

*

*

Rainfall at small scales is Probability p that an interval of k hours is dry,
intermittent as estimated from the Athens rainfall data set
The dependence of the rainfall ~ and predicted by the model of maximum entropy
occurrence process is not for the entire year (full triangles and full line) and

Markovian neither scaling but ~ the dry season (empty triangles and dashed line)
in between; it has been known

as clustering or overdispersion

The models used for the
rainfall occurrence process
(point processes) are
essentially those describing
clustering of stars and galaxies

The ME principle applied with

the binary State rainfa” process & Data po‘ints used for mc;del construction‘ X
in more or less the same way Model o \

. . A Data points used for model verification
as in the continuous state 001 ; : : \
process explains this 1 10 100 1000 10000
dependence k
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Interpretation of results

*

L 2R 4

The successful application of the ME principle in nature offers an explanation
for of a plethora of phenomena (e.g. thermodynamic) and statistical behaviors
including

e the emergence of normal distribution, in many (but not all) cases
e the scaling behavior in state, in other cases
e the scaling behavior in time
e the clustering behavior in rainfall occurrence
This can be interpreted as dominance of uncertainty or ignorance in nature

It harmonizes with the Socratic view: «’Ev oida, 611 oUdév oida» (One | know,
that | know nothing)

This view was not a confession of modesty — Socrates regarded the
knowledge of ignorance as a matter of supremacy

In this respect, the knowledge of the dominance of uncertainty can assist to
safer design and management of hydrosystems
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2. Hydrologic issues
2C. Operational synthesis

Stochastic simulation/forecasting of hydrologic processes

¢ Question: Why simulated series?
¢ Answer;

e Analytical solutions for a hydrosystem as complex as that of Athens
are not feasible or would assume oversimplification of the system

e Of numerical methods, Monte Carlo simulation (stochastic
simulation) is the most convenient

e Detailed inflow and other (rainfall, evaporation) hydrologic series are
needed at many sites simultaneously and at several time scales for
Monte Carlo simulation the hydrosystem

e The acceptable failure probability level for Athens is of the order of
10-2: one failure in 100 years on the average

e For a reasonable estimation error in the failure probability we need
1000-10 000 years of data

e Historic hydrologic records are too short
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Requirements for stochastic simulation

Multivariate model
Multiple time scales of operation: annual to monthly or sub-monthly

Multiple time scales of preservation: multi-year (reproduction of the Hurst
phenomenon) to sub-monthly (reproduction of sub-annual periodicity)

Preservation of essential marginal statistics up to third order (skewness)
Preservation of joint second order statistics

¢ autocorrelations of any type and any lag

¢ concurrent cross-correlations

Parsimony of parameters

Performance in simulation mode (steady state simulations) and in forecast
mode, given the current and historic values (terminating simulations)

Models with such features did not exist (particularly, the ARMA type models
were not useful)
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Stochastic simulation strategy

*

4

¢

Stage 1: Generate annual time series

e Use a parsimonious model yet capable of describing over-annual
scaling

e No need to describe sub-annual periodicity

Stage 2: Disaggregate the annual into sub-annual time series
e Use a parsimonious model structure such as PAR(1)

e Couple it to the annual model

e S0, no need to describe over-annual scaling explicitly

A one stage procedure to handle over-annual and sub-annual
properties simultaneously has also been studied but not implemented
operationally so far
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Annual model: The generalized autocovariance function (GAS)

¢ General GAS expression

Vi= Vo (1+KB o)
where y;: lag j autocovariance;
Y,: variance; K, a, B: parameters
# Fittings options
e Optimize parameters to best
fit historic autocorrelograms
e Preserve explicitly y;, y,and
Hurst exponent
e Explicit preservation of more
y;is also possible
¢ GAS behavior
e For =0 = ARMA:
V= Vo exp (=K []]9)
e Fork=(1/8)(1-1/8)*
(1-1/2f)* anda=1=
FGN

Autocovariance,

Demonstration of GAS for a = 1 and several

values of B
1
B=25 B =125 — Generalized autocovariance
0.1 ' ¢ Fractional Gaussian noise
0.01
0.001 X
B =1 B =05
1E-04 |
1E-05
B =025
1E-06 1
1E-07
1E-08
1E-09 1 ¢[3 =0 (ARMA) B =0125
1E-10 T

0

10 20 30 40 50 60 70 80 90 100
Lag,j
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Annual model: Generalized generating scheme for any covariance

structure

Typical (backward) moving average (BMA) scheme: X;=...+a,V,_,+a,V,
where V; independent random variables and a; numerical coefficients

Symmetric moving average (SMA) scheme X;=...+a,V,_,+a,V.i+a,V, . + ...

SMA has several

advantages over BMA.
Among them, it allows
a closed solution for a;:

So(w) = [2 5 (w)]"?

where s,(w) and s (w) the
Discrete Fourier Transforms
of the series a;and v,
respectively.

Both schemes are applicable
for multivariate problems

aj

BMA and SMA parameters,

Yi

Autocovariance,

0.001

0.0001

0.00001

0.000001
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%%%%o %%
<>oo°° L . -(\
Autocovariance %%%o% \
BMA parameters, 100 terms °°oq°°‘
T-| — BMA parameters, infinite terms e ]
SMA parameters, 100 terms Poon,
------ SMA parameters, infinite terms 92
0 20 40 60 80 100

Sequence term, j
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Annual model: Stochastic simulation in forecast mode

¢ Inforecast mode, the observed present and past values must
condition the hydrologic time series of the future

¢ This is attainable using a two-step algorithm

1. Generate future time series without reference to the known
present and past values

2. Adjust future time series using the known present and past
values and a linear adjusting algorithm

¢ The linear adjusting algorithm:

1. is expressed in terms of covariances among variables
2. preserves exactly means, variances and covariances
3. is easily implemented
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Coupling stochastic models of different time scales

The parsimonious

“Actual” Auxiliary PAR(1) model _
processes processes could be used here The linear
~_~ ~_~ transformation
/—1 Step 4 (Output)
Xs Xs q Monthly level X.=X;+h Z, - zp)
) = Step 2: where
oy Coupling 2 Generated by a
@ transformation @ monthly model h = Cov[Xs, Z,] -
i c
o! ~ = o —
&} f(Xs Zp. Zp) o {CoviZy, Z;]}
! preserves the vectors
Z, Zp q Annual level of means, the
variance-covariance
Step 1 (Input): Step 3: matrix and any linear
Generated by the Constructed by relationship that holds
annual model aggregating X

among Xs and Z,.
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Handling of skewness in multivariate problems:
Optimized decomposition of covariance matrices

& Consider any linear multivariate stochastic model of the form
Y=aZ+bV

where Y: vector of variables to be generated, Z: vector of variables with known values,
V: vector of innovations, and a and b: matrices of parameters

¢ The parameter matrix b is related to a covariance matrix ¢ by

bb'=c
& This equation may have infinite solutions or no solution (if ¢ is not positive definite)
& The skewness coefficients § of innovations V depend on b

¢ The smaller the values of §, the more attainable the preservation of the skewness
coefficients of the actual variables Y

¢ Therefore, the problem of determination of b can be seen as an optimization problem
that combines

e minimization of skewness &, and

e minimization of the error ||b b7 - ¢]|
+ A fast optimisation algorithm has been developed for this problem
# The algorithm works even for ¢ that are not positive definite
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Models developed are not only stochastic ...

In the Boeoticos Kephisos River basin a hydrologic model of the entire hydrologic
cycle had to be developed, which was demanding due to the extended karstic
activity and the intensive withdrawals for irrigation

? permeability " + terrain slope

§ Hgh

Hedium
B Lo

& BB igh pormoabibey - Hghslops | | Lk
#Higgh pormantaksy - Low g i

| igroundwater
cells

response units
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3. Hydrosystem operation issues
Parameterization — Simulation — Optimization

Typical problems to be answered

¢ Find the maximum possible annual release from the system:
e for a certain (acceptable) reliability level (steady state conditions)
e for a certain combination of the system components (e.g. primary resources)

and determine the corresponding:

e optimal operation policy (storage allocation; conveyance allocation; pumping
operation)

e cost (in terms of energy; economy; other impacts)
4 Find the minimum total cost
e for a given water demand (less than the maximum possible annual release)
e for a certain (acceptable) reliability level
and determine the corresponding:

e combination of the system components to be enabled

e optimal operation policy (storage allocation; conveyance allocation; pumping
operation)
e alternative operation policies (that can satisfy the demand but with higher cost)
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Categories of problems

¢ Steady state problems for the current hydrosystem
e (e.g., previous slide)

¢ Problems involving time
e Availability of water resources in the months to come
e Impact of a management practice to the future availability of water resources
e Evolution of the operation policy for a temporally varying demand

¢ Investigation of scenarios

e Hydrosystem structure: Impacts of new components (aqueducts, pumping stations
etc.)

e Demand: Feasibility of expansion of domain
e Hydroclimatic inputs: Climate change

¢ Adequacy/safety under exceptional events — Required measures
e Damages
e Special demand occasions (e.g. 2004 Olympic Games)
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The methodology: General aspects

Question 1: Simulation or optimization?
e Simulation versus optimization (water resources literature and practice)
e Simulation methods for optimization (more mathematical literature)

Answer: Optimization coupled with simulation

Main advantages Main advantages
e Determination of optimal policies e Detailed and faithful system representation
® Incorporation of mathematical e Better understanding of the system operation
optimization techniques : .
e Incorporation of stochastic models

Question 2: Which are the control (decision) variables?
e Typically: Releases from system components in each time step

Answer: Introduction of parametric control rules with few
parameters as control variables
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Parameterization

Problem statement

Simulation — .
.. . Problem Control Objective function
Optimization desiderata variables and constraints
i
s Parametric
fo)j | SXpressions Problem solving procedure / Global optimization
= for system
X operation Simulation techniques Nonlinear optimization
= to provide initial values methods
3 Parameters Stochastic simulation ]
of hydrologic processes J
Hydrosystem |_| Simulation to evaluate Linear optimization
structure and —{ the objective function methods to solve simple
S operation data and constraints problems within simulation
©
_g Hydrologic data
o series (historic, :
(‘% real time) Problem solution
Synthetic data Problem Optimal Optimal value of
series desiderata parameters objective function
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Introduction to the parametric reservoir operation rule —

Some analytical solutions

Maximize release from a simple reservoir system with single water use

# Case a: no conveyance restrictions;
no leakages

e Solution: Probability of spill equal at all
reservoirs (New York Rule; Clark, 1950)

e Under certain (rather common) conditions
about the distribution of inflows:

—

Space rule
(Bower et al., 1962)

Ki _Si _ ZK_V
E[CQ] Y EICQ]

# Case b: no conveyance restrictions;
significant leakages; insignificant spills
e Solution:

Leakage rule (Nalbantis &
Koutsoyiannis, 1997)

|V for one reservoir
" |0 forallothers

# Case c: restricted conveyance capacity;
insignificant spills; no leakages

e Solution:

Conveyance rule (Nalbantis
& Koutsoyiannis, 1997)
S 74

¢ ¢

Notation: i = Reservoir index, K = Storage capacity, S = Storage, V= 2S, CQ = Cumulative inflow, E[ | = expectation, C = Conveyance capacity
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Formulation of the parametric reservoir operation rule

Initial linear parametric form
S/ =a+b.V (parameters a, b)
subjectto Za,=0,2b,=1,
since xS'=V

Corrected for physical constraints
0 a+b.V<0
S"= 4 a+bV
K

0<a+hV<K
a+tbV>K
Adjusted, nonlinear form
S(1-8/IK)

25/(1-S/1K)

Target reservoir storage (S;)

St =Gy

i i

(V-2S")

" Total system stérage (V=1S) @

Two parameters per reservoir (a, b) = Control variables

Parameter values determined by optimization — depending on the objective function
Parameters may depend also on season (e.g., refilling-emptying period, or months)

2 x (reservoirs — 1) x seasons total parameters for the reservoir system
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A comparison with non-parametric optimization

Problem: Find the maximum release that can be ensured by a system of 3 reservoirs with
reliability 99% (probability of failure 1%). Use 1000 years of simulated data with monthly

time step. Assume steady state conditions.

Non-parametric optimization

Parametric rule based optimization

Number of control variables:

1000 x 12 monthly releases
x (3 - 1) reservoirs + 1 (problem target)

= 24001

Cannot be combined with simulation

All physical constraints of the system must
be entered as problem constraints

Control variables depend on inflow series

Implicit assumption of known inflows
(perfect foresight)

The optimization model needs continuous
runs with updated data

Number of control variables:

2 parameters/reservoir/ season
x (3 = 1) reservoirs x 2 seasons
+ 1 (problem target)

=9 (as an order of magnitude)

Can be combined with simulation

Physical constraints of the system are
handled by the simulation model

Control variables do not depend on inflow
series but on their statistical properties

No assumption of known inflows

Once parameters are optimized, the system
can be operated without running the model
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Application of the parametric rule — Optimal results

=700 f E P .

- K., =643 .- —

% o0 H2 \ P roper Maximization of system release Evinos
g 50 + — Mornos

@ 400 ——
3 300 4 Minimization of cost for system | —— HyIike
8 200 L release = 87% of maximum

100 +

0 200 400 600 800 1000 1200 1400
Total system storage (hm’)

Maximization of system release
but with no leakage at Hylike

T |k2=643]

K =587

Target reservoir storage (hm
. )
o
o

b [ g
4 100 4" Ki=104
I 0
S 0 ‘ 100 : : P ‘
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Total system storage (hm3) Total system storage (hm3)
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Considering the complete hydrosystem — Simulation

# Assuming that parameters a; and b, are known, the target
releases from each reservoir will be also known in the beginning
of each simulation time step

& The actual releases depend on several attributes of the
hydrosystem (physical constraints)

# Their estimation is done using simulation

¢ Within simulation, an internal optimization procedure may be
necessary (typically linear, nonparametric)

¢ Because parameters a. and b, are not known, but rather are to be
optimized, simulation is driven by an external optimization
procedure (nonlinear)
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Hydrosystem components and attributes

A

)

Reservoir
Storage, S
Target release, R

One direction aqueduct
Conveyance capacity, C
Unit conveyance cost, u

Two direction aqueduct
Conveyance capacities, Cr,, G,
Unit conveyance costs, u;,, U,

Junction

Consumption point
Demand, D

12,17}

O
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Conveyance problem formulation

A

O

12,17}

O

Given:
 Demands (D)
* Reservoir storages (S),

* Reservoir target releases (R< S; 2R
= 2.D; from parametric rule)
Required:
* Actual (feasible) consumptions
(at consumption points)

* Actual (feasible) releases
(from reservoirs)

* Aqueduct discharges
« Conveyance cost
Conditions:

* If possible, no deficits at consumption
points

* If possible, releases from reservoirs
equal to target releases

* Minimum conveyance cost
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Transformations of hydrosystem components to

One direction

C,u C,u

aqueduct _Lu |
TWO d|reCt|On Cfor’ ufOl” Cfori ufor
aqueduct Crevs Urey — —

rev’

Junction O ‘ ‘

S,
Reservoir S R , 0 .0
R0 -2

Consumption D
pointu & ‘ ‘

graph components

rev

Edge

Two conjugate
edges

Node

Three nodes
+ Five edges
(one with known
discharge, S)

High unit cost uj, for

release exceeding target

One node

+ two edges
(one with known
discharge, D)

D, 0 D, u, Very high unit cost u,
for deficit

{12,17} D. Koutsoyiannis, The management of the Athens water resource system 63

Hydrosystem and its transformation to digraph

Ao,

O--

o o 4

O

7 O @

N

Q

.

XN
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Digraph solution by linear programming
Determine all unknown
N N discharges Q; at edges i, by
I

é é« minimizing total cost

TC=Z,.ju,-j Q;

E- - subject to equality constraints
for each node i

Q O and to inequality constraints

for each edge jj

Q;

N N
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General evaluation and extensions of the
parameterization-simulation-optimization method

¢ s parametric rule underparametrized?
e Nonlinear expressions with three parameters per reservoir did not outperform

e Homogeneous linear expressions (one parameter per reservoir, a; = 0) result in
almost same optimal solutions

e Considering seasonality (2 seasons) may improve results (slightly)

& How results of parametric rule based optimization compare to those of nonparametric
optimization methods?

e Generally, they are not inferior

e In the non realistic case of perfect foresight, high dimensional methods may
outperform parametric method with no foresight (slightly, by about 2%)

e |n practice, in complex nonlinear problems the parametric method yields better
solutions due to more effective locating of global optimum

# s the parameterization appropriate for all water uses and hydrosystems?
e Yes, but different parameterizations may be needed for different components (e.g.
aquifers)
e Successful application to hydropower systems
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Decision support tool integration
Data acquisition — Software systems — Management plans

Decision support tool structure

Geographical Information System
Database
Measuring SyStem management

system

Water resources prediction module

control module |

Hydrosystem control module |
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Central data base
(archiving and
processing of data)

Measuring system

Central data
collection unit
(daily transmission
by phone)
|

Marathon Peripheral
Data Center

Evinos Peripheral
Data Center

Mornos Peripheral
Data Center

Hylike Peripheral
Data Center

Meteorological ) R i elevati h
station (10 min step) eservoir elevation
Rainfall, Temperature, gage
Humidity, Wind, Radiation, L (1 h time step)
Sunshine duration /
A ( River fl
River level gage ver fiow
(10 min tim egst%p) measuring station
L (~once a month)
y y
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Data management and processing: Time series manipulation
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telemetric RANGE CHECK raw data FIXING OF 10 minute
FROM N N
“scnTooel W TiME CONSSTENGY?| Irregular TIME STEp | Processed
data time step data
AGGREGATION
Y
daily _ COALITION OF daily ~ AGGREGATION hourly
coalesced <sEyERAL SENSORS| @dgregated [< aggregated
data data data
INFILLING
OF MISSING
VALUES v
FROM OTHER .
INFILLING OF
STATIONS gﬁ'lé AGGREGATION monthly g IMISSING VALUES, m;_)lrrtzly
ille > aggregate FROM > ille
data data OTHER STATIONS data
AGGREGATION
Y
METEOROLOGICAL STATIONS annual
More than 100 time series per station aggregated
About one million records per station per year data




Software system characteristics

¢ All models written from scratch

# Basic development tool: Delphi (Object Pascal)
¢ Database: Oracle (more recently: PostgreSQL)
¢ Geographic system: ArcView

# Basic software units

e Hydrognomon: Database management, processing of
hydrologic data

e Castalia: Stochastic hydrologic simulator

e Hydrogeios: Simulation of surface and ground water
processes

e Hydronomeas: Hydrosystem control
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Hydrognomon: Processing of hydrologic time series
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Hydrognomon: Automatic lumped hydrologic modeling
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Hydrogeios: Detailed geo-hydrologic modeling
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Hydronomeas: Hydrosystem data management
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Hydronomeas: Visualization of hydrosystem simulation
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Hydronomeas: Stochastic forecast of hydrosystem storage
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Hydronomeas: Optimal hydrosystem control rules
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Hydronomeas: Reservoir balance
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Hydronomeas: Time profile of failure probabilities
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Hydronomeas: Reporting
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Management plans and every day operation of the hydrosystem

& Every five years a master plan of the water supply of Athens is elaborated (the first
was issued in 2000)

& Every year the master plan is revised based on current data and model runs

¢ Every three months the annual plan is reassessed and, if necessary, updated by new
model runs

¢ Meanwhile, the every day management is based on optimal parametric operation rules

¢ Models are run for a 10-year lead time to account for long-term effects of today’s
decisions

¢ The general management targets are:
e Adequacy of water resources
e Adequacy of conveyance system
e Cost effectiveness

¢ All management is based on a probabilistic approach of forecasts/risk/reliability
assuming:
e Acceptable reliability 99% on an annual basis

e Potential for further increase of reliability taking into account elasticity of demand
and emergency measures in case of impending failure

¢ So far, the decision support tool and its modules (thoroughly tested for the Olympics
2004) exhibited good performance
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Early stage

The Hadrianean aqueduct

Supplementary water collection and distribution in
Athens (early 20t century until 1930s)
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Marathon dam

Today

Construction of
spillway, 1928
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Marathon dam (2)

Devastating
flood, 1926

Inauguration of
Boyati tunnel, 1928

Marathon spillway
in action, 1941
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Hylike lake and
pumping stations

Hylike lake

Hylike, main pumping station  Kiourka pumping station
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Mornos reservoir
and aqueduct

Mornos reservoir

Mornos canal at
Thebes plain

Siphon at
Distomo
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Control of Mornos
aqueduct

Canal flow control construction

Aqueduct
supervizing &
control centre
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Evinos dam and
tunnel

Evinos dam during construction

Construction of the Evinos-Mornos
connection tunnel
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Treatment plants

Perissos water treatment plant

Aspropyrgos water treatment plant ﬁ&d :
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