A multicell karstic aquifer model with alternative flow equations
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Abstract

A multicell groundwater model was constructed to investigate the potential
improvement in the modelling of karstic aquifers by using a mixed equation suitable
for both the free surface and pressure flow conditions in karstic conduits. To estimate
the model parameters the shuffled complex evolution (SCE) optimisation method was
used. This ensured a fast and objective model calibration. The model was applied to
two real-world karstic aquifers and it became clear that in case of absence of water
level measurements, the use of the mixed equation did not improved the performance.
In cases where both spring discharge and water level measurements were available,
the use of the mixed equation proved to be advantageous in reproducing the features

of the observed time series especially of the water level.
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1. Introduction

Water circulation in the karstic aquifers has been classified in two types. The
first one called conduit flow is similar to the turbulent flow in pipe systems and
occurs in caves and conduits. The second one, generally called diffuse flow or flow in
matrix, occurs in small joints and fissures and follows the principles of Darcy’s law in
the saturation zone (Bonacci 1987).

The models that have been used so far for karstic aquifers can be roughly
classified in four main subcategories: black-box models, conceptual models,
physically based models and partially physical-partially conceptual models.

In black-box models the equations and variables that are used have no physical
meaning and they are similar with models of other fields. An aquifer may be regarded
as a system with input I(t) (infiltration) and output Q(t) (spring discharge), which are
connected with a linear differential equation. The solution of this equation is the

convolution integral Q(t) = (I *u)(t), where u(t) is known as kernel or response

function and its identification is known as deconvolution. Dreiss (1982) used this
method to determine the response function of several karstic springs in southern
Missouri (USA). This work led to an understanding of the response times and
quantities of groundwater moving through the system. Lambrakis et al. (2000) used a
non-linear analysis of a karstic spring hydrograph. They utilised tools from literature
concerning chaotic systems to achieve a short-term forecast of future behaviour of the
karstic spring based only on the series of samples of the spring discharges. They also
used a neural network with topology 1-3-1 (input nodes —hidden layer nodes — output
nodes) as a separate approach that led to good results too. Although these models
often give good results, they have the disadvantage of not providing any

understanding of the physical mechanisms of the aquifer.



Conceptual models are based on simple equations that describe complex
systems in a simplified but satisfactory manner. Almost 100 year ago, Maillet (1905)
introduced the lumped ground water models by using a linear reservoir with a hole at
the bottom to study the hydrograph of a karstic spring. The rate of the outflow is
QO = ¢ H whereas the continuity equation is Q df = A dH . Here c is a constant, H is the
water level in the reservoir and 4 is the reservoir area. Combining these equations and
solving the differential equation it is obtained that O(f) = Qy €™ @0 where 0y is the
discharge at time ) and a := ¢ / A . This model may be extended to include multiple
exponential recessional response elements (consequent curves with different factors
a) representing the draining of conduits and aquifer matrix. Nevertheless, Nutbrown
and Downing (1976) indicated that multiple recession elements might not be due to
regions with varying properties. Eisenlohr (1997) showed that the coefficient a does
not depend only on hydraulic properties of the aquifer but also on the area and form of
the whole aquifer as well as the density of the high hydraulic conductivity conduit
network.

A more complex subcategory of conceptual models uses a small number of
elements or cells to represent the aquifer physical mechanisms. Barrett and
Charbeneau (1997) developed a model with five reservoirs to simulate the discharge
of Barton springs (USA). A novel characteristic of this model is the introduction of
vertical variation in aquifer transmissivity and storativity. The model uses the Darcy
equation for estimating the flow between reservoirs. Halihan et al. (1998) used only
one reservoir that empties through a pipe at the bottom to model a simple and a priori
known karstic formation. The equation of flow through the pipe follows a nonlinear
law. An extension of this model (Halihan and Wicks, 1998) implements a number of

reservoirs that communicate through pipes with turbulent flow. Using this model he



proved that constricted passages could generate a very steady response that may be
interpreted as Darcian. Therefore, baseflow periods in hydrographs do not necessarily
indicate that the aquifer flows under Darcian conditions. Cornaton and Perrochet
(2002) suggested a porosity weighted one-dimensional differential equation, which
takes into account water movement in a conduit system and water exchange within
matrix continuum. In general, the models of this category are ideal in modelling cases
with lack of data but they cannot apply localised information for water level
fluctuation.

Physical models for karstic aquifers are considered to be those that simulate
both the diffuse flow in the matrix and the flow in the pipes. One subcategory uses the
double continuum approach. More specifically, the conduit system is treated as
Darcian, just like the matrix, but with a higher value of hydraulic conductivity
(Kiraly, 1985). Another option is to represent conduit flow as pipe flow, described by
the Darcy-Weisbach equation (Mohrlok, 1997). In both models it is necessary to
define an exchange term that describes the movements of water between the conduit
system and the matrix. Both models have the disadvantage that they require very good
knowledge of the aquifer structure and they have too many parameters to calibrate.

The equivalent continuum porous media (EPM) approach is classified in the
partially physical and partially conceptual single continuum models. The underlying
assumption is that the fractures are sufficiently interconnected and closely spaced to
justify karst being treated as continuum with an average hydraulic conductivity on a
regional scale. Larocque et al. (1999) used finite-elements and a downscaling
parameterisation procedure to estimate parameters of the karstic aquifer. Based on
their results they suggested that at the regional scale and in a steady-state simulation,

it is not required to simulate ground water flow using a complex representation, i.e.



including the dual component of flow in the matrix and the conduit network.
Sahuquillo (1983) used a finite-element method to degrade the differential equation
that describes the aquifer. This equation, which may be solved analytically, is a first
order non homogeneous linear differential equation of the vector of piezometric heads
and includes a constant term which is the vector of sources and sinks.

Svensson (2001) suggested a method to estimate the conductivities of cells that are
crossed by fractures. According to his work, a fracture contributes to the conductivity
of a cell by an amount, which is equal to the intersecting volume (of fracture and cell)
times the conductivity of the fracture. In this way, correlation and anisotropy
structures of the aquifer are preserved.

All the studies till know use the Darcy or Darcy-Weisbach or both flow
equations for modelling the karstic aquifers. The Darcy equation governs the flow in
the saturated matrix of the aquifer but it is questionable if it is suitable for modelling a
karstic spring that usually is the outlet of the conduit system. The Darcy-Weisbach
equation applies to turbulent pressure flow; however the flow in the conduit system is
not always pressurized. When the water level in the aquifer is low, then the flow in
some of the conduits may be conducted with free surface conditions.

Some studies reveal that there is a non-linear relation between hydraulic
conductivity K and spring discharge Q on karstic aquifers. Bonacci (2000) used the
water level measured at two boreholes on the aquifer of Ombla spring, in the karst
area of Croatia, to estimate the hydraulic gradient. Substituting this hydraulic gradient
and the spring discharge Q to the Darcy equation he estimated the effective hydraulic
conductivity K (Bonacci, 2000). The plot of the measured O-estimated K values,
forms the hysteresis loop shown in Figure 1. This significant variation of K and the

hysteresis loop shown in Figure 1 must result from the stage dependent internal



routing of water and suggests that the Darcy equation with constant hydraulic
conductivity is not applicable in this case.

To investigate these issues a new model was constructed which uses a flow
equation that is suitable for both pressure flow and free surface flow. The model was
combined with the shuffled complex evolution (SCE) optimisation method to enable
automatic calibration and was applied to a virtual aquifer for validation purposes as
well as to two real world aquifers to investigate the above questions.

The paper is organised as follows: Section 2 introduces the model concept and
the flow equation, describes the model structure and gives comparison to the well
known MODFLOW model. Section 3 gives a brief introduction to the SCE
optimisation method. Section 4 describes the application of the model to two real

world aquifers. Section 5 ends up with conclusions.

2. Model concept

2.1. Flow equation
The water flow through karstic aquifers, according to Brown (1972) and Cavaille
(1964), is organised in three zones: The zone of aeration through which rainwater or
surface runoff infiltrates the surface downwards (fractures in Figure 2), the zone of
underground stream flow in which water flows vertically (shafts C1-C4 in Figure 2)
and the zone of horizontal movement (gallery G in Figure 2).

The discharge Q of the karstic spring in Figure 2 equals the discharge through
horizontal gallery G. It may be conjectured that this gallery may function either
pressurized or as an open channel. In both cases the discharge Q can be given by the

Manning formula:

0= 3 K T m



where 7 is the Manning roughness coefficient, R is the hydraulic radius of the gallery,
E is the wet cross section area and J is the hydraulic gradient.

The flow through the gallery G can be studied with the help of the simplified
conceptual hydraulic structure in Figure 3. The water flows through a tunnel with
height D. In case of pressure flow, R and E are constants and the discharge may be
given by the formula 0= C \/3 where C equals R*”? E /n. In free surface flow both R
and E depend on hydraulic depth y in the tunnel. In this case, it can be assumed that
the product RPE is roughly a power law of y, i.e. B ( y/D)” , where, £ is a constant
that depends on a characteristic length of the cross section (the radius for circular and
the width for rectangular) and « is a constant that depends mainly on the type of the
cross section. A detailed numerical investigation yields that a equals 2 for circular

cross section and 1 to 5/3 for rectangular cross section with width to height ratio

ranging from 0 to 00 respectively. Substituting to the Manning formula it is concluded

that O=p/n (y/D)" \/._] When y=D it should be y/D=1 and becomes obvious that C=f/n
. Combining all these it is concluded that both pressure and free surface flow can be

described by:

_ (e § &
0=C(p) )
To account for non uniform free-surface flow condition in Figure 3 and assuming that

the flow is from reservoir 1 to 2 (h;>h,) the approximations yZmin[D,(h1+h2)/2] and

J=(hi-hy)/L can be used concluding in:

M}]a hi-hy 0.5

0=C [min{1, 0 3)

This equation can be verified by numerical hydraulic calculations. The tunnel

which connects the two reservoirs in Figure 3, was assumed to have rectangular cross



section (1 m x 1 m) with n equal to 0.015, zero slope and a length of 50 m. When the
tunnel functioned as an open channel, the discharge was computed solving the
differential equation of non uniform flow, which gives the water depth profile. When
the tunnel was pressurized, the discharge was computed using equation (1). Equation
(3) was then fitted to the accurate results obtained by hydraulic calculations. The
parameter C (generalised conductivity) was optimised to make the discharges
calculated with (3) to fit as good as possible with the discharges calculated previously.
The conductivity C was found to be 27 m*/s while a was found 1.3. It can be observed
in Figure 4 that equation (3) approximated satisfactorily the discharge in all cases
examined (i.e. #=0, /#,=0.5 m, #,>1 mm) even though it does not take into account
the fact that the minimum hydraulic depth in the open channel of Figure 3 cannot be
less than the hydraulic critical depth.

It can be noticed that if the exponent of hydraulic gradient is set to 1 instead of
0.5 and if the width to height ratio is very small, so that a equals 1, then equation (3)
becomes equivalent to the Darcy equation for both confined and unconfined
conditions (see equations of MODFLOW in Table 1). In this case it can be easily
observed that for unconfined conditions ¢ = K D while for confined conditions
¢ = K Az, where K is the Darcian conductivity, c is the generalised conductivity per
unit width (aggregated C over width) and Az is the assumed layer thickness (see Table
1).

Based on these considerations, a model based on the concept of multicell
models (Bear, 1979; Narasimhan and Witherspoon, 1976) that uses (3) as flow
equation has been developed. The main objective of this model is to reproduce the
water level fluctuation and the spring hydrograph of karstic aquifers but it is

developed in a generic way so it can simulate the flow in porous media aquifers too.



For this reason multiple layers are supported, although this feature is not used in the
current study, and also the option of the Darcy equation instead of equation (3) is

available.

2.2 Aquifer representation

By generalisation of the scheme in Figure 3, the configuration of the entire
aquifer in this multicell model is represented by a network consisting of transportation
elements and storage elements (reservoirs). The catchment area is divided into surface
cells. To each surface cell, shown in Figure 5 as a rectangle, which however is not
restrictive, corresponds one or more vertically aligned reservoirs. The area of the base
of each reservoir equals the area of the corresponding surface cell multiplied by the
specific yield.

In the generic case, where more than one layers are used for modelling an
aquifer, the hydraulic head in reservoir (i,j.k) with i,j the areal grid indexes and k the

vertical layer index, is calculated using the following formula:

I :{ Wijk + bk (Wij < Az) 4
ijk (Mjk -Az) A+ b+ Az (Mjk > Az) (4)

where: Wiy is the water level in reservoir (i,j.k), by is the elevation of the bottom of
layer k, hjj is the hydraulic head of the water in reservoir (i,j.k), Az is the layer
thickness and 4 is the rate of specific yield to confined storage coefficient. The upper
equation in (4) corresponds to phreatic conditions while the lower corresponds to
confined conditions, so that the thickness Az represents also the threshold between
confined and unconfined conditions.

The volume of water contained in this reservoir is Vix = Fy; Wi« where Fj; is the
area of the base of reservoirs under surface cell (i,j). Thus (4) represents the relation

between hydraulic head and water contained in reservoir. As shown in the Appendix,



this equation can be easily transformed into the corresponding equations used by
MODFLOW (Table 1, Relation h-V).

The water movement in the network is simulated using an explicit numerical
method. Assuming a small time step, the variation of water level in reservoirs within
a time step can be neglected. In each time step, equation (4) is used to compute the
hydraulic gradient between two reservoirs and then the flow equation is used to
calculate the specific discharge that in turn is transformed into water flux. To achieve
the optimum speed and stability of the arithmetic solution, the time step is tuned
during simulation. To this aim, a maximum allowed water level change in reservoirs
(maxdw) within a time step and a multiplier (mdt) are used. If water level change
equals maxdw within a tolerance, df remains the same, otherwise, if water level
change is lower or higher, df is multiplied or divided respectively by mdt.

The boundary conditions are implemented by choosing appropriate base and
water level of reservoirs. The constant head can be modelled by choosing a reservoir
with very large base. Due to the large base, the water level in reservoir remains
practically constant and close to the prescribed boundary condition value. A spring is
modelled again by a reservoir with very large base that can only take water from
neighbouring reservoirs. Simulations of the slight changes of water level in this
reservoir can be directly transformed into spring hydrograph.

The stresses are applied as changes to water level in reservoirs. The recharge is
applied to the highest active reservoir by gradually increasing the water level in a
stress period. Abstractions due to pumping decrease water level of pumped reservoirs.

To represent the aquifer by the network of reservoirs and transportation
elements, the grid topology and the set of hydrogeologic parameters are needed. The

grid topology is determined by the coordinates of the centres of reservoirs and the



corresponding surface cell areas. The hydrogeologic parameters are the specific yield
Sy (it affects the reservoir bases), the generalised conductivities per unit width ¢
between reservoirs, the layer thickness Az, and parameters a, D (equation (3)) and 4
(equation (4)). The flow equation solver needs the initial time step, the maximum
allowed water level change (maxdw) and the time step multiplier (mdt).

The proposed model was named 3dkflow after 3D karstic flow model. To make
more clear the basic features of 3dkflow, a comparison to the standard groundwater
model MODLFOW is useful:

e The equations that are used by both 3dkflow and MODFLOW (McDonald and
Harbaugh, 1988) assuming one layer (for simplicity) are shown in Table 1.

e In MODFLOW the flow equation and the relation between h and V are
substituted to the continuity equations of all cells resulting in a set of linear
equations (implicit scheme). The solution of this linear equations set gives the
hydraulic head at the centres of the cells. In 3dkflow the continuity equation is
solved sequentially for all reservoirs individually (explicit scheme).

e Both MODFLOW and 3dkflow use internode conductivities in calculations.
The input files of MODFLOW contain block centred cell parameters so that an
averaging (arithmetic, harmonic or geometric) is necessary to get the internode
conductivities. The input files of 3dkflow contain directly the internode
conductivities. This is a better choice in case that the parameters are estimated
only via the model (lack of field measurements of parameters) because it skips
the unnecessary averaging during the optimisation procedure.

The integrity of 3dkflow was verified by means of comparisons with MODFLOW
(version 96). A virtual rectangular phreatic aquifer with a spring outlet at one corner

was represented by a 10x17 grid and it was solved with both models (the Darcy



equation is selected in 3dkflow). The simulated time series of water level at two cells
(namely (6.4) and (7,14)) and spring discharge obtained by two models were
compared and the coefficients of determination (also known as Nash’s index) were
found to be very close to 1. The slight departures from 1 are explained by the fact that
the input files of MODFLOW contain cell conductivities while the input files of
3dkflow contain internode conductivities. In terms of the time needed by the two
models to complete the simulation, MODFLOW appears to be 10 times faster than
3dkflow. This was expected since MODFLOW uses an implicit arithmetic solution
scheme while 3dkflow uses an explicit scheme that calls for small time steps to

maintain the stability and accuracy of the solution.

3. The shuffled complex evolution method

To estimate the parameters of the aquifer, 3dkflow must be combined with an
efficient optimisation algorithm. In this study the shuffled complex evolution method
(SCE) (Duan et al., 1992) has been adopted. This is a heuristic global optimisation
scheme that combines the strength of the downhill simplex procedure of Nelder and
Mead (1965) with the concepts of controlled random search (Price, 1965),
competitive evolution (Holland, 1975) and complex shuftling. This method has
become the most popular among hydrologists and many references about it can be
found in the water resources literature (Duan et al. 1994; Gan and Biftu, 1996; Cooper
et al., 1997; Kuczera, 1997; Yapo et al., 1998; Freedman et al., 1998; Thyer et al.,
1999).

The algorithm begins by randomly selecting a population of feasible points that
are sorted and partitioned into a number of communities (complexes). Each of the

complexes is allowed to evolve in the direction of global improvement, using



competitive evolution techniques that are based on the downhill simplex method. At
periodic stages in the evolution, the entire set of points is shuffled and reassigned to
new complexes to enable information sharing. This process is repeated until some
stopping criteria are satisfied.

The SCE algorithm was incorporated into 3dkflow to facilitate the calibration
of the model. The parameters that are optimised by the SCE algorithm are the
generalised conductivities, the specific yield and the parameter D (the exponent « is
optimised manually, trying a set of likely values). The number of parameters depends
on the dimensions of the aquifer model and on the spatial distribution of generalised
conductivities. The simplest possible model consists of two reservoirs connected with
one transportation element. In this case the model includes only three parameters
(generalised conductivity of the transportation element, specific yield of reservoirs
and D). In two- or three-dimensional models the number of parameters is greater but

even in these cases the SCE algorithm proved to be satisfactory.

4. Case studies

Two of the most important karstic aquifers in Greece were modelled with 3dkflow.
The first discharges at the Almiros spring located at the North coast of Eastern Crete
near Agios Nikolas and the second discharges at the Lilea spring located at the foot of
Parnasos mountain 130 km northwest of Athens. Equation (3) and Darcy equation
were used alternatively in the two simulations and the results were compared to
identify differences in performance.

The surface geological formations of the Almiros spring area are displayed in
Figure 6 and the geological layering in Figure 7. The spring drains a dolomitic

limestone aquifer, which lies on phyllite-quartzite series IGME, 1977). The spring is



located at a distance of 50 meters from the sea at an elevation of +0.7 m above sea
level (masl). The discharge varies between 1.5 and 3 m’/s. The mean annual
discharged volume of the spring is 64 hm® while 11 hm® of water are pumped during
April to October from the aquifer for irrigation. That suggests a total outflow of 75
hm? per year from the aquifer. The rainfall at the mean basin elevation (600 m) is
1185 mm while IGME (1996) estimated that the annual evapotranspiration equals 575
mm. They also estimated the recharge to aquifer as 491 mm and the catchment area as
152 km”.

The period of available measurements is from January 1977 to September
1985. The spring discharge measurements are performed with average frequency once
a week (IGME, 1990). Infrequent water level measurements are performed only in
two places in the area at boreholes F16 and D3 (Figure 6). The mean water level at
them is 223.5 and 15.7 masl.

The estimated spatial deployment of the catchment area is shown in Figure 6
and the discretisation that was used to model the aquifer is shown in Figure 8. Three
zones of conductivities along x-direction were assumed. This zonation pattern is
suggested by the observed water level gradient, which is very steep at the
Xeropotamos area, possibly because of an alluvium curtain (IGME, 1990). The first
and third zones are assumed to have equal x-direction conductivities (K for Darcy,
cx.1 for the equation (3)) while the x-direction conductivity in second zone (K, for
Darcy, cy > for the equation (3)) is expected to be much lower. Constant conductivity
along y (K, for Darcy, c, for the equation (3)) and constant specific yield (Sy) were
used. The parameters D and o of equation (3) were constant also. The conductance Cd
and the generalised conductivity to spring reservoir (C) are used to regulate the spring

discharge when using Darcy equation and when using the equation (3) respectively.



One layer with 5x8 cells was proved to be a sufficient for representing the two
wells, the three zones of conductivity and the steep hydraulic gradient near the spring.
Denser grids were tried but they did not provide better results.

The monthly rainfall time series was filtered through a modified Thornthwaite
(1948) model to calculate the infiltration to deeper aquifer that is the input to 3dkflow.
The crops at Drasi, Xeropotamos, North Lakonia and South Lakonia are irrigated
using groundwater. The reservoirs of the cells 22, 23, 24-14 and 34 (Figure 8) were
pumped from April to October, to model the releases for the irrigation.

The objective function to be minimized is the weighted mean square error
between simulated and measured time series of spring discharge. The calibration
period extends from October 1977 to September 1985. The period from January 1977
to October 1977 is considered as warm up period for the model.

The estimated parameters for the equation (3) are shown in Table 3 and for the
Darcy equation are shown in Table 4. The estimated conductivities of the second zone
are in both equations smaller than those of first and third zone, as expected from the
geological study. Also the estimated conductivities with equation (3) and with Darcy
equation verify approximately the formula ¢ = K D . The estimated specific yields for
both equations are relatively close.

The coefficients of determination for the spring discharge (simulated and
observed) and the biases in simulated water levels (differences of simulated and
observed water level mean values) are shown in Table 5. The simulated spring
discharge, almost identical for both equations, is shown in Figure 9. The coefficient of
determination values are rather low because of the use of monthly rainfall time series

and the tide effects that corrupt the measurements of spring discharge (IGME 1990,



IGME 1996). Both equations gave water levels fluctuation close to the observed
range.

In the second case study, the Lilea spring discharges at an elevation of 299
meters. It is an overflow spring that drains a limestone aquifer located at the contact
with alluvial deposits. The surface geological formations of the Lilea spring area are
displayed in Figure 10 (IGME, 1962).

The estimated catchment area that drains through Lilea springs is about 8 km”.
However the exact geometry of the aquifer is not known. The mean annual spring
yield is 9.3 hm® while 0.5 hm” is pumped during June to September for irrigation. The
mean annual rainfall of the catchment is 1582 mm.

The available measurements of spring discharge and water level were
performed twice a month and cover two periods, October 1980 to September 1989
(IGME 1994) and October 1993 to September 2000 (E. Dandolos, personal
communication). Water level measurements are available only for the second period
from the EAPS borehole (Figure 10). Each of the two periods was used either for
calibration or validation. The two calibration-validation periods extend from March
1981 to September 1989 and from March 1994 to September 2000 (October 1980 to
March 1981 and October 1993 to March 1994 were the model warm up periods).

Due to the incomplete knowledge of the catchment shape and topology a
parsimonious representation of the aquifer was preferred. Three reservoirs were used
in modelling; the fist and the second one correspond to the distant and close to the
spring aquifer areas and the last one is the spring reservoir. The model parameters
were the conductivity between first and second reservoir (K for Darcy, ¢y for the
equation (3)), the conductance (Cd) for Darcy equation or the generalised

conductivity (c) for equation (3) to the spring reservoir and the specific yield (Sy).



The daily rainfall values were filtered through a modified Thornthwaite (1948)
model to calculate infiltration. Then daily infiltration was upscaled to monthly
infiltration for compatibility with the stress period’s length of the model. The releases
for irrigation were modelled with a pump from the second reservoir.

In the first calibration case (based on data of the first period of observations)
the objective function to be minimized was the mean square error between simulated
and observed time series of spring discharge. In the second calibration case (based on
data of the second period of observations) in addition to this criterion, the weighted
mean square error between simulated and observed time series of water level was also
used and the two criteria were combined assuming equal weights.

Table 6 shows the estimated parameters for the equation (3) for the two periods
of available data. The estimated parameters of the Darcy equation are shown in Table
7. The conductivity is rather higher than the expected value from the literature. This
happens because this optimised parameter is the effective and not the real
conductivity of karst matrix. The estimated specific yield in period 1994-2000 is
almost twice the estimated specific yield in period 1981-1989 for both equations
suggesting that the combination of water level and spring discharge measurements is
critical for the estimation of a reliable value for specific yield. In other words the
problem is ill-posed when either water level or spring discharge measurements are
absent. The magnitude of conductivity estimated from equation (3) and that estimated

from Darcy equation are compatible to each other in terms of the formula ¢ = K D.

The parameters estimated in period 1981-1989 were used for validation in
period 1994-2000 and vice versa concluding in two validation periods. The coefficient
of determination values of the optimisations and validations for Darcy and for the

equation (3) are shown in Table 8. Equation (3) achieved slightly better results for



spring discharge, and much better for water level and especially in the validation
period 1994-2000 (Figure 11). The simulation of spring discharge for (3) in period
1994-2000 is shown in Figure 12. The model performance is acceptable taking into

account the coarse spatial and temporal (monthly infiltrations) discretisation.

Equation (3) achieved better performance in the two validations although the
parameters for the two periods are not quite close. Increasing the conductivity and
decreasing the specific yield results in a more sharp response of the aquifer and vice
versa. That means that the ratio ¢/Sy is a quantitative index of the aquifer behaviour.
The ratio ¢/Sy for equation (3) and the period 1981-1989 is 0.34 m?*/s and for the
period 1994-2000 is 0.32 m?/s i.e. quite close. In the Darcy equation the ratio Cd/Sy is
2.25 m?/s for the period 1981-1989 and 1.4 m?/s for the period 1994-2000. This
explains the difference in performance of the two equations.

The experiment conducted by Bonacci, on the aquifer of Ombla spring, which
was described in the introduction, was repeated with the Lilea spring aquifer but using
simulated (by equation (3)) rather than observed data. The model parameters were
those of the period 1994-2000. The simulated water level at first and second cells of
Lilea model, as well as the simulated spring discharge, where used to estimate the
effective hydraulic conductivity. The plot of the simulated (O-estimated K values is
shown in Figure 13 and it looks similar to that in Figure 1 although the parameters of
the model were constant during the simulation. This indicates that the model based on

equation (3) captures the hysteresis behaviour of aquifer.

5. Conclusions

1. From this study it became clear that the Darcy equation may be not

appropriate for modelling karstic aquifers, in the case where combined spring



discharge and water level measurements exist. Specifically the Darcy equation
is not suitable for reproducing both discharge and water level time series and
capturing the hysteresis loop between effective hydraulic conductivity and
spring discharge. In this case a mixed equation that takes into account both
free surface and pressurized flow in karstic conduits was proved to improve
the model performance compared to the Darcy equation.

2. In the case where only spring discharge measurements are available, the use of
the mixed flow equation does not improve the model performance in

comparison to the Darcy equation.
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Table 2: Notation used in Table 1.

O, Oy discharge between reservoirs or cells (i, j) and (i, j+1) , (it1, j)

Cx» Cy generalised conductivities per unit width between reservoirs (i, j) and (i, j+1), (i+1, j)
K. K,, conductivities between cells (i, j) and (i, j+1), (it1, j)

hi, i, hjs hydraulic head at reservoirs or cells (i, j), (i+1,j), (i,j+1)

Ly, Ly distance between centres of reservoirs or cells (i, j) and (i,j+1), (i+1,j)
Ax, Ay size of surface cell (i, j)

Az layer thickness

TOP elevation of the top of the layer

b elevation of the bottom of the layer

F area of the base of reservoir which corresponds to surface cell (i, j)
AV change of water volume in cell (i, j) from time m-1 to m

14 water volume in a reservoir (i, j) at time m

Ah change of hydraulic head in cell or reservoir (i, j) from time m-1 to m
W R hydraulic head in cell or reservoir (i, j) at time m-1 and time m

h hydraulic head in reservoir (i, j) at time m

w Water level in reservoir (i, j) at time m

S confined storage coefficient

Sy specific yield

A Sy to S rate

a exponent of flow equation

D threshold between free surface and pressurized flow

Note: reservoirs refer to 3dkflow, cells refer to MODFLOW and surface cells refer to

both.

Table 3: Estimated parameters of the Almiros aquifer model for (3) with a=1.5.
e (m'/s)  0.328

o (m¥/s)  0.0017
¢, (m’/s) 0.039
¢ (m%/s) 0.399
D (m) 10.0

Sy 0.07
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Table 4: Estimated parameters of the Almiros aquifer model for Darcy.

Ko (m/s)  0.04

Ky, (m/s)  0.00019
K, (m/s)  0.008
Cd (m%s) 2.79

Sy 0.04

Table 5: Differences of simulated and observed water level mean values and
coefficients of determination for simulated spring discharge of the Almiros aquifer
model.

Bias F16 Bias D3 Coefficient of determination
(m) (m) Spring
Equation (3) 0.47 -0.50 0.63
Darcy 0.71 -0.42 0.63

Table 6: Estimated parameters of the Lilea aquifer model for the equation (3) with
o=1.4.

1981-1989  1994-2000

o (m%s)  0.184 0.137
c(m’s)  0.027 0.045
D@m) 39 4.47
Sy 0.08 0.14

Table 7: Estimated parameters of the Lilea aquifer model for Darcy.

1981-1989 1994-2000

Ky (m/s)  0.017 0.017
Cd (m’/s) 0.09 0.14
Sy 0.04 0.10
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Table 8: Coefficient of determination values for optimisation and validation of the

Lilea aquifer model.

Time series

Case Darcy Equation (3)
Optimisation 1981-1989  Spring discharge 0.76 0.79
Validation 1981-1989 Spring discharge 0.63 0.74
Optimisation 1994-2000 Water level at EAPS 0.38 0.50

Spring discharge 0.71 0.75
Validation 1994-2000 Water level at EAPS -1.96 0.28

Spring discharge 0.74 0.72
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Figure 1: Q-K hysteresis at Ombla Spring in the karst area of Croatia (Bonacci,

2000).

Figure 2: Diagram of karstic system: at the surface, fractures and infiltration joints;
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for the tunnel of Figure 3 and for water level in reservoir 2 equal 0, 0.5 (open channel
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Figure 5: Horizontal view (upper panel) and vertical section (lower panel) of an
aquifer with specific yield Sy represented by a hydraulic analogue with three layers at
heights b1, by, b3 (with equidistance Az), consisting of transportation elements with
lengths Ax; or Ay; and storage elements with base Fj; which corresponds to surface

cell area Ej.

Figure 6: Catchment area and geology of the Almiros spring according to IGME
1977 (TsJsKD: dolomitic limestones, P-T?ph: phyllite-quartzite series, al: alluvium
deposits, Kek: limestones, M: marly beds, Mzsch: carbonate-quartzose schists, Mmk:
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Figure 7: Cross section AA’" of Figure 6 (elevations in m; IGME, 1977).
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Figure 8: 5x8 discretisation of the Almiros spring aquifer where the dark and grey
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white rectangles represent no flow areas. The irrigated areas with pumped water are
marked with x. The two cells closer to the observations wells are marked with dots

(left F16, right D3).

Figure 9: Observed and simulated discharge of the Almiros spring.

Figure 10: Geologic map of the Lilea spring aquifer according to IGME 1962 (Q
alluvial deposits, K limestones) also indicating the location of the observation well

EAPS.

Figure 11: Observed and simulated water level at the EAPS borehole in period 1994-

2000 with parameters optimised for period 1981-1989.

Figure 12: Observed and simulated spring hydrographs of the Lilea spring after

optimisation in period 1994-2000.

Figure 13: Estimated effective hydraulic conductivity using data from Lilea Aquifer

model.
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Figure 1: O-K hysteresis at Ombla Spring in the karst area of Croatia (Bonacci,
2000).

Figure 2: Diagram of karstic system: at the surface, fractures and infiltration joints;

C1-C4, shafts with rapidly descending water; G horizontal gallery of karst flowage; I-

I' water level (Cavaille, 1964).

30



Figure 3: Schematic of water exchange between two reservoirs with hydraulic heads

hy, hy through a tunnel with length L and height D.
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Figure 4: Hydraulic gradient-discharge curves and approximation with equation (3)
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for the tunnel of Figure 3 and for water level in reservoir 2 equal 0, 0.5 (open channel

flow) and greater than 1 (pressurized flow).
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Figure 5: Horizontal view (upper panel) and vertical section (lower panel) of an
aquifer with specific yield Sy represented by a hydraulic analogue with three layers at
heights b,, by, b3 (with equidistance Az), consisting of transportation elements with
lengths Ax;j or Ay; and storage elements with base Fj which corresponds to surface

cell area Ej.
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Figure 6: Catchment area and geology of the Almiros spring according to IGME
1977 (TsJsKD: dolomitic limestones, P-T?ph: phyllite-quartzite series, al: alluvium
deposits, Kek: limestones, M: marly beds, Mzsch: carbonate-quartzose schists, Mmk:
clastic rock formations, JmEsK: platy limestones). The Almiros spring is visible at the
southeast corner of the map. The locations of the two observations wells F16 and D3

are marked on the map with dots.
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Figure 7: Cross section AA’ of Figure 6 (elevations in m; IGME, 1977).
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Figure 8: 5x8 discretisation of the Almiros spring aquifer where the dark and grey
rectangles represent areas with generalised conductivity ¢ ; and ¢y 2 respectively, and
white rectangles represent no flow areas. The irrigated areas with pumped water are
marked with x. The two cells closer to the observations wells are marked with dots

(left F16, right D3).
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Figure 9: Observed and simulated discharge of the Almiros spring.
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Figure 11: Observed and simulated water level at the EAPS borehole in period 1994-

2000 with parameters optimised for period 1981-1989.
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optimisation in period 1994-2000.
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Appendix

1. MODFLOW and 3dkflow h-V equation

In this section we show that the h-V relations of MODFLOW and 3dkflow are
equivalent. This is proved for the case where Ay, /.1 < TOP and for the case where
hm < TOP, hy1 > TOP. The proof for the rest cases is similar.

From the geometry of vertical discretisation we have:

TOP=Az+b (al)

From definitions of A and F we have:

Sy
A= S (a2)
F = Ax Ay Sy (a3)

In case of phreatic conditions we have /iy, hn.; < TOP and Wy, Wi < dz. In this case

equation (4) given that V=F W writes:

_Vn
Vi
hma ===+ b (a5)

Substituting (a3) and subtracting (a5) from (a4) we obtain:

AV =Sy Ax Ay Ah (a6b)
which is the equation used in MODFLOW.

In the case where Ay, < TOP, Ay > TOP it will be also Wy, < Az and Wy > Az. In

this case equation 4 writes for time m:

Vin
hm="+b (a7)
or
Vi = (hm - b) F (a8)

and for time m-1:
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V-
hma = (T = AZ) J+ b+ Az
or
1
Vin-1 = [I(hm'l -b-Az)+ Az | F
Subtracting (al0) from (a8) we obtain:

F
AVthF-bF-I(hm_l-b-AZ)-FAZ

Substituting (al), (a2) and (a3) to (all) we obtain:

AV =[Sy (hm - TOP) + S (TOP - /) | AX Ay

which is the equation used in MODFLOW.

(29)

(al0)

(all)

(al2)
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