A new stochastic hydrologic framework inspired by the Athens water resource system

Demetris Koutsoyiannis

Department of Water Resources, School of Civil Engineering, National Technical University of Athens

A seminar given at the ...

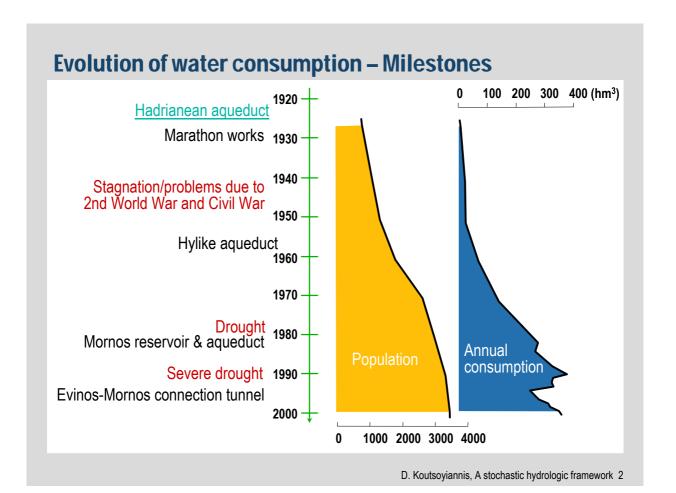
School of Civil and Environmental Engineering, Georgia Institute of Technology

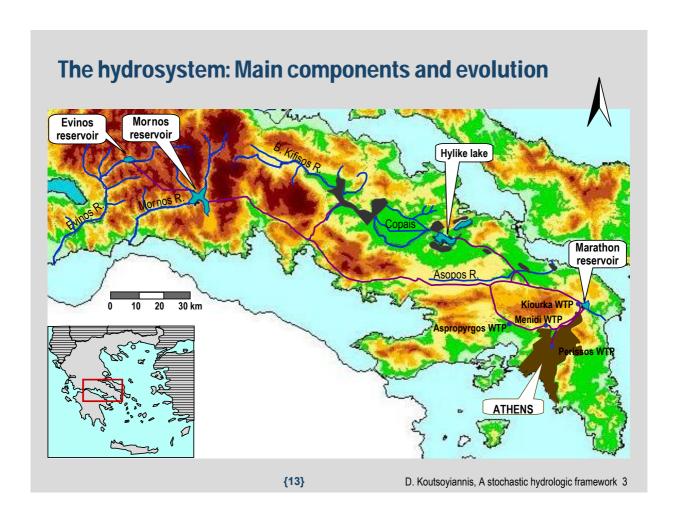
Atlanta, 13 January 2006

... and at the ...

School of Engineering, Duke University

Durham, 16 January 2006





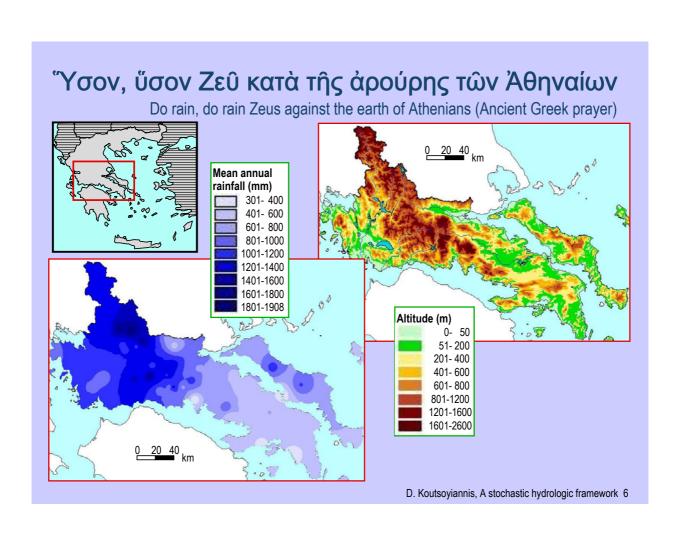
Parts of the presentation

1. Diagnosis

2. Explanation

3. Operational synthesis

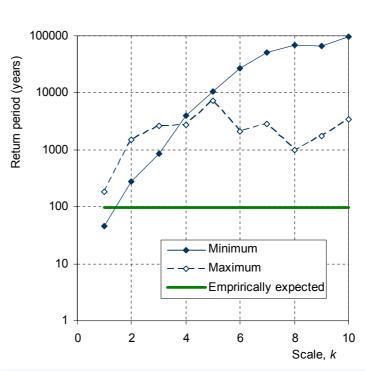
1. Diagnosis

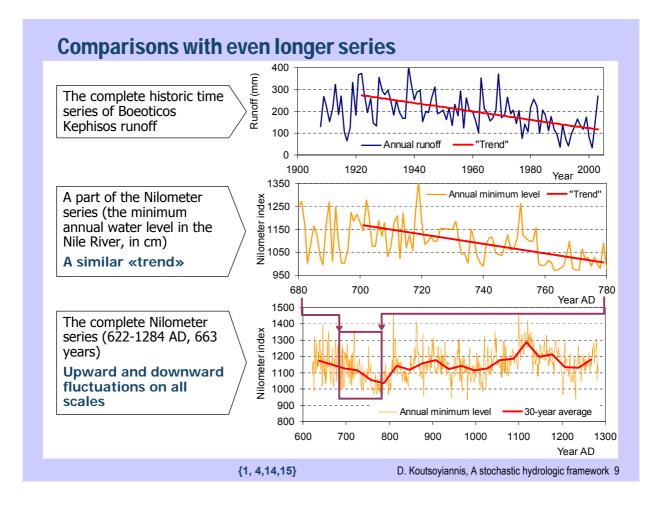


Back in 1990s - Initial empirical observations 400 The historic time series of Runoff (mm) 300 Boeoticos Kephisos runoff (Hydrologic years 1907/08-200 1986/87) 100 A multi-year «trend» is Trend observed 0 1900 1920 1940 1960 1980 Year 1200 Rainfall (mm) 1000 A similar «trend» in the rainfall time series 800 Explains the «trend» in 600 runoff 400 nnual rainfal Trend 200 1900 1920 1940 1960 1980 Year Runoff (mm) 100 -Annual runoff — Average 1988-94 Average 1908-87 The next years were dry Intense and persistent drought: Mean flow half that of the historic average, duration 7 years 0 1988 1989 1990 1991 1992 1993 D. Koutsoyiannis, A stochastic hydrologic framework 7

Return period of the persistent drought

- Assessment was done using classic hydrologic statistics
- At the annual scale, the drought was a record minimum but with typical magnitude
- Aggregated at larger scales, it appeared something extraordinary
- Similar behavior was observed for maxima on aggregate scales





The fluctuations on many scales and the "Hurst phenomenon"

- ◆ The "weird" (as compared to purely random processes) behavior of hydrologic and other geophysical processes was discovered by the English engineer E. H. Hurst (1950) in the framework of the design of the High Aswan Dam in Nile ⇒ Hurst phenomenon
- ◆ The Polish-French mathematician and engineer B. Mandelbrot (1965-1971) related it to the biblical story of the seven fat and the seven thin cows ⇒ Joseph effect
- ◆ The behavior has been characterized with several other names ⇒ long-term persistence, long-term memory, long-range dependence, scaling behavior
- ◆ Most of these names, even though correct, may be misleading for the conceptualization and understanding of the natural behavior and the causing mechanisms. Probably a better name ⇒ multi-scale fluctuation
- ◆ The behavior was verified to be omnipresent, not only in geophysical processes (hydrologic, climatic), but also in biological (e.g. tree rings), technological (e.g. computer networks), social and economical (e.g. stock market)
- In water resources design and management, it has unfavorable effects (increase of uncertainty)

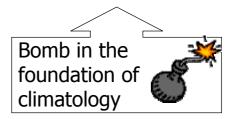
Easy detection and main effect of Hurst phenomenon

• Fundamental law of classic statistics $StD[\overline{X}_n] = \frac{\sigma}{\sqrt{n}}$

 \overline{X}_n = average of n variables σ = standard deviation of each variable n = aggregation scale (or sample size)

- Modified law in natural processes
- Example To have $\operatorname{StD}[\bar{X}_n]/\sigma = 10\%$
 - n = 30 in classic statistics
 - $n = 5\,000$ for the modified law with H = 0.8

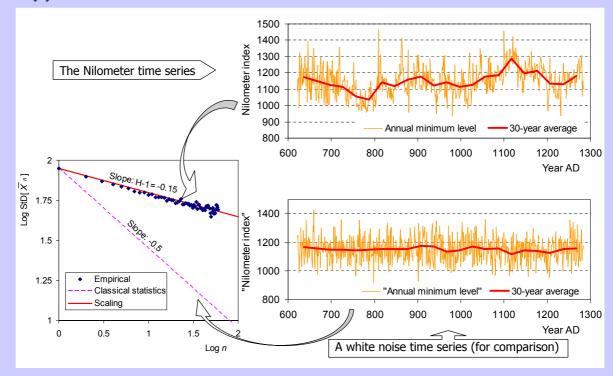
 $StD[\bar{X}_{n}] = \frac{\sigma}{n^{1-H}}, H > 0.5$



{2,4,14}

D. Koutsoyiannis, A stochastic hydrologic framework 11

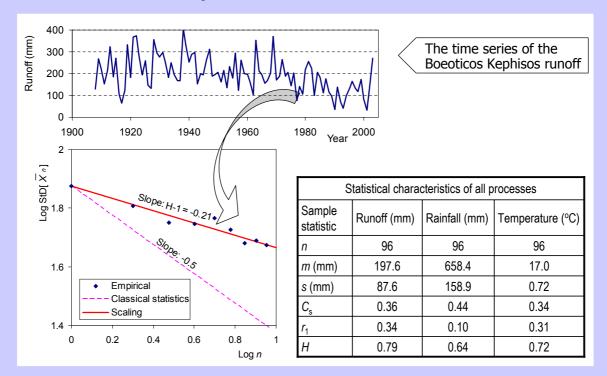
Incongruity of natural processes with typical random processes : (a) The Nilometer series



{1, 4,15}

D. Koutsoyiannis, A stochastic hydrologic framework 12

Incongruity of natural processes with typical random processes : (b) The Boeoticos Kephisos time series



Mathematical description of the Hurst phenomenon

{2,14}

- ◆ The mathematical description of the Hurst phenomenon is done on grounds of the probability theory and particularly the theory of stochastic process
- The simple relationship

$$\operatorname{StD}[\bar{X}_n] = \frac{\sigma}{n^{1-H}}$$

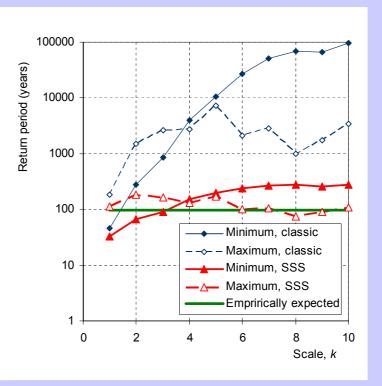
entails a definition (good for our purposes) of a model (stochastic process) reproducing the Hurst phenomenon; *n* is meant as a scale of aggregation (rather than sample size)

- (Hurst used a different formalism, in terms of the so called rescaled range, which is complicated and probably misleading)
- Today the stochastic process with the above property is called a Self-Similar process with Stationary intervals or a Simple Scaling Stochastic process (abbreviated as an SSS process)
- The SSS process was introduced by the Russian mathematician A. Kolmogorov (1940) who called it Wiener Spiral
- ◆ A significant contribution on the SSS process is due to the American mathematician J. Lamperti (1962) who called it a Semi-Stable Process
- ◆ The link of the SSS process with the Hurst phenomenon is due to B. Mandelbrot (1965), who called it Fractional Gaussian Noise

D. Koutsoyiannis, A stochastic hydrologic framework 13

Back to Boeoticos Kephisos - Adoption of the SSS process

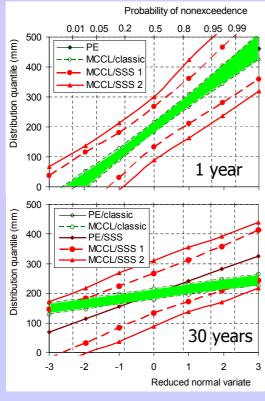
- The trend is a natural and usual behavior
- The persistent drought is not extraordinary; it is a natural and expected behavior



{1}

D. Koutsoyiannis, A stochastic hydrologic framework 15

Implications on uncertainty: Boeoticos Kephisos runoff



Statistical model	Total uncertainty in runoff (due to variability and parameter estimation) % of average Annual scale 30-year scale	
Classic	200	50
SSS	270	200

Classic model

Climate is what you expect Weather is what you get

SSS model

Weather is what you get ... immediately Climate is what you get

... if you keep expecting a long time

2. Explanation

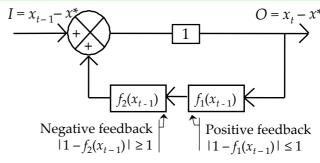
A climatic toy model: A simple system with nonlinear dynamics may produce the Hurst phenomenon

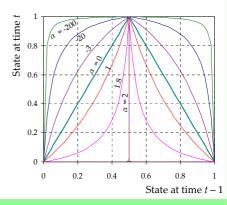
- A simplified climatic system is represented as a circuit with two feedback mechanisms, a positive (amplifying the departure from a stationary state x*) and a negative (reducing this departure)
- The combined action of the two mechanisms could be represented by a generalized tent transform:

$$x_{t} = \frac{(2 - \alpha) \min (x_{t-1}, 1 - x_{t-1})}{1 - \alpha \min (x_{t-1}, 1 - x_{t-1})}$$

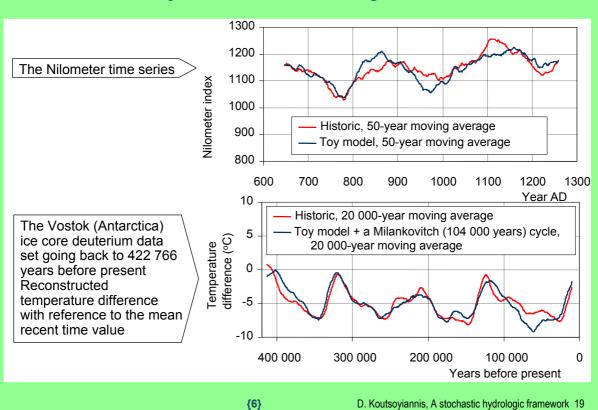
where $0 \le x_t \le 1$, $\alpha < 2$

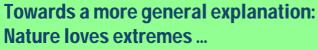
 The parameter α could be assumed to vary in time, following the same tent transform with a constant parameter β

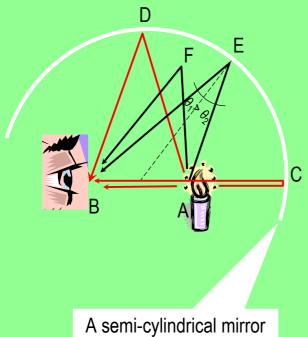




Demonstration: Toy model fitted to two long time series







Why light follows the red paths from A to B (AB, ACB, ADB) and not other (the black) ones (e.g. AEB, AFB)?

 The red paths are those that (a) reach the mirror and (b) form an angle of incidence equal to the angle of reflection

(True for most cases; not true for AB; not general or informative)

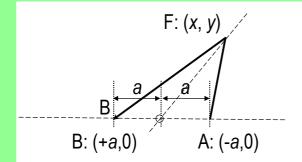
 The red paths have minimum travel time (or length)

(Fermat's principle – Not true for ADB)

 The red paths have extreme (stationary, i.e. minimum or maximum) travel time (or length)

(True)

The light example - no mirror



Assume that light can travel from A to B along a broken line with a break point F with coordinates (x, y).

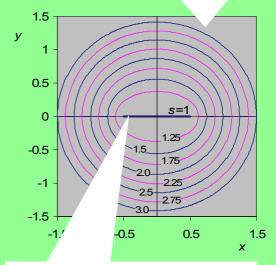
(This is not restrictive: later we can add a second, third, ... break points)

The travel distance is s(x, y) = AF + FB where

AF =
$$\sqrt{(x-a)^2 + y^2}$$

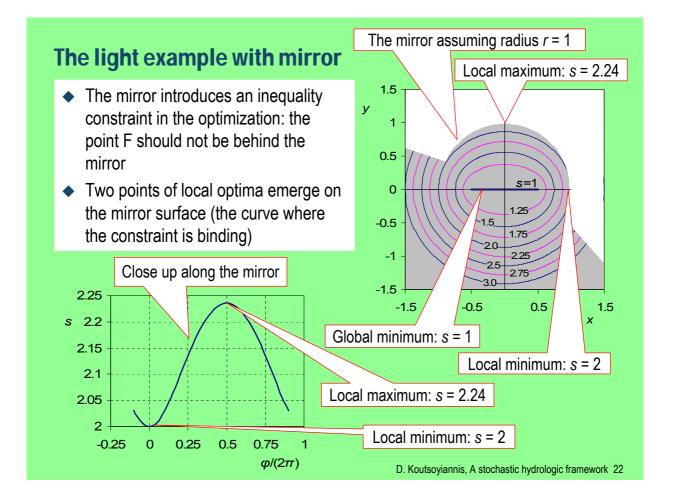
FB = $\sqrt{(x+a)^2 + y^2}$

Contours of the distance s(x, y) assuming a = 0.5



Line of minimum distance s(x, y) = 1Infinite points F essentially describing the same path

D. Koutsoyiannis, A stochastic hydrologic framework 21



A second example: a falling weight



Quantities involved

- ◆ Potential energy: V = -m g x
- Kinetic energy: $T = (1/2) m u^2 = (1/2) m (dx/dt)^2$
- ◆ Total energy: E = T + V
- ◆ Lagrangian: L = T V
- \bullet Action: $S = \int L dt$

Alternative methodologies to find equations for the movement

- 1. Directly by integrating $d^2x/dt^2 = g$
- 2. From conservation of total energy
- 3. From minimization of action (more difficult)
- ◆ All methodologies result in same solution $(x = g t^2/2, u = dx/dt = g t)$

Principle of least action (Hamilton's principle – applicable both in classical and in quantum physics)

- From all possible motions between two points, the true motion has least action
- More correct to substitute "extreme" (or "stationary") for "least"

D. Koutsoyiannis, A stochastic hydrologic framework 23

How nature works? (a hypothesis ...)

Property

- She preserves a few quantities (mass, momentum energy,)
- She optimizes a single quantity
 (Dependent on the specific system -Difficult to find what this quantity is)
- She disallows some states
 (Dependent on the specific system – Maybe difficult to find)

Mathematical formulation

One equation per preserved quantity:

$$g_i(\mathbf{s}) = c_i, \quad i = 1, ..., k$$

where c_i constants; **s** the size n vector of state variables ($n \ge k$, sometimes $n = \infty$)

◆ A single "optimation":

[i.e. maximize/minimize f(s)] This is equivalent to many equations (as many as required to determine s)

Conversely, many equations can be combined into an "optimation"

Inequality constraints:

$$h_i(\mathbf{s}) \ge 0, \quad j = 1, ..., m$$

• In conclusion, we may find how nature works solving the problem:

s.t.
$$g_i(\mathbf{s}) = c_i$$
, $i = 1, ..., k$
 $h_i(\mathbf{s}) \ge 0$, $j = 1, ..., m$

The typical "optimizable" quantity in complex systems ...

- ... is entropy entropie Entropie entropia entropia entropia entropia entropija энтропия ентропія 熵 エントロピー שנטרופיה εντροπία
- The word is ancient Greek (εντροπία, a feminine noun meaning: turning into; turning towards someone's position; turning round and round)
- ◆ The scientific term is due to Clausius (1850)
- The entropy concept was fundamental to formulate the second law of thermodynamics
- ◆ Boltzmann (1877), then complemented by Gibbs (1948), gave it a statistical mechanical content, showing that entropy of a macroscopical stationary state is proportional to the logarithm of the number *w* of possible microscopical states that correspond to this macroscopical state
- ◆ Shannon (1948) generalized the mathematical form of entropy and also explored it further. At the same time, Kolmogorov (1957) founded the concept on more mathematical grounds on the basis of the measure theory

D. Koutsoyiannis, A stochastic hydrologic framework 25

What is entropy?

- Entropy is defined on grounds of probability theory
- For a discrete random variable X taking values x_j with probability mass function $p_j \equiv p(x_j)$, j = 1,...,w, the Boltzmann-Gibbs-Shannon (or extensive) entropy is defined as

$$\varphi := E[-\ln p(X)] = -\sum_{j=1}^{w} p_j \ln p_j$$
, where $\sum_{j=1}^{w} p_j = 1$

◆ For a continuous random variable *X* with probability density function *f*(*x*), the entropy is defined as

$$\varphi := E[-\ln f(X)] = -\int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
, where $\int_{-\infty}^{\infty} f(x) dx = 1$

- In both cases the entropy φ is a measure of **uncertainty** about X and equals the **information** gained when X is observed.
- ◆ In other disciplines (statistical mechanics, thermodynamics, dynamical systems, fluid mechanics), entropy is regarded as a measure of **order** or **disorder** and **complexity**.
- Generalizations of the entropy definition have been introduced more recently (Renyi, Tsallis)

Entropy maximization: The die example

◆ What is the probability that the outcome of a toss of a die will be *i*? (*i* = 1, ..., 6)

◆ The entropy is:

$$\varphi := E[-\ln p(X)] = -p_1 \ln p_1 - p_2 \ln p_2 - \dots - p_6 \ln p_6$$

◆ The equality constraint (mass preservation) is

$$p_1 + p_2 + \dots + p_6 = 1$$

- ◆ The inequality constraint is $p_i \ge 0$
- Solution of the optimization problem (e.g. by the Lagrange method) yields a single maximum: $p_1 = p_2 = ... = p_6 = 1/6$
- ◆ This method, the application of the Maximum Entropy Principle (mathematically, an "optimation" form) is equivalent to the Principle of Insufficient Reason (Bernoulli-Laplace; mathematically, an "equation" form)

D. Koutsoyiannis, A stochastic hydrologic framework 27

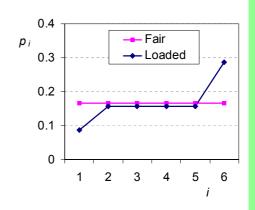
Entropy maximization: The loaded die example

• What is the probability that the outcome of a toss of a die will be i (i = 1, ..., 6) if we know that it is loaded, so that $p_6 - p_1 = 0.2$?

- ◆ The IS principle does not work in this case
- ◆ The ME principle works. We simply pose an additional constraint:

$$p_6 - p_1 = 0.2$$

◆ The solution of the optimization problem (e.g. by the Lagrange method) is a single maximum:



Entropy maximization: The temperature example

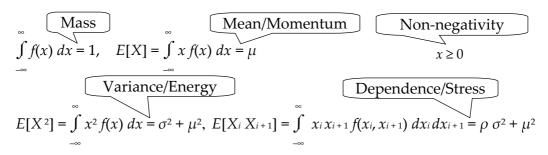
- What will be the temperature in my house (T_H) , compared to that of the environment (T_F) ? (Assume an open window and no heating equipment)
- ◆ Take a space of environment (E) in contact to the house (H) with volume equal to that of the house

- ◆ Partition the continuous range of kinetic energy of molecules into several classes i = 1 (coldest), 2, ..., k (hottest)
- Denote p_i the probability that a molecule belongs to class i, and partition it to p_{Hi} and p_{Ei} , if the molecule is in the house or the environment, respectively
- Form the entropy in terms of p_{Hi} and p_{Ei}
- Maximize entropy conditional on p_{Hi} + p_{Ei} = p_i
- The result is $p_{Hi} = p_{Fi}$
- Equal number of molecules of each class are in the house and the environment, so $T_H = T_F$
- This could be obtained also from the IR principle

D. Koutsoyiannis, A stochastic hydrologic framework 29

Formalization of the principle of maximum entropy

- In a probabilistic context, the principle of ME was introduced by Janes (1957)
- In a probabilistic context, the principle of ME is used to infer unknown probabilities from known information
- In a physical context, it determines thermodynamical states
- ◆ The principle postulates that the entropy of a random variable should be at maximum, under some conditions, formulated as constraints, which incorporate the information that is given about this variable
- ◆ Typical constraints used in a probabilistic or physical context are:



Some results of ME interesting to hydrology

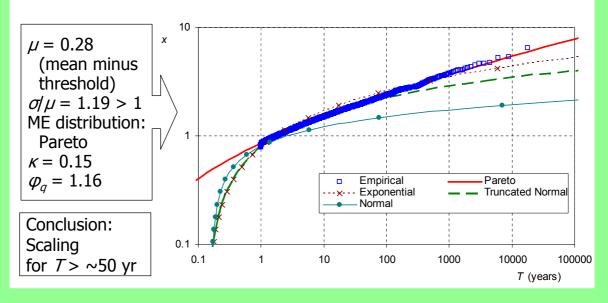
- Assume that a hydrometeorological variable X (e.g. temperature, rainfall, runoff) is continuous and positive, has known mean μ and known variation σ/μ . Estimate the distribution function with only this information, applying the ME principle
- ♦ The results are:
 - Maximum entropy + Low variation → (Truncated) normal distribution
 - Maximum entropy + High variation → Power-type (Pareto) distribution
 - Maximum entropy + High variation + High return periods → State scaling
- ◆ The celebrated state scaling ($x_T \sim T^{\kappa}$, where T is the return period and x_T the corresponding quantile) is only:
 - a consequence of the ME principle,
 - an approximation, good for high return periods and for variables with high variation
- Real world time series (especially long ones) validate the applicability of the ME principle in hydrometeorological processes

{8}

D. Koutsoyiannis, A stochastic hydrologic framework 31

ME application to extreme daily rainfall worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100 years of measurements; series above threshold, standardized by mean and unified; period 1822-2002; 17922 station-years of data



{8,10,11}

D. Koutsoyiannis, A stochastic hydrologic framework 32

Entropic quantities of a stochastic process

The order 1 entropy (or simply entropy or unconditional entropy) refers to the marginal

distribution of the process
$$X_i$$
:
$$\varphi := E[-\ln f(X_i)] = -\int_{-\infty}^{\infty} f(x) \ln f(x) \ dx, \quad \text{where } \int_{-\infty}^{\infty} f(x) \ dx = 1$$

The order *n* entropy refers to the joint distribution of the vector of variables $\mathbf{X}_n = (X_1, \ldots, X_n)$ X_n) taking values $\mathbf{x}_n = (x_1, ..., x_n)$:

$$\varphi_n := E[-\ln f(\mathbf{X}_n)] = -\int_{D_n} f(\mathbf{x}_n) \ln f(\mathbf{x}_n) d\mathbf{x}_n$$

 $\varphi_n := E[-\ln f(\mathbf{X}_n)] = -\int\limits_{D_n} f(\mathbf{x}_n) \ln f(\mathbf{x}_n) d\mathbf{x}_n$ The *order m conditional entropy* refers to the distribution of a future variable (for one time step ahead) conditional on known *m* past and present variables (Papoulis, 1991):

$$\varphi_{c,m} := E[-\ln f(X_1|X_0, ..., X_{-m+1})] = \varphi_m - \varphi_{m-1}$$

The *conditional entropy* refers to the case where the entire past is observed:

$$\varphi_{c} := \lim_{m \to \infty} \varphi_{c,m}$$

The information gain when present and past are observed is:

$$\psi := \varphi - \varphi_{c}$$

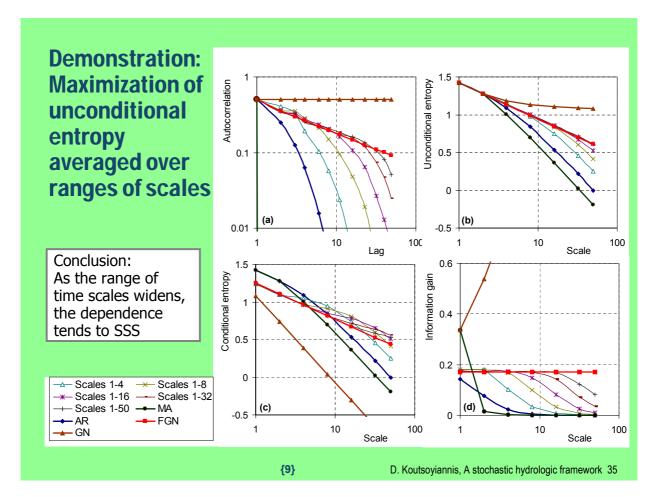
Note: notation assumes stationarity

D. Koutsoyiannis, A stochastic hydrologic framework 33

Entropy maximization for a stochastic process

- ◆ The purpose is to determine not only marginal probabilities but the dependence structure as well
- All five constrains are used (mass/mean/variance/dependence/non-negativity)
- ◆ The lag one autocorrelation (used in the dependence constraint) is determined for the basic (annual) scale but the entropy maximization is done on other scales as well
- The variation is low $(\sigma/\mu << 1)$ and thus the process is virtually Gaussian (intermediate result). This is valid for annual and over-annual time scales
- For a Gaussian process the *n*th order entropy is given as $\varphi_n = \ln \sqrt{(2 \pi e)^n \delta_n}$ where δ_n is the determinant of the autocovariance matrix $c_n := \text{Cov}[\mathbf{X}_n, \mathbf{X}_n]$.
- ◆ The autocovariance function is assumed unknown to be determined by application of the ME principle. Additional constraints for this are:
 - Mathematical feasibility, i.e. positive definiteness of c_n (positive δ_n)
 - Physical feasibility, i.e. autocorrelation function (a) positive and (b) non increasing with lag and time scale

(Note: periodicity that may result in negative autocorrelations is not considered here due to annual and over-annual time scales)



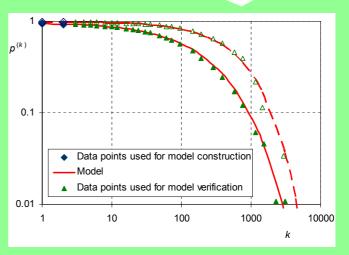
Results of the ME principle in stochastic processes

- Maximum entropy + Low variation + Dominance of a single time scale → Normal distribution + Time independence
- Maximum entropy + Low variation + Time dependence + Dominance of a single time scale → Normal distribution + Markovian (short-range) time dependence
- Maximum entropy + Low variation + Time dependence + Equal importance of time scales → Normal distribution + Time scaling (long-range dependence / Hurst phenomenon)
- The time scaling behavior is a result of the principle of maximum entropy
- ◆ The omnipresence of time scaling in numerous long hydrologic time series, validates the applicability of the ME principle

Another peculiar dependence explained by ME

- Rainfall at small scales is intermittent
- The dependence of the rainfall occurrence process is not Markovian neither scaling but in between; it has been known as clustering or overdispersion
- The models used for the rainfall occurrence process (point processes) are essentially those describing clustering of stars and galaxies
- The ME principle applied with the binary state rainfall process in more or less the same way as in the continuous state process explains this dependence

Probability $p^{(k)}$ that an interval of k hours is dry, as estimated from the Athens rainfall data set and predicted by the model of maximum entropy for the entire year (full triangles and full line) and the dry season (empty triangles and dashed line)



{3}

D. Koutsoyiannis, A stochastic hydrologic framework 37

Interpretation of results

- The successful application of the ME principle in nature offers an explanation for of a plethora of phenomena (e.g. thermodynamic) and statistical behaviors including
 - the emergence of normal distribution, in many (but not all) cases
 - the scaling behavior in state, in other cases
 - the scaling behavior in time
 - the clustering behavior in rainfall occurrence
- ◆ This can be interpreted as dominance of uncertainty in nature
- It harmonizes with the Socratic view: « Έν οἶδα, ὅτι οὐδέν οἶδα» (One I know, that I know nothing)
- This view was not a confession of modesty Socrates regarded the knowledge of ignorance as a matter of supremacy
- In this respect, the knowledge of the dominance of uncertainty can assist to safer design and management of hydrosystems

1. Operational synthesis

Stochastic simulation/forecasting of hydrologic processes

- Question: Why simulated series?
- Answer:
 - Analytical solutions for a hydrosystem as complex as that of Athens are not feasible or would assume oversimplification of the system
 - Of numerical methods, Monte Carlo simulation (stochastic simulation) is the most convenient
 - Detailed inflow and other (rainfall, evaporation) hydrologic series are needed at many sites simultaneously and at several time scales for Monte Carlo simulation the hydrosystem
 - The acceptable failure probability level for Athens is of the order of 10⁻²: one failure in 100 years on the average
 - For a reasonable estimation error in the failure probability we need 1000-10 000 years of data
 - Historic hydrologic records are too short

Requirements for stochastic simulation

- Multivariate model
- 2. Multiple time scales of operation: annual to monthly or sub-monthly
- 3. Multiple time scales of preservation: multi-year (reproduction of the Hurst phenomenon) to sub-monthly (reproduction of sub-annual periodicity)
- 4. Preservation of essential marginal statistics up to third order (skewness)
- 5. Preservation of joint second order statistics
 - autocorrelations of any type and any lag
 - concurrent cross-correlations
- 6. Parsimony of parameters
- 7. Performance in simulation mode (steady state simulations) and in forecast mode, given the current and historic values (terminating simulations)

Models with such features did not exist (particularly, the ARMA type models were not useful)

D. Koutsoyiannis, A stochastic hydrologic framework 41

Stochastic simulation strategy

- Stage 1: Generate annual time series
 - Use a parsimonious model yet capable of describing over-annual scaling
 - No need to describe sub-annual periodicity
- Stage 2: Disaggregate the annual into sub-annual time series
 - Use a parsimonious model structure such as PAR(1)
 - Couple it to the annual model
 - So, no need to describe over-annual scaling explicitly
- A one stage procedure to handle over-annual and sub-annual properties simultaneously has also been studied but not implemented operationally so far

Annual model: The generalized autocovariance function (GAS)

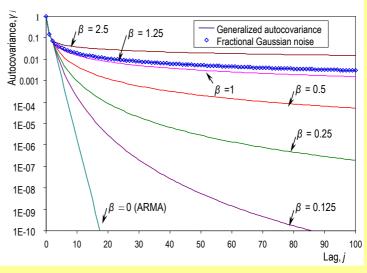
General GAS expression

$$\gamma_j = \gamma_0 (1 + \kappa \beta |j|^{\alpha})^{-1/\beta}$$
where γ_j : lag j autocovariance;

 γ_0 : variance; κ , α , β : parameters

- Fittings options
 - Optimize parameters to best fit historic autocorrelograms
 - Preserve explicitly γ_1 , γ_2 and Hurst exponent
 - Explicit preservation of more y_i is also possible
- GAS behavior
 - For $\beta = 0 \Rightarrow ARMA$: $\gamma_i = \gamma_0 \exp(-\kappa |j|^{\alpha})$
 - For $\kappa = (1/\beta) (1 1/\beta)^{-\beta}$ $(1-1/2\beta)^{-\beta}$ and $\alpha=1 \Rightarrow$ **FGN**

Demonstration of GAS for α = 1 and several values of β



{17} D. Koutsoyiannis, A stochastic hydrologic framework 43

Annual model: Generalized generating scheme for any covariance structure

Typical (backward) moving average (**BMA**) scheme: $X_i = ... + a_1 V_{i-1} + a_0 V_i$ where V_i independent random variables and a_i numerical coefficients

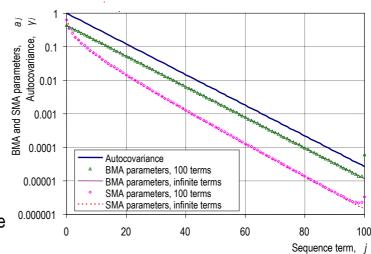
Symmetric moving average (**SMA**) scheme $X_i = ... + a_1 V_{i-1} + a_0 V_i + a_1 V_{i+1} + ...$

SMA has several advantages over BMA. Among them, it allows a closed solution for a;

$$s_a(\omega) = [2 s_v(\omega)]^{1/2}$$

where $s_a(\omega)$ and $s_v(\omega)$ the Discrete Fourier Transforms of the series a_i and γ_i , respectively.

Both schemes are applicable for multivariate problems



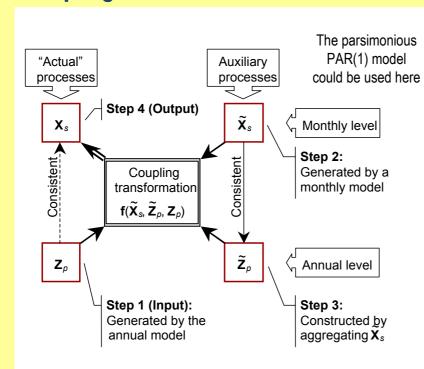
Annual model: Stochastic simulation in forecast mode

- In forecast mode, the observed present and past values must condition the hydrologic time series of the future
- This is attainable using a two-step algorithm
 - 1. Generate future time series without reference to the known present and past values
 - 2. Adjust future time series using the known present and past values and a linear adjusting algorithm
- The linear adjusting algorithm:
 - 1. is expressed in terms of covariances among variables
 - 2. preserves exactly means, variances and covariances
 - 3. is easily implemented

{17}

D. Koutsoyiannis, A stochastic hydrologic framework 45

Coupling stochastic models of different time scales



The linear transformation

$$X_s = \widetilde{X}_s + h (Z_p - \widetilde{Z}_p)$$

where

$$\mathbf{h} = \text{Cov}[\mathbf{X}_s, \mathbf{Z}_p] \cdot \\ \{\text{Cov}[\mathbf{Z}_p, \mathbf{Z}_p]\}^{-1}$$

preserves the vectors of means, the variance-covariance matrix and any linear relationship that holds among X_s and Z_p .

Handling of skewness in multivariate problems: Optimized decomposition of covariance matrices

Consider any linear multivariate stochastic model of the form

$$Y = aZ + bV$$

where **Y**: vector of variables to be generated, **Z**: vector of variables with known values, **V**: vector of innovations, and **a** and **b**: matrices of parameters

◆ The parameter matrix **b** is related to a covariance matrix **c** by

$$\mathbf{b} \mathbf{b}^T = \mathbf{c}$$

- ◆ This equation may have infinite solutions or no solution (if **c** is not positive definite)
- The skewness coefficients ξ of innovations V depend on b
- The smaller the values of ξ, the more attainable the preservation of the skewness coefficients of the actual variables Y
- ◆ Therefore, the problem of determination of **b** can be seen as an optimization problem that combines
 - minimization of skewness ξ, and
 - minimization of the error ||b b^T c||
- A fast optimisation algorithm has been developed for this problem
- The algorithm works even for c that are not positive definite

{18}

D. Koutsoyiannis, A stochastic hydrologic framework 47

An alternative modelling strategy - forecast oriented

◆ Consider the prediction of a single variable *Y*, conditional on several (even too many) other variables with known values. Use the linear model:

$$Y = aZ + V$$

where **Z**: vector of variables with known values, **a**: matrix of parameters and *V*: prediction error, assumed independent of **Z**

◆ Assume that all variables (Y and Z) are normally distributed with zero mean (a prior normalizing transformation may be needed for this). Obtain:

 $\mathbf{a} = \mathbf{\eta}^{\mathsf{T}} \mathbf{h}^{-1}$ and $\text{Var}[V] = \gamma_0 - \mathbf{\eta}^{\mathsf{T}} \mathbf{h}^{-1} \mathbf{\eta}$ where $\mathbf{\eta} := \text{Cov}[Y, \mathbf{Z}], \mathbf{h} := \text{Cov}[\mathbf{Z}, \mathbf{Z}], \gamma_0 = \text{Var}[Y]$

- lackAssume that all items of vector $m{\eta}$ and matrix $m{h}$ can be expressed in terms of a handful of parameters $m{\pi}$ (e.g. autocorrelation coefficients) that describe either long- or short-term dependence
- Use multi-scale entropy optimization to obtain (numerically, in terms of π) the vector η and those items of h that represent long-term dependence
- Use single-scale entropy optimization to obtain (in terms of π) the remaining items of h that do not represent long-term dependence. This can be done analytically using an auxiliary lower triangular matrix b such that:

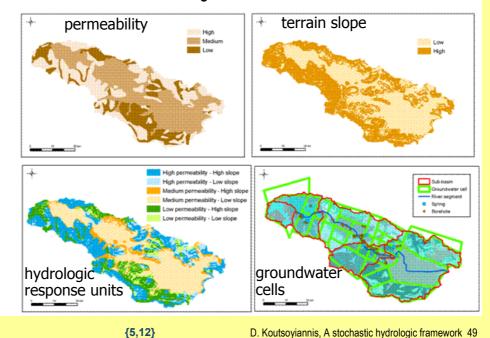
$$\mathbf{b} \mathbf{b}^T = \mathbf{h}$$

It can be shown that unspecified items of **h** correspond to zero items in **b**; all nonzero items of **b** can be obtained then by Cholesky decomposition

- For forecasts use the above model with V = 0
- ◆ For stochastic simulation use the same model with *V* generated from the normal distribution with the specified variance

Models developed are not only stochastic ...

In the Boeoticos Kephisos River basin a hydrologic model of the entire hydrologic cycle had to be developed, which was demanding due to the extended karstic activity and the intensive withdrawals for irrigation



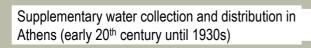
References

- 1. Koutsoyiannis, D., H. Yao, and A. Georgakakos, Monthly flow prediction from a long record in Nile: a comparison of stochastic, chaotic and neural network methods (2006 in preparation)
- Koutsoyiannis, D. A. Efstratiadis and K. P. Georgakakos, Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches, 2005 (submitted).
- 3. Koutsoyiannis, D., An entropic-stochastic representation of rainfall intermittency: The origin of clustering and persistence, *Water Resources Research*, 2005 (in press).
- 4. Koutsoyiannis, D., Nonstationarity versus scaling in hydrology, *Journal of Hydrology*, 2005 (in press).
- 5. Rozos, E., and D. Koutsoyiannis, A multicell karstic aquifer model with alternative flow equations, Journal of Hydrology, 2005 (in press).
- 6. Koutsoyiannis, D., A toy model of climatic variability with scaling behaviour, Journal of Hydrology, 2005 (in press).
- Langousis, A., and D. Koutsoyiannis, A stochastic methodology for generation of seasonal time series reproducing overyear scaling, *Journal of Hydrology*, 2005 (in press).
- 8. Koutsoyiannis, D., Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, *Hydrological Sciences Journal*, 50(3), 381-404, 2005.
- Koutsoyiannis, D., Uncertainty, entropy, scaling and hydrological stochastics, 2, Time dependence of hydrological processes and time scaling, Hydrological Sciences Journal, 50(3), 405-426, 2005.
- Koutsoyiannis, D., Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, *Hydrological Sciences Journal*, 49(4), 575-590, 2004.
- 11. Koutsoyiannis, D., Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, *Hydrological Sciences Journal*, 49(4), 591-610, 2004.
- 12. Rozos, E., A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, *Hydrological Sciences Journal*, 49(5), 819-842, 2004.
- Koutsoyiannis, D., G. Karavokiros, A. Efstratiadis, N. Mamassis, A. Koukouvinos, and A. Christofides, A decision support system for the management of the water resource system of Athens, *Physics and Chemistry of the Earth*, 28(14-15), 599-609, 2003.
- 14. Koutsoyiannis, D., Climate change, the Hurst phenomenon, and hydrological statistics, *Hydrological Sciences Journal*, 48(1), 3-24, 2003.
- 15. Koutsoyiannis, D., The Hurst phenomenon and fractional Gaussian noise made easy, *Hydrological Sciences Journal*, 47(4), 573-595, 2002.
- 16. Koutsoyiannis, D., Coupling stochastic models of different time scales, Water Resources Research, 37(2), 379-392, 2001.
- Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36(6), 1519-1533, 2000.
- 18. Koutsoyiannis, D., Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, *Water Resources Research*, 35(4), 1219-1229, 1999.
- Koutsoyiannis, D., and A. Manetas, Simple disaggregation by accurate adjusting procedures, Water Resources Research, 32(7), 2105-2117, 1996.

D. Koutsoyiannis, A stochastic hydrologic framework 51

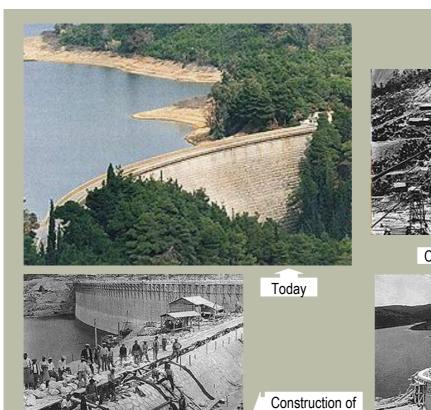
Early stage

The Hadrianean aqueduct

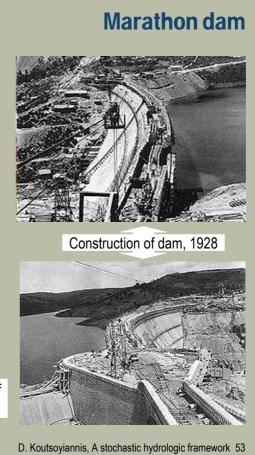


Milestones

D. Koutsoyiannis, A stochastic hydrologic framework 52



Hydrosystem More pictures



spillway, 1928



Hylike lake

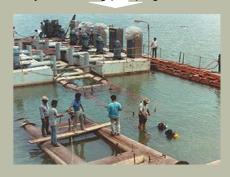
Kiourka pumping station

Hylike, main pumping station

Hydrosystem

Hylike lake and pumping stations

Hylike, floating pumping stations



D. Koutsoyiannis, A stochastic hydrologic framework 55

Mornos reservoir

Mornos canal at Thebes plain

Siphon at Distomo

Hydrosystem

Mornos reservoir and aqueduct

Mornos canal at Delphi

D. Koutsoyiannis, A stochastic hydrologic framework 56



Hydrosystem

supervizing & control centre

Control of Mornos aqueduct

Canal flow control construction

D. Koutsoyiannis, A stochastic hydrologic framework 57

Evinos dam and tunnel

Evinos dam during construction

Construction of the Evinos-Mornos connection tunnel

Hydrosystem

