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‘ _ The proposed stochastic method suggests
3 that the uncertainty of runoff, even

2. Rationale and main hypotheses 6. The scaling property (the Hurst phenomenon) 10. Conditional uncertainty (for the observed past) 14. Scenario-based analysis of uncertainty: 18. Further validation
e For observed past (X, , = X, ), the parameters whose conditional confidence limits are IPCC scenarios , MO dels and data sets e Further validation of the proposed method is done against the potential arguments that:

sought are the distribution quantiles e IPCC scenarios for future climatic projections by GCM (a) the 20th century data used in this study are already affected by anthropogenic

¢ Empirical )
——— ~Classic yzl) = E[Xl(.k) | xo0,n] + Co StD[Xl(,k) | X0,] — SRES A2: high population growth (15.1 billion in 2100), high energy and carbon intensity, and influences,

Scaling (k correspondingly high CO, emissions (concentration 834 cm?®/m? in 2100) (b) the natural variability would be less than observed in the 20t century, and

The evolution of climate is represented as a stochastic process; if X denotes an where ¢® := StD[X®] is the J ) hat is i b - , h _ NS (€O _
atmospheric or land surface variable at the annual scale, then climate is represented standard deviation of the random and y,; that1s given by a similar expression, where — SRES B2: lower population (10.4 billion in 2100), energy system predoménar;t]y hydrocarbon- (c) as a consequence, the uncertainty limits estimated by the proposed method are
based but with reduction in carbon intensity (CO, concentration 601 cm’/m~ in 2100) artificial (not representing the natural variability) and too wide

. . . . . _20n- : (k) = (1) . 0 k G 1 i-k
by the moving average process, with a typical time window k = 30: variable X® at scale k and ¢ = o' 04| | x| Xon =" X:) | X0 + (1 _ —j X X0, 1>k — IS92a (older): in between the above two (population 11.3 and CO, concentration 708 cm3/m? in

X®=X+...+X. _,.,)k i)sft}}g'e standard deviation of each i k) ik 2100) * To put light to these arguments, a longer data set, not related to the case study, was

* A climatic characteristic at a certain place is not a parameter, constant in time, but e In classical statistics we have the
rather a variable representing the long-term (e.g. 30-year) time average of a certain fundamental law
natural process, defined on a finer scale o) = /K12
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The distributional ¢ f th ol and d d timated " N " " i o AN . ¢ GCM coupled atmosphere-ocean global models gsed: the mean annual temperature recqrd of Berlin/Tempe.elhof,.or}e of the longest
€ distributional parameters ot the process, marginal and dependence, are esumate As shown in the figure, the | xon = PR | X0 + | 1 7% i< k — ECHAM4/OPYC3: developed in co-operation between the Max-Planck-Institute for instrumental meteorological records going back to 1701 (with missing data before 1756)
from an available sample by statistical methods historical time series follow not Meteorology and Deutsches Klimarechenzentrum in Hamburg, Germany; mean resolution :
* The data of the period 1908-2003 (as

this law, but the generalized law 02 04 06 0 | 2 04 06 of The final equations for calculating the relevant quantities, derived in Koutsoyiannis et 2.81° both in latitude and longitude (a total of 64 latitudes x 12§,10ngit11des) . . .
o® = g/k1-H Log k Log k al. (2006) are — CGCM2: developed at the Canadian Centre for Climate Modeling and Analysis; resolution in the Boeoticos Kephisos case) —— Historical, period with complete data ---x:-- Historical, period with missing data

3.75° both in latitude and longitude (a total of 48 latitudes x 96 longitudes) were used to estimate the - - - - Sample mean —o— Point hindcast
— — MCCL, SSS, unconditional MCCL, SSS, conditional

e Empirical *) 1 1 1 1 n) — HADCMS3: developed at the Hadley Centre for Climate Prediction and Research; resolution parameters of the scaling model (H |7 7 [ 0 cooiic oo gio MOGL. oo e
L Classic E[X, | X0.1] = k Qin(H)+| 1 - k Gi-kn(H) | pi+ k [1-in(H)]+| 1 - k [1-¢i-xn(H)] [ x, , 12k 2.5°in latitude and 3.75° in longitude (a total of 73 latitudes x 96 longitudes) =(0.78) and then climatic hindcasts : : : :
* The latter law: < Synthetic runoff . . , * GCM 0‘“2‘(1;5 (from http;/ / igccfdc-;éu-u?-ac-uﬁ/ ﬁldc_gcn}data.ht?l) . f were calculated in terms of
defi the ti li 0 & : ) 1 1 ) 1 ) — MPO1GGO1: output of ECHAM4/OPYC3 with historical inputs for 1860-1989 and inputs from 4 ; ;
o (a) defines the time scaling NN % assuming E[X; 1xon]=" @in(H) p+7 [1=in(H)] x, +(1 -7 1S92a beyond 1990 P P ggﬁgggﬁlgﬁgz ‘Ef;”;{aie; ,32‘915%
Due to the long-range dependence, the uncertainty limits of the future are much behaviour); ‘. NG mdepenc(i;nncs - — MP01GS01: same as in 1 but also considering the sulphate concentration and climatic time scale of 30 years)
wider than predicted by classical statistics and are also influenced by the available . ' . e () _ : () v : — CCCma_A2: output of CGCM?2 with historical inputs for 1900-1989 and inputs from scenario
Observationlz of the pasf y (b) 1c(iefmes a st_ocha}stlc plyocess T Empiieal 6 StD[X, |xon] = k"1 o\[m(H), izk StD[X; Ixon] = o \JUn(H), i<k A2 beyond 1990 P P p This was done for both the scaling
nown as simple scaling

Future climate trend ted b | circulati dels (GCM) should b tovhastic (SSS e — CCCma_B2: same as in 3 but for scenario B2 beyond 1990 and the classic statistical model; the
i uredc' lmf? ef amew SUES?S neert, genef)a CC111'CU imat 12(1)3 a isti o g f :tgtcioisaic (intezxﬁogf Zss(e(ijf_ ' S - AR where ¢, (H) is a function of the lag i, the sample size n and the Hurst coefficient H, - HADCM3_A2: 0‘”5‘” of CGCM2 with historical inputs for 1950-1989 and inputs from non used part of the series was )
viewed In the framework of uncertainty bands estimated by statistics accounting for Y 2 04 06 O 2 04 06 O whereas 1,(H) is a function of the lag i and the Hurst coefficient H; both are defined in scenario A2 beyond 1990 compared with the confidence 7

scaling behaviour similar process) Koutsoyiannis et al. (2006) and demonstrated in panel 11 — HADCM3_ B2: same as in 5 but for scenario B2 beyond 1990 limits 1730 1760 1790 1820 1850 1880 1910 1940 1970 2000

—_
©

1 Aliartos (
\Y X

| == —=—Classic

Scaling rainfall (mm) i

The climatic uncertainty is the result of at least two factors, the climatic variability and
the uncertainty of parameter estimation (sampling uncertainty)

A climatic process exhibits scaling behaviour, also known as long-range dependence,
multi-scale fluctuation or the Hurst phenomenon (Koutsoyiannis, 2002, 2003, 2005);
this has been verified both in long instrumental hydrometeorological (and other)
series and proxy data
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where the constant H is known as
the Hurst coefficient
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3 Test case and data sets T 7. The impo%‘tance of the scaling behaviour in typical 11. Demonstration of quantities involved in the 15. Comparison of GCM outputs with historical data 19. Conclusions
A 2 hydrological tasks estimation of conditional climatic confidence limits Rainfall; Temperature; »  Classic statistics, applied to climatology and hydrology, describes only a portion of

* Boeoticos Kephisos River basin: a closed L
basin (i.e. without outlet to the sea), with an g o ¥ In the observed 96-year flow record of Boeoticos Kephisos, there are multi-year * The function ¢, ,(H) was evaluated for sample size n = 100 (rounding off 96, which is

) . .
la<lz;e1r&slt(i)cf slgligfr%(alzle" ;Irlﬁsrgy cf?gﬂfga?{gﬁﬁ s periods of high flows and low flows (persistent droughts, such as a recent drought the historical sample size)
! P that lasted 7 years); this is observed in flow records of other rivers as well Both ¢, ,4o(H) and ¢,(H) were evaluated numerically for different values of i and H — % HADCM3_A28&B2 | statistics so as to capture interannual variability

Creece, part of the water supply system of and then approximate analytical expressions were established, which are The SSS framework applied with past hydro-climatic records, is a feasible step towards

Athens whose history, as regards hydraulic . o If such behaviour is modelled with i - _ : A : : , , (
i100(H) =1~ QH-1)1[1-¢, (1 -H)]), ¢;=0.75+0.1 In i, ¢, =2 — 3.3 exp[~(0.18 In 1)37] | —e—Historic , i ¢ making more reliable estimates of future uncertainty and risk for water management

infrastructure and management, extends = famdy classical statistics, return periods of R & MPO1GGOT - ‘ _ , T )
' 100000 | | | ‘ f - o~ MP01GS0 o - The uncertainty bands obtained from the SSS framework are significantly wider (about

backward to at least 3500 ' : 3-10° i | | | ‘ _ +lni /0. , : % |
ac War. o.a. eas years 10 1Q years are obtained, whereas for | | | : w(H)=1-2H-1)2*i[1-(2-1.28/i%%) (1-H)] | ﬁiggﬂﬁ : 3 | A 3 times) than those obtained by classic statistics
Data availability extends for about 100 years 3 the given record length we would expect | | | , —— - . . . . .
(the longest data set in Greece) and L _ ) ; 0ds of the order of 102 Lag, i o — The detailed case study involving three important hydrometeorological processes
5 : - - Ny feturn periods ot the ordet o years (temperature, rainfall and runoff) in a catchment in Greece provides evidence that the
modelling attempts with good performance

h Ireadv b d the hvd t SSS, rather than the classic, uncertainty bands are applicable
ozos etal, 2004y, Do This was verified further using a much longer instrumental meteorological record
(Rozos et al., 2004).

: : (mean annual temperature at Berlin)
The relatively long records made possible : . To capture anthropogenic climate changes, climatic model outputs should be
the identification of the scaling Return periods of the minimum and

; : ; incorporated in an uncertainty analysis and it can be anticipated that future
behaviour of rainfall and Sample statistic Temperature (°C) Rainfall (mm) Runoff (mm) maximum of the average, over scale k=1 to

period 1960-89 s natural uncertainty and underestimates seriously the risk if long-range dependence is

~ = MP01GGO1 | present

U GComaAza B2 Simple scaling stochastic (SSS) processes offer a sound basis to adapt hydro-climatic
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In contrast, SSS statistics (Koutsoyiannis,
2003) give reasonable results
(close to expectation)
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uncertainty is even greater than produced by the SSS framework

runoff (Koutsoyiannis, Size, n 96 96 96 10 years, runoff of Boeoticos Kephisos from —+— Minimum, classic \ T ] | | The GCM outputs generally predict that temperature will increase significantly, i.e.
2003) o) 17.0 658.4 197.6 the 96-year runoff record; the return ‘ — —— — Maximum, classic |- ' 041 1 N — T beyond stationary uncertainty bands; at the same time the GCM outputs for rainfall

Mean, x
>0 0 c | | b Oct N D J Feb M A M J Jub A S . . . .o
0.72 158.9 87.6 periods were calculated assuming that the 1 —&—Minimum, SSS : ij oct Mov Dec e Feb Mar Aer May dm o Aug e e and the resulting runoff do not display significant future changes

_ Standard deviation, s N i - | ‘ ‘
Sample Statistics Of. the Variation, Cy= s/m 0.04 0.24 0.44 distribution is normal for all scales and that | — A— Maximum, SSS : 0.2 | B Remarks: Positive bias in temperature and negative bias in the rainfall; underdispersion A common drawback of the GCM models is the fact that they do not capture past
three long time series of Skewness, C 0.34 0.44 0.36 the standard deviation over scale k is given | | | | RN\ 1 both in temperature and rainfall, on sub-annual, annual and over-annual scales climatic variability, i.e. they result in monthly, annual and over-annual variability that

the case stqdy on an Lag-1 autocorrelation, 7, 031 0.10 0.34 by the classical and SSS laws (panel 6), 6 g e 10 Rectification (except for over-annual scale): Rescaling of GCM output time series on iSl .tootweak.; %l?;(,icously, this raises questions for their performance in predicting future
annual basis Hurst coefficient, // 0.72 0.64 0.79 monthly basis so as to match historical means and standard deviations of period 1960-89 chimate varlabiity

respectively

4. Observed behaviour in the test basin 8. Unconditional uncertainty for the SSS case 12. Variation of conditional statistics with lead time 16. Generation of runoff from GCM outputs 20. References
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