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1. Abstract

The well-known data set of the University of lowa comprising fine
temporal resolution measurements of seven storm events is analysed.
Scaling behaviours are observed both in state and in time. Utilizing
these behaviours, it is concluded that a single and rather simple
stochastic model can represent all rainfall events and all rich patterns
appearing in each of the separate events making them look very
different one another. From a practical view point, such a model is
characterized by distribution tails de-creasing slowly (in an
asymptotic power-type law) with rainfall intensity, as well as by high
autocorrelation at fine time scales, decreasing slowly (again in an
asymptotic power-type law) with lag. Such a distributional form can
produce enormously high rainfall intensities at times and such an
autocorrelation form can produce hugely different patterns among
different events. Both these behaviours are just opposite to the more
familiar processes resembling Gaussian white noise, which would
produce very "stable" events with infrequent high intensities. In this
respect, both high distribution tails and high autocorrelation tails can
be viewed as properties enhancing randomness and uncertainty, or
entropy.




2. The original data
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This high resolution record consists £ Brent1 | Event2 | Events |Events [Events Events Fu7

of seven storms that were measured £

by the Hydrometeorology [

Laboratory at the University of £

lowa using devices that are capable £

of high sampling rates, once every 5 ¢

or 10 seconds (Georgakakos et al., w0

1994). The statistics of each event

(see table below), reveals great 21

differences among them. L P JL v MMWWWMMWM
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Event # 1 2 3 4 5 6 7 All

Sample size 9697 4379 4211 3539 3345 3331 1034 29536

Average (mm/h) 3.89 0.50 0.38 1.14 3.03 2.74 2.70 2.29

Standard deviation (mm/h) 6.16 0.97 0.55 1.19 3.39 2.20 2.00 411

Coefficient of variation 1.58 1.95 1.45 1.04 1.12 0.81 0.74 1.79

Skewness 4.84 9.23 5.01 2.07 3.95 1.47 0.52 6.54

Kurtosis 47.12 110.24 37.38 5.52 27.34 291 -0.59 91.00

Hurst Exponent 0.94 0.79 0.89 0.94 0.89 0.87 0.97 0.89

3. Motivation

¢ This unique data set allows inspection of the rainfall process at very fine time
scales and was the subject of several advanced and extensive analyses (e.g.
Carsteanu and Foufoula-Georgiou, 1996; Kumar and Foufoula-Georgiou,
1997) . Apart from such sophisticated analyses, this data set offers a basis for
simpler yet more fundamental investigations that could provide insights for
the characterization and mathematical modeling of the rainfall process.

* A major target of this study is to investigate whether all events, despite the
large differences, could be regarded as the outcomes (sample functions) of a
single stochastic process.

¢ [f a single model could then adequately produce all different type of events,
exhibiting such great differences among them, the question that naturally
arise is how such a model would look like.

e Of great importance is to answer whether the tails of the marginal
distribution function and of the autocorrelation function of such a model
would be long (power type), or short (exponential type). In both cases, long
tails imply high uncertainty and comply with the maximum entropy principle
applied with certain constraints (Koutsoyiannis, 2005a, b)




4. Stochastic approach versus deterministic approach

Rainfall has been traditionally regarded as a random process with several
peculiarities, mostly related to intermittency and non Gaussian behaviour.
However, many have been not satisfied with the idea of a pure probabilistic
or stochastic description of rainfall and favoured a deterministic modeling
option (e.g. Eagleson, 1970, p. 184).

A deterministic perception of the rainfall process may seem in accord to the
high temporal dependence (autocorrelation) of the rainfall process at small
lag times. However, if one focuses on the change of rainfall intensity in time,
the justification of a deterministic view weakens and simultaneously, that of a
stochastic approach is strengthened.

The great variability in statistics within individual rainfall events of the Iowa
data set fortifies further a stochastic perception.

More recently, developments of nonlinear dynamical systems and chaos

allowed many to apply algorithms from these disciplines in rainfall and claim
for having discovered low dimensional deterministic dynamics in rainfall (see
reviews in Sivakumar, 2000, 2004). However, such results have been disputed

by others (e.g. Schertzer et al., 2002; Koutsoyiannis, 2006).

5. Scaling in state and time

Logarithmic plots of rainfall intensity quantile (x) vs.
empirically estimated (by the Weibull formula) of the
exceedence probability (F*(x) .= 1 - F(x). F(x) is the
distribution function) for the seven events. In five of the
seven events (1 to 5) the variation o/u is higher than 1,
which implies a power type tail. The upper and lower
envelope of the probability plots of the events (mostly

represented by events 1 and 3, respectively) seem to

justify a long distribution tail, which in a double
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logarithmic plot is depicted as a constant nonzero slope x —Een7  — Alevents
of the empirical distribution (or an asymptotic ‘ 4 5
relationship of the form x ~ [1/F*(x)]* for large x). Both “Log F*(x)

envelops indicate a x of around 0.30.

Average slope = 0.914

Logarithmic plots of standard deviation
(vo™)12 of rainfall intensity vs. time scale k.
The scaling behavour in time, or the Hurst
behaviour, is manifested as a straight line
arrangement of points corresponding to
different time scales. The slopes of

1 S Btz individual events ranges form 0.79 to 0.97,
05 7 Event3 while the average slope of all events is as

. o Bt high as 0.914, a value that verifies the time
o8 Event7 scaling behaviour.
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6. The principle of maximum entropy (ME) and the
marginal distribution

¢ The Boltzmann-Gibbs-Shannon entropy for a continuous random variable X with

density function f(x) is by definition (e.g. Shannon, 1949; Papoulis, 1991)
S=E(=Inf(x))==] f(x)In(f(x))dx

* The principle of ME, due to E.T. Jaynes (1957a, b), states that a random variable X
with unknown density function f(x), has a density function f(x) so as to maximize
the entropy S, subject to any known constrains.

* Application of the ME principle using the Boltzmann-Gibbs-Shannon entropy
with simple constraints of known mean p and variance 02 and the non-negativity
constraint (mandatory in most hydrometeorological variables including rainfall)
results in

fx)=exp(-Ag— A x—A,x2), x20 (1)

where A, A, and A, are parameters depending on the known mean and variance.
Inspection of (1) shows that it is none other than the truncated normal density

function.

7. The Tsallis entropy and the marginal distribution

* A generalization of the Boltzmann-Gibbs-Shannon entropy, effectively used in
numerous scientific disciplines and also valuable in hydrology has been
proposed by Tsallis (1998, 2004): =

1- I (f(x))"dx
S, = —=
q-1
with g =1 corresponding to the Boltzmann-Gibbs-Shannon entropy.

¢ Koutsoyiannis (2005a) reports that the truncated normal distribution fails to
describe cases in which the variation o/u > 1. To find a ME solution for such cases
one should abandon standard entropy and use Tsallis entropy. Maximization of
Tsallis entropy with known p and ¢? yields an over-exponential (power-type)
distribution,

fo)=[1+& Mo+ Ay x+ 2,09 715, x>0 2)

where A, A;, A, and £ are parameters. It can be shown that (2) is mathematically
equivalent to the so called Tsallis distribution (Tsallis, 1995; Prato and Tsallis,
1999).

* The fact that high variation ¢/u is common in hydrological variables at fine time
scales is a strong indication of the applicability of Tsallis ME principle in
hydrology. The most essential difference of (2) with respect to (1) is the implied
long (over-exponential) tail of distribution.




8. The transformation

,,,,,,,,J ,,,,, 120-4 O Observed rainfall ----o-
| intensity (mmvh)

* As the normal distribution is very convenient in
building a stochastic model, a normalizing
transformation Z = ¢(X) has been applied to the
variable X (rainfall intensity), instead of using the
non-normal distribution (2).

Rainfall intensity (mm/h)

e The transformation
1 2 | |

= v l _ I J— 1 —7——7—774‘ 777777 204 - -
z (ax +ﬁ)[v//+\/( +KJ n(zc(x v) + )J | :

effectively transforms the observed data to normal,

Zscores
4

as the figures on the right attest, while it is in
consistency to the Tsallis distribution. Namely, it = *
yields a hyper-exponential tail.

* The parameters of the transformation were
estimated by minimizing the square error (SE) of

Transformed rainfall intensity (mm/h

the model and empirical distribution function. =~ ¢ 2 A
e The inverse transformation X = ¢'(Z), essential for N
de-normalizing synthetic normal series, has been 9 T oy e

approached numerically, due to the lack of 1| o mensformes ranta
. . intensity (mnvh)
analytical solution.

Zscores

9. The principle of maximum entropy and the
linearity of multivariate distribution

The maximum entropy principle, according to which the uncertainty (standing as an
interpretation of entropy) is as high as possible, implies linear relationships in consecutive
items of a stochastic process. More specifically, provided that a specific transformation of
a process has normal marginal distribution, application of the maximum entropy
principle results that the multivariate distribution of any number of variables of this
transformed process will be multivariate normal (Papoulis, 1991). Besides, it is well
known that multivariate normal distribution entails linear relationships among variables.
The following figures of the normalized rainfall intensity, affirm this reasoning.

4

Normalized rainfall intensity at time t (mm/h)
Normalized rainfall intensity at time t (mm/h)

Normalized rainfall intensity at time t-1 (mm/h) Normalized rainfall intensity at time t-10 (mm/h)




10. The principle of maximum entropy and the long
autocorrelation tails

Maximum entropy + Dominance of a single time scale — Time
independence

Maximum entropy + Time dependence + Dominance of a single
time scale - Markovian (short-range) time dependence

Maximum entropy + Time dependence + Equal importance of
time scales - Time scaling (long-range dependence / Hurst
phenomenon)

The long autocorrelation tails behavior is a result of the principle
of maximum entropy

The omnipresence of long autocorrelation tails in numerous long
hydrologic time series, validates the applicability of the ME
principle

For details see Koutsoyiannis (2005b)

11. The fitted models: Long range dependence model

The basic characteristic of a long range dependence model is that its autocovariance is a power
function of lag. In this study, the empirical evidence favoured the adoption of a generalized
autocovariance structure (GAS) y;=v, (1 + «pj"/f where x and B are constants with 8> 0 (see
Koutsoyiannis, 2000). Clearly GAS is a power function of lag.

A simple approximation of GAS can be attained by the sum of four independent AR(1) processes
(for details of an approach with three AR(1) see Koutsoyiannis, 2002). The autocovariance
function (ACF) of the approximate model (referred to as M1) for lagjis 7y ZC 2

where p; is the lag one autocorrelation coefficient of the ith AR(1) process and c; Constants
satisfying ZC =
The stochastlc process W, that represents the model is W, = Z Xi

i=1
where X;,;=0,X;,,+V,,is the ith AR(1) processes and V, are 1ndependent identically

distributed, random variables with mean (1- o;)u and variance (1- 02)c;Y,-

Firstly, the GAS was fitted to the empirical v ] ! [ o Emrcaace
ACF of the transformed data, by minimizing < } B v
the square error (SE). R ‘ !

The transformed data ~N(0,1), so u =0 and 08

‘)/0 = 1.

0.4

The parameters of the model M1, ¢; and o,
were evaluated by minimizing the SE of the
Vw1, and the fitted GAS. The figure on the
right attests the satisfactory approximation 0

11 0 500 1000 1500 2000 2500 3000
of the empirical ACF. Lag

0.2




12. The fitted models: Short range dependence model

* From a theoretical point of view autoregressive-moving-average models ARMA(p,q),
are short range dependence models. For lag > g, the autocovariance (autocorrelation)
function reduces to that of an autoregressive model AR(p). An ARMA(2,2) takes the

form

Xt =boVi_o+ by Vi1 + Vi +az Xt_2 + a1 X1

where a, b, are the model coefficients and V, are independent, identically distributed
random variables with mean p, and variance V,,. The unknown model parameter
were evaluated by solving the non-linear system below, provided that the mean py
and variance Vy of the process is 0 and 1 respectively (normalized data).

yo=(by (a1 +by)+by(@ +byag+a,+ b))+ DVy +a1y1 +a27,
yi=(01+ @ +by)b)Vy +aryo+azy 15

y2=b2Vv +azyo+aiy

y3=ayi+ary2

Ya=ay2+arys

_ (-ag—ap+1) uy

bq+by+1

¢ Despite the fact that ARMA(2,2) is a
short range dependence model, the
figure on the right attests, that it is
capable of keeping positive
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13. Simulation procedure

Model fit

Model fit

Simulation of 2000
series for three
different sample sizes
L1=10% L2= 4 %103,
L3=10°

Inverse transformation
X=9'(2)

Statistical analysis o
the synthetic series for
each model and each
sample size

Normalizing
transformation

Z=¢(X)

Short range dependenc
L. modelM2
series ﬂ

Synthetic rainfall intensi

Neries of M2

Results for M2L1, M2L.2,
— M2L3

Synthetic normal
M2




14. Synthetic series of the long range dependence model
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15. Synthetic series of the ARMA(2,2) model
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16. Simulation results: Mean and Standard Deviation
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Mean rainfall intensity (mmyh)
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Box plots of the estimated mean rainfall
intensity of the synthetic series
produced by models M1 and M2 and
for sample sizes L1, L2 and L3. Blue
dots represent the observed means.
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Standard deviation of rainfall intensity (mmnyh)
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Box plots of the estimated standard
deviation of the rainfall intensity of the
synthetic series produced by models
M1 and M2 and for sample sizes L1, L2
and L3. Blue dots represent the
observed standard deviations.

17. Simulation results: Coefficient of skewness and hurst
exponents

Coefficient of Skewness of rainfall intensity
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Box plots of the estimated coefficient of
skewness of rainfall intensity of the
synthetic series produced by models M1
and M2 and for sample sizes L1, L2 and
L3. Blue dots represent the observed
ones.
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Hurst Exponent
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Box plots of the estimated Hurst
exponents of rainfall intensity of the
synthetic series produced by models
M1 and M2 and for sample sizes L1, L2
and L3. Blue dots represent the
observed ones.
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18. Simulation results: Confidence bands of ACF (99%)
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9. Conclusions

A single and rather simple stochastic model can represent all rainfall events and all rich
patterns appearing in each of the separate events making them look very different one
another.

From a practical view point, such a model is characterized by high autocorrelation at
fine scales, slowly decreasing with lag, as well as by distribution tails slowly decreasing
with rainfall intensity.

The application of the principle of maximum entropy (also using the Tsallis entropy)
establishes a solid theoretical basis for power type tails both in marginal distribution
and autocorrelation function.

Whether the tails of both the marginal distribution and autocorrelation functions are
power type is difficult to conclude because both these power-law functions are by
definition asymptotic properties. In this respect, it seems impossible to verify such
asymptotic laws by empirical studies, which necessarily imply finite sample sizes. It is
important that the empirical evidence presented in the current study does not falsify
the hypotheses that both tails are long while this hypotheses is strengthened by the
principle of maximum entropy.

Both the ARMA(2,2) and the long range dependence model M1 can produce a great
variety of rainfall events. However, the comparison between them clearly reveals the
superiority of the second one as it is capable of producing a larger variety of rainfall
patterns. Moreover, ranges of statistics are wider so as to include all observed events.
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