
1. Abstract
In statistical terms, the climatic uncertainty is the result of at least two factors, the
climatic variability and the uncertainty of parameter estimation. Uncertainty is
typically estimated using classical statistical methodologies that rely on a time
independence hypothesis. However, climatic processes are not time independent but,
as evidenced from accumulating observations from instrumental and paleoclimatic
time series, exhibit long range dependence, also known as the Hurst phenomenon or
scaling behaviour. A methodology comprising analytical and Monte Carlo techniques
is developed to determine uncertainty limits for the nontrivial scaling case. It is
shown that, under the scaling hypothesis, the uncertainty limits are much wider than
in classical statistics. Also, due to time dependence, the uncertainty limits of future
are influenced by the available observations of the past. The methodology is tested
and verified using a long instrumental meteorological record, the mean annual
temperature at Berlin. It is demonstrated that the developed methodology provides
reasonable uncertainty estimates whereas classical statistical uncertainty bands are
too narrow. Furthermore, the framework is applied with temperature, rainfall and
runoff data from a catchment in Greece, for which data exist for about a century. The
uncertainty limits are then compared to deterministic projections up to 2050, obtained
for several scenarios from several climatic models combined with a hydrological
model. Climatic model outputs for rainfall and the resulting runoff do not display
significant future changes as the projected time series lie well within uncertainty
limits assuming stable climatic conditions along with a scaling behaviour.

2. Rationale and main hypotheses
• Climate is not constant but rather varying in time and expressed by the long term

(e.g. 30 year) time average of a natural process, defined on a fine scale;
• The evolution of climate is represented as a stochastic process; if Xi denotes an

atmospheric or land surface variable at the annual scale, then climate is
represented by the moving average process, with a typical time window k = 30:

Xi(k) := (Xi + … + Xi – k +1)/k
• The distributional parameters of the process, marginal and dependence, are

estimated from an available sample by statistical methods
• The climatic uncertainty is the result of at least two factors, the climatic variability

and the uncertainty of parameter estimation (sampling uncertainty)
• A climatic process exhibits scaling behaviour, also known as long range

dependence, multi scale fluctuation or the Hurst phenomenon (Koutsoyiannis,
2002, 2003, 2005); this has been verified both in long instrumental
hydrometeorological (and other) series and proxy data

• Because of the dependence, the uncertainty limits of the future are influenced by
the available observations of the past

• Future climate trends suggested by general circulation models (GCM) should be
viewed in the framework of uncertainty bands estimated by statistics accounting
for scaling behaviour

3. Test case and data sets
• Boeoticos Kephisos River basin: a closed

basin (i.e. without outlet to the sea), with an
area of 1955.6 km2, mostly formed over a
karstic subsurface; an important basin in
Greece, part of the water supply system of
Athens whose history, as regards hydraulic
infrastructure and management, extends
backward to at least 3500 years

• Data availability extends for about 100 years
(the longest data set in Greece) and
modelling attempts with good performance
have already been done on the hydrosystem
(Rozos et al., 2004).

• The relatively long records made possible
the identification of the scaling
behaviour of rainfall and
runoff (Koutsoyiannis,
2003)

Sample statistic Temperature (oC) Rainfall (mm) Runoff (mm) 
Size, n 96 96 96 
Mean, x(n)

0  17.0 658.4 197.6 
Standard deviation, s  0.72 158.9 87.6 
Variation, Cv= s/m 0.04 0.24 0.44 
Skewness, Cs 0.34 0.44 0.36 
Lag-1 autocorrelation, r1 0.31 0.10 0.34 
Hurst coefficient, H 0.72 0.64 0.79 

Sample statistics of the
three long time series of
the case study on an
annual basis

Karditsa

Aliartos

M3
M1
M2

4. Observed behaviour in the test basin
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Plots of the annual
time series and their
30 year climatic
values of Aliartos
temperature,
Aliartos rainfall and
Boeoticos Kephisos
annual runoff at
Karditsa (see
locations in panel
3); notice that the
climatic time series
are not centred in
time (see definition
in panel 2)

5. Probabilistic quantification of hydroclimatic uncertainty
• Parameter (or sampling) uncertainty: The

estimate of a climatic parameter (e.g. the
mean annual rainfall at a certain location)
has some uncertainty due to limited
observation record x0,n = [x0, …, x1 – n] ; this
is defined assuming that x0,n is realization
of a vector of identically distributed
random variables X0,n = [X0, …, X1 – n] and
determined in terms of confidence limits
for confidence coefficient :

P (L U) =
where L and U are estimators (functions of
X0,n) of the lower and upper limits with
estimates l and u (functions of x0,n)

• Uncertainty due to variability: A climatic
variable (e.g. the mean annual rainfall
at a certain location for a 30 year period)
in addition to parameter uncertainty,
has also the uncertainty due to (natural)
temporal variability; this is determined
in terms of distribution quantiles for
confidence coefficient :

P{yb < X < ya} =
• The quantiles yb and ya are parameters and

entail parameter uncertainty determined as
above
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6. The scaling property (the Hurst phenomenon)
• In classical statistics we have the

fundamental law
(k) = /k1/2

where (k) := StD[X(k)] is the
standard deviation of the random
variable X(k) at scale k and (1)

is the standard deviation of each
of Xi

• As shown in the figure, the
historical time series follow not
this law, but the generalized law

(k) = /k1 – H
where the constant H is known as
the Hurst coefficient

• The latter law:
(a) defines the time scaling

behaviour (or Hurst
behaviour);

(b) defines a stochastic process
known as simple scaling
stochastic (SSS) process (or
stationary increment of a
self similar process)
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7. The importance of the scaling behaviour in typical
hydrological tasks

• In the observed 96 year flow record of Boeoticos Kephisos, there are multi year
periods of high flows and low flows (persistent droughts, such as a recent drought
that lasted 7 years); this is observed in flow records of other rivers as well

• If such behaviour is modelled with
classical statistics, return periods of
103 105 years are obtained, whereas for
the given record length we would expect
return periods of the order of 102 years

• In contrast, SSS statistics (Koutsoyiannis,
2003) give reasonable results
(close to expectation)

Return periods of the minimum and
maximum of the average, over scale k = 1 to
10 years, runoff of Boeoticos Kephisos from
the 96 year runoff record; the return
periods were calculated assuming that the
distribution is normal for all scales and that
the standard deviation over scale k is given
by the classical and SSS laws (panel 6),
respectively

8. Unconditional uncertainty for the SSS case
• For confidence coefficient , the distribution quantiles of Xi(k) defining the uncertainty

due to variability are yb(k) and ya(k) where b = (1 – )/2, a = (1 + )/2; for the SSS case
assuming normal distribution, these are given as

where b is the b quantile of the standard normal distribution; a similar expression is
obtained for ya(k)

• The parameter uncertainty is due to uncertainty in the estimation of , and H
• Assuming that the true values of and H are known without uncertainty (the former

being equal to the sample estimate s of standard deviation), the following semi
analytical expressions have been derived for the upper and lower a confidence limits
u(yb(k)) and l(yb(k)) of yb(k) for the SSS case (Koutsoyiannis, 2003):

• It can be verified that if H = 0.5 (independence case), these switch to known
expressions in classical statistics; as H grows away from 0.5 the differences from the
classical statistics increase drastically

• In the more realistic case that all , and H are unknown and estimated from the
sample, the confidence limits can be estimated numerically by Monte Carlo simulation

b = 
1

n1 – H 1 + 
(n, H)

2 n 2H – 1
b

k 1 – H

2

, (n, H) = (0.1 n + 0.8)0.088(4H 2 – 1)2

u(y(k)
b ), l(y(k)

b ) = x(n)
0  + b s / k1 – H

(1 + )/2 b s

y(k)
b  = µ + b  / k1 – H
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9. Demonstration of differences: classical vs. SSS case
Explanation
Climatic values
are for 30 years
PE: point
estimate
MCCL/classic:
Monte Carlo
confidence
limits assuming
independence
as in classical
statistics
MCPL/SSS 1:
Monte Carlo
confidence
limits assuming
scaling and
known H
MCPL/SSS 2:
Monte Carlo
confidence
limits assuming
scaling and
unknown H
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10. Conditional uncertainty (for the observed past)
• For observed past (X0,n = x0,n), the parameters whose conditional confidence limits are

sought are the distribution quantiles

and that is given by a similar expression, where

• The final equations for calculating the relevant quantities, derived in Koutsoyiannis et
al. (2007) are

where i,n(H) is a function of the lag i, the sample size n and the Hurst coefficient H,
whereas i(H) is a function of the lag i and the Hurst coefficient H; both are defined in
Koutsoyiannis et al. (2007) and demonstrated in panel 11
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11. Demonstration of quantities involved in the
estimation of conditional climatic confidence limits
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• The function i,n(H) was evaluated for sample size n = 100 (rounding off 96, which is
the historical sample size)

• Both i,100(H) and i(H) were evaluated numerically for different values of i and H
and then approximate analytical expressions were established, which are

i,100(H) = 1 – (2H – 1)c1 [1 – c2 (1 – H)]), c1 = 0.75 + 0.1 ln i, c2 = 2 – 3.3 exp[–(0.18 ln i)3.7]

i(H) = 1 – (2H – 1)2 + ln i [1 – (2 – 1.28 / i 0.25) (1 – H)]

12. Variation of conditional statistics with lead time
• In the calculation of the conditional mean, three terms are involved (panel 10)

– Term 1 = coefficient of the true mean µ: it is an increasing function of the lead time i
– Term 2 = coefficient of the sample mean x0(n): it is an increasing function of the lead
time i up to i = k = 30 and then becomes a decreasing function

– Term 3 = the last (constant) term in the second equation in panel 10: it is a
decreasing function of i and vanishes off at i = k = 30

• Even for lead time as high as 100, the influence of the known sample average is
significant and the influence of the unknown true mean is smaller than 60%; this has an
attenuating effect to the width of the confidence band

• The conditional standard
deviation increases quickly
with lead time, reaching 85%
at i = k = 30; then it increases
slowly and becomes 93%
at a lead time 100
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13. Method validation using a longer data set
• Validation of the proposed method is done against the potential arguments that:

(a) the 20th century data used in this study are already affected by anthropogenic
influences,

(b) the natural variability would be less than observed in the 20th century, and
(c) as a consequence, the uncertainty limits estimated by the proposed method are

artificial (not representing the natural variability) and too wide
• To put light to these arguments, a longer data set, not related to the case study, was

used: the mean annual temperature record of Berlin/Tempelhof, one of the longest
instrumental meteorological records going back to 1701 (with missing data before 1756)
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• The data of the period 1908 2003 (as
in the Boeoticos Kephisos case)
were used to estimate the
parameters of the scaling model (H
= 0.78) and then climatic hindcasts
were calculated in terms of
conditional point estimates and
confidence bands (for = = 95%
and climatic time scale of 30 years)

• This was done for both the scaling
and the classical statistical model;
the non used part of the series was
compared with the confidence
limits

14. Case study:
Resulting conditional
SSS confidence limits
and comparison to
classical statistical
estimates
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15. Scenario based analysis of uncertainty:
IPCC scenarios, models and data sets
• IPCC scenarios for future climatic projections by GCM

– SRES A2: high population growth (15.1 billion in 2100), high energy and carbon intensity, and
correspondingly high CO2 emissions (concentration 834 cm3/m3 in 2100)

– SRES B2: lower population (10.4 billion in 2100), energy system predominantly hydrocarbon
based but with reduction in carbon intensity (CO2 concentration 601 cm3/m3 in 2100)

– IS92a (older): in between the above two (population 11.3 and CO2 concentration 708 cm3/m3 in
2100)

• GCM coupled atmosphere ocean global models
– ECHAM4/OPYC3: developed in co operation between the Max Planck Institute for
Meteorology and Deutsches Klimarechenzentrum in Hamburg, Germany; mean resolution
2.81o both in latitude and longitude (a total of 64 latitudes × 128 longitudes) [M1 in panel 3]

– CGCM2: developed at the Canadian Centre for Climate Modeling and Analysis; resolution
3.75o both in latitude and longitude (a total of 48 latitudes × 96 longitudes) [M2 in panel 3]

– HADCM3: developed at the Hadley Centre for Climate Prediction and Research; resolution
2.5o in latitude and 3.75o in longitude (a total of 73 latitudes × 96 longitudes) [M3 in panel 3]

• GCM outputs (from http://ipcc ddc.cru.uea.ac.uk/ddc_gcmdata.html)
– MP01GG01: output of ECHAM4/OPYC3 with historical inputs for 1860 1989 and inputs from
IS92a beyond 1990

– MP01GS01: same as in 1 but also considering the sulphate concentration
– CCCma_A2: output of CGCM2 with historical inputs for 1900 1989 and inputs from scenario
A2 beyond 1990

– CCCma_B2: same as in 3 but for scenario B2 beyond 1990
– HADCM3_A2: output of CGCM2 with historical inputs for 1950 1989 and inputs from
scenario A2 beyond 1990

– HADCM3_ B2: same as in 5 but for scenario B2 beyond 1990

16. Comparison of GCM outputs with historical data
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17. Generation of runoff from GCM outputs
• The hydrological response that is used in this climatic study is runoff but, in order to

estimate it, the entire water cycle had to be simulated
• Given the great extend of karst, both surface and ground water processes had to be

modelled simultaneously
• Given that the basin is not in natural condition, the model had to take into account

both natural processes and anthropogenic influences on the catchment
• All these requirements were handled with an advanced hydrological modelling

scheme, called Hydrogeios (Efstratiadis et al., 2005)
• As shown in the diagram, the model performance in comparison to historical data is

excellent, even though its calibration was done on a very small (6 year) period with
detailed data (Efstratiadis, 2006)
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18. Comparison of GCM
projections with climatic
confidence limits
• All GCM projections agree that sooner or

later the temperature will depart from the
natural uncertainty limits

• In contrast, GCM rainfall and the
resulting runoff fall within the SSS
uncertainty limits for the whole examined
period up to 2049; this means that traces
such as the ones projected by the GCM
can be readily obtained by stochastic
simulation assuming stationarity

• This more or less harmonizes with some
earlier studies (e.g. a comprehensive
climatic study for United States by
Georgakakos and Smith, 2001)

• The proposed stochastic method suggests
that the uncertainty of runoff, even
assuming natural variability, is in fact
much larger than projected by GCM
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19. Conclusions
• Classical statistics, applied to climatology and hydrology, describes only a portion

of natural uncertainty and underestimates seriously the risk if long range
dependence is present

• Simple scaling stochastic (SSS) processes offer a sound basis to adapt hydro
climatic statistics so as to capture interannual variability

• The uncertainty bands obtained from the SSS framework are significantly wider
(about 3 times) than those obtained by classical statistics

• The detailed case study involving three important hydrometeorological processes
(temperature, rainfall and runoff) in a catchment in Greece and elsewhere (mean
annual temperature at Berlin) provides evidence that the SSS, rather than the
classical, uncertainty bands are compatible to reality

• To capture anthropogenic climate changes, climatic model outputs should be
incorporated in an uncertainty analysis and it can be anticipated that future
uncertainty is even greater than produced by the SSS framework

• However, for the known past, GCM do not capture climatic variability, i.e. they
result in monthly, annual and over annual variability that is too weak; obviously,
this raises questions for their performance in predicting future climate variability

• Even for the future, GCM predict too small changes in hydroclimatic conditions
(except for temperature that is predicted to increase significantly) in comparison to
SSS uncertainty bands under a stationarity assumption

• Thus, it can be recommended that SSS uncertainty bands offer a safer and more
reasonable basis for planning and management in comparison to GCM projections
and classical statistics
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