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Abstract Due to its great importance, the availability of long flow records, contemporary as well as older, 
and the additional historical information of its behaviour, the Nile is an ideal test case for identifying and 
understanding hydrological behaviours, and for model development. Such behaviours include the long-term 
persistence, which historically has motivated the discovery of the Hurst phenomenon and has put into 
question classical statistical results and typical stochastic models. Based on the empirical evidence from the 
exploration of the Nile flows and on the theoretical insights provided by the principle of maximum entropy, 
a concept newly employed in hydrological stochastic modelling, an advanced yet simple stochastic 
methodology is developed. The approach is focused on the prediction of the Nile flow a month ahead, but 
the methodology is general and can be applied to any type of stochastic prediction. The stochastic 
methodology is also compared with deterministic approaches, specifically an analogue (local nonlinear 
chaotic) model and a connectionist (artificial neural network) model based on the same flow record. All 
models have good performance with the stochastic model outperforming in prediction skills and the 
analogue model in simplicity. In addition, the stochastic model has other elements of superiority such as the 
ability to provide long-term simulations and to improve understanding of natural behaviours. 
Key words stochastic vs deterministic models; artificial neural networks; linearity and nonlinearity; maximum entropy; 
Hurst phenomenon; Nile  

Prévision du débit du Nil à moyen terme: une comparaison de méthodes stochastiques et 
déterministes 
Résumé En raison de son importance, de la disponibilité de longues séries de données de débit, 
contemporaines et anciennes, et d’informations historiques additionnelles sur son comportement, le Nil est 
un cas idéal pour identifier et comprendre les comportements hydrologiques, et pour développer des 
modèles. Les comportements en question incluent la persistance à long terme, qui est historiquement à 
l’origine de la découverte du phénomène de Hurst, et qui a remis en question des résultats statistiques 
classiques et des modèles stochastiques typiques. Une méthodologie stochastique avancée et néanmoins 
simple est développée, sur la base d’une part d’observations empiriques permises par l’exploration des 
données de débit du Nil et d’autre part de développements théoriques permis par le principe de l’entropie 
maximale, un concept nouvellement utilisé en modélisation hydrologique stochastique. L’approche est 
focalisée sur la prévision du débit du Nil à échéance de un mois, mais la méthodologie est générale et peut 
être appliquée à tout type de prévision stochastique. La méthodologie stochastique est également comparée 
avec des approches déterministes, en particulier un modèle analogue (chaotique non-linéaire local) et un 
modèle connectioniste (réseau de neurones artificiels) basés sur les mêmes données de débit. Tous les 
modèles présentent de bonnes performances, les modèles stochastique et analogue étant meilleurs 
respectivement en qualité de prévision et en simplicité. De plus, le modèle stochastique présente d’autres 
éléments de supériorité comme les aptitudes à fournir des simulations à long terme et à améliorer la 
compréhension des comportements naturels. 
Mots clefs modèles stochastique vs déterministe; réseaux de neurones artificiels; linéarité et non-linéarité; entropie 
maximale; phénomène de Hurst; Nile 
 
 
1 INTRODUCTION 

We predict, God laughs (Paraphrase of an old proverb)  

The use of stochastic models in hydrological tasks such as simulation and prediction has a history 
of half a century, since the pioneering works of Barnes (1954) and Thomas & Fiering (1962). The 
classical book on time series analysis, forecasting and control by Box & Jenkins (1970) has greatly 
influenced stochastic hydrology. The model classes it proposed (autoregressive—AR; moving 
average—MA and combinations of the two—ARMA) have become classical and are still very 
popular.  
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 However, these model types are not ideal for hydrological processes for several reasons. First, 
all Box-Jenkins models are essentially of short-range dependence (SRD), that is, their auto-
correlation structure decays exponentially with lag time; in contrast, there is evidence that 
hydrological processes exhibit long-range dependence (LRD), i.e. power-type decay of auto-
correlation also known as the Hurst phenomenon (e.g. Koutsoyiannis, 2005b). Second, these 
models rely largely on a normality assumption, whereas it is known that hydrological processes 
(mostly on sub-annual scales) depart from normality and perhaps have distribution tails of power-
type (e.g. Koutsoyiannis, 2005a). Third, the seasonal behaviour exhibited by hydrological 
processes at sub-annual scales is complex (with distribution type and dependence structure that 
change within the year) and cannot be handled by “deseasonalization” techniques typically used in 
companion to Box-Jenkins models (Koutsoyiannis & Georgakakos, 2006). Fourth, except for 
simplified processes, such as AR(1) or ARMA(1,1), the models are not parsimonious as they 
involve many parameters estimated from the data. In fact, the structure of these models is tightly 
linked to the number of parameters and one cannot change the structure (e.g. increase the tail of 
the dependence) without using additional parameters. However, typical statistical samples do not 
allow a reliable estimation of many parameters. This is particularly the case for processes with 
LRD, as this behaviour entails parameter uncertainty dramatically higher than in SRD 
(Koutsoyiannis, 2003; Cohn & Lins, 2005, Koutsoyiannis & Montanari, 2007). Fifth, again except 
for low order processes (i.e. AR(1) and ARMA(1,1)), other processes of this family do not have a 
physical meaning and thus are used in a rather black-box setting.  
 Several of the above drawbacks have been remedied by adaptations or even introduction of 
different model types. Thus, LRD can be reproduced by specialized models such as fractional 
Gaussian noise processes (Mandelbrot, 1965) and fractionally differenced ARMA processes 
(Hosking, 1984), or by generalized generation schemes applied on generalized autocorrelation 
structures (Koutsoyiannis, 2000). The latter technique also tackles some of the other problems 
listed above as it is parametrically parsimonious (i.e. the generation scheme is not tied to the 
autocorrelation structure), it can handle non-normal distributions and is also multivariate. The 
seasonality problem has been tackled by cyclostationary (periodic) processes. However, these are 
necessarily SRD because only low-order processes (such as periodic AR(1) or periodic 
ARMA(1,1); Bras & Rodriguez-Iturbe, 1985; Koutsoyiannis, 1999) are computationally feasible 
in a cyclostationary setting. Yet, however, in simulation mode (as opposed to prediction mode) the 
stochastic generation problem has been tackled using a disaggregation logic, in which an annual 
time series is generated first and then the annual amounts are disaggregated into seasonal. Thus, 
the LRD properties are handled by an appropriate stationary model such as those stated above, the 
seasonality is handled by a cyclostationary model with SRD, and the two models are coupled so 
that the latter becomes operationally consistent with the former (Koutsoyiannis, 2001). An 
approach that can generate cyclostationary time series with LRD without disaggregation was 
proposed recently (Langousis & Koutsoyiannis, 2006), but this is again for simulation.  
 Thus, while for stochastic simulation there exist advanced techniques (generally departing 
from ARMA model types) that are consistent with the peculiarities of hydrological processes, this 
does not happen in stochastic prediction. The modelling techniques for simulation may not be 
directly adaptable for prediction in a cyclostationary setting. For instance, a disaggregation frame-
work is not appropriate for prediction. 
 In the last decade, this gap has been covered by techniques structurally different from 
stochastic techniques. These are based on recent advances on nonlinear dynamical systems (or 
chaotic systems) and have a deterministic basis. Most popular among these deterministic model 
categories are the “analogue” models also called “local nonlinear chaotic” models, and the 
“connectionist” models or metaphorically “artificial neural network” models. The application of 
such models in hydrological prediction are numerous in recent years (a sample from the last few 
years includes Tomasino et al., 2004; Hu et al., 2005; Kisi, 2005; Giustolisi & Laucelli, 2005; 
Shouyu & Honglan, 2005; Giustolisi & Simeone, 2006; Jayawardena et al., 2006; Abrahart et al., 
2007; Corzo & Solomatine, 2007; de Vos & Rientjes, 2007; Muluye & Coulibaly, 2007; see also 
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See et al., 2007) and their performances are impressive in most cases. A major weak point of these 
model types is that, despite being deterministic in conception, in most cases they are data driven 
and black box, thus providing no process insight and involving no structured reasoning in their 
formulation, except in few simple model types (e.g. Solomatine & Dulal, 2003; Giustolisi & Savic, 
2006). Another weak point is the fact that they do not provide tools for Monte Carlo simulation 
(this is demonstrated below).  
 The nonlinear and data-driven character of these models has inspired many to devise 
stochastic models with such features. Such models (pioneered by Lall & Sharma, 1996) can 
implement a nonlinear data-driven (as opposed to linear parametric) dependence structure of the 
process and can reproduce the historical histogram in lieu of a theoretical distribution function. In 
our opinion, however, these may be weak rather than strong points of these model types. As we 
will discuss below, linearity has a totally different meaning in deterministic and stochastic 
approaches and is justifiable in a stochastic framework. Also, the use of theoretical models 
justified by reasoning, is a powerful and insightful feature in stochastic modelling and should not 
be replaced by high uncertainty estimates of merely empirical basis, which after all are not appro-
priate to perform extrapolations that are largely needed. For instance, asymptotic probabilistic laws 
such as the Law of Large Numbers and the Central Limit Theorem provide the theoretical basis for 
estimation and prediction, when the conditions for their applicability are satisfied. The principle of 
maximum entropy (ME), is the most powerful theoretical tool of this type. Essentially, it is a 
probabilistic law, but simultaneously is a physical principle as strong as to provide the formulation 
of the second law of thermodynamics. As a first principle in physics, it is quite different from other 
first principles such as Newton’s laws, because of the probabilistic character of the entropy 
concept (e.g. Stowe, 2007). As demonstrated recently (Koutsoyiannis, 2005a,b), the ME principle 
can explain several macroscopic behaviours of hydrological processes.  
 In this paper we propose a general stochastic framework which is in full agreement with the 
features of hydrological process and the requirements for prediction, i.e. (a) it admits and utilizes 
LRD; (b) it can perform with distributions of either exponential or hyper-exponential tails; (c) it is 
cyclostationary; (d) it is parameter parsimonious; (e) it is insightful as it has a strong theoretical 
basis for inference (principle of ME); (f) it can perform in both prediction and simulation; and 
(g) it is simple and easily applicable. In addition, we compare this stochastic approach with two 
data-driven models following a deterministic logic, namely an analogue model and a connectionist 
model. The comparison includes both theoretical issues as well as the prediction skills as derived 
from a test case study. 
 
 
2 STUDY LOCATION AND DATA 

The test case pertains to the Nile River and has significant interest both from a research as well as 
an operational standpoint. The Nile River is spread over 10 East African countries with numerous 
water uses, including water supply for domestic, industrial, and agricultural use, energy 
generation, flood protection, and environmental management, among others (Georgakakos, 2007). 
Medium- and long-range Nile flow prediction is critical for the operation of the existing water 
control projects from Lake Victoria (in Kenya, Tanzania, and Uganda) to the High Aswan Dam in 
Egypt, and several planned facilities in the middle reaches (Ethiopia and Sudan). The forecast lead 
time considered in the case study and model intercomparison is one month; however, the 
framework is general enough and can perform in longer lead times albeit with lower skill. The Nile 
is the world’s longest river (6670 km) with water travel times that, depending on the season, vary 
from 20 days (Blue Nile tributary) to more than 45 days (White Nile tributary). This induces 
strong dependence on a monthly time scale and, along with other storage mechanisms in the 
catchment, makes monthly forecast feasible by using as explanatory (predictor) variables merely 
past Nile flows at the same site where prediction is made. Obviously additional explanatory 
variables (e.g. rainfall or river flow at an upstream site) would enhance the prediction capacity but 
this is out of the scope of this work, which does not make use of additional explanatory variables. 
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However, the methodology proposed is straightforward to apply to cases of multiple predictor 
variables, because by construction it is a multivariate methodology.  
 The modern flow record at Aswan is one of the longest worldwide (131 years) and makes 
analysis and modelling reliable. In addition, older instrumental records of annual maximum and 
minimum water level at the Roda Nilometer for more than 800 years also exist. All flow records as 
well as additional historical and archaeological data (Said, 1993) affirm the LRD behaviour of the 
Nile flows and raise the demand that this dependence should be incorporated in a stochastic model, 
either for simulation or prediction. Conceptually, LRD is nothing other than multi-scale variability 
or multi-scale fluctuation (Koutsoyiannis, 2002), and greatly increases uncertainty of statistical 
estimation and long-term prediction (Koutsoyiannis, 2006). One may argue that deterministic 
climatic models, if used instead of LRD stochastic models, may result in reduced uncertainty in 
lieu of the high uncertainty implied by LRD. However, to our knowledge, no coupled climatic-
hydrological model has yet explained the observed past high multi-scale variability of the Nile. 
The problem is then: how could one be confident about future projections of a model? In addition, 
as Conway (2005) concludes, analysis of climate change projections for the region shows that 
there is no clear indication of how Nile flows will evolve in the future because of uncertainty about 
future rainfall patterns in the basin.  
 All prediction models in this study are based on the available time series of Nile flows, which 
is 131 years long. For the stochastic model, the record is divided into two periods, a 78-year period 
for model fitting (60% of the total length; from hydrologic year 1870/71 to 1947/48) and a 53-year 
period for model validation (from 1948/49 to 2000/01). For the deterministic data-driven models, 
the fitting period is further subdivided into two sub-periods, a 52-year calibration period (two 
thirds of the total, from 1870/71 to 1921/22) and a 26-year verification period (from 1922/23 to 
1947/48). In this way, all model fitting procedures are done exclusively within the 78-year period 
in all cases, thus enabling a fair comparison of all models in the validation period, the data of 
which were not used in model fitting.  
 
 
3 MODELLING APPROACHES AND UNDERLYING CONCEPTS 

Let us consider a simple stochastic model which attempts to issue a prediction W of the flow in a 
specified month, say December, based on a single explanatory variable Z, say the flow in the same 
year in November. In a stochastic approach, W and Z are thought of as random variables (for this 
reason we have used an upper case convention, whereas for values, e.g. observations of the 
process, we use lower case letters). W is assumed stochastically dependent on Z. The dependence 
manifests the stochastic dynamics of the process, which can be represented by:  

W = gs(Z, V)  (1) 
where gs( ) is an appropriate function and V is an additional random variable (assumed 
independent of Z) whose involvement manifests the fact that the dependence between the variables 
W and Z is not fully deterministic. If we know a realization of Z which is an observation z of the 
natural process, then we can calculate a point prediction of W by E[W|Z = z] = E[g(z, V)], where 
E[ ] denotes expectation. Using (1), we can also calculate prediction intervals of W for any desired 
confidence, either by analytical means or by Monte Carlo simulation.  
 To obtain any type of prediction we need to know the function gs( ). We can obtain an idea of 
the type of this function by constructing a plot of historical observations of W and Z, such as that 
of Fig. 1 (left panel). This plot reveals a practically (macroscopically) linear arrangement of points 
and suggests that W = gs(Z, V) = a Z + V (where a is a parameter). In the figure we have plotted an 
instance of this equation (marked “Stochastic linear model 2”) substituting the observation z for 
the variable Z and the mean E[V] for the variable V. The reader who is not satisfied with the linear 
relationship and prefers another monotonic relationship (e.g. a power law) may feel free to replace 
the equation with a new one. Again we can linearize the new equation, provided that it is 
monotonic, by appropriate transformation of the variables. In fact, we have already done it and we  
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Fig. 1 Graphical depiction of the basic concept of (a) a stochastic and (b) a deterministic approach in 
the hypothetical case of a model with a single time delay component. Stochastic linear models 1 and 2 
are models assuming linear dependence of the normalized and natural flows, respectively. Deterministic 
linear model is an arbitrary hypothetical non self-intersecting curve passing through all 78 points.  

 
 
have plotted in Fig. 1(a) another model, resulting from a transformation that will be discussed 
later. We call this second model “Stochastic linear model 1” because it is still linear for trans-
formed variables.  
 The fact that in this case the stochastic relationship appears to be so simple (linear) should not 
be regarded as a fortunate coincidence. Rather it seems to be the rule in hydrological and other 
processes and this does not contradict a commonly accepted statement that natural processes are 
nonlinear. Both statements are correct: nonlinearity is absolutely necessary when one uses a 
deterministic description of processes, but linearity is the rule when one uses a stochastic 
description. It has been argued that a heavily nonlinear system may become approximately linear 
again (Penland, 2006). This reflects the fact that when studying the detailed dynamics of a 
complex system using a deterministic description, then this dynamics would most likely be highly 
nonlinear. However, when we study the macroscopic behaviour of a highly complex system based 
on its trajectory, using (because of high complexity but perhaps inadvertently) a stochastic descrip-
tion, then linearity may emerge. An explanation for this emergence of linearity could be traced on 
the principle of ME. In particular, it is known (Papoulis, 1991) that maximization of the standard 
joint entropy (see definition in Section 4.1) results in a multivariate normal distribution. This 
entails a linear dependence of the lagged flows W and Z (or transformation thereof, if generalized 
definitions of entropy are used; see Section 4.1). 
 In a deterministic approach the system dynamics is fundamentally different and, particularly, 
the concept of linearity has a meaning completely different from that in a stochastic approach. 
According to a deterministic approach, the lagged flows are not random variables and the system 
dynamics is a deterministic relationship of them, i.e.: 

w = gd(z)  (2) 
where gd( ) is a function such as the hypothetical (caricature) curve shown in Fig. 1(b) passing 
through all 78 points of the fitting period. Topologically, this curve should necessarily be non-
monotonic (thus nonlinear and non linearizable) and non self-intersecting. A linear function would 
result in a system trajectory that would be either completely stable (attracted to a specific finite 
value) or runaway (tending to infinity). (This is the reason why the simplest and most popular 
function used for demonstration of deterministic dynamical systems is the logistic function rather 
than a linear function.) If the caricature function of Fig. 1(b) represented the true dynamics of the 

(a) (b) 
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process, then the additional 53 points of the validation period would lie on the curve. Since in fact 
they lie outside the curve, we should either change the function gd( ) or add explanatory variables, 
e.g. additional lagged (delayed) flows, and replace the single variable z in (2) with a vector of 
variables z = [z(1), z(2), …, z(m)]T, where z(i) are the explanatory variables (e.g. the lagged flows). For 
a sufficient number of variables (known in dynamical systems literature as the embedding 
dimension) m and an appropriate function gd( ) we may anticipate reconstructing the dynamics of 
the system if the system is in reality deterministic. Whilst additional variables could be also used 
in the stochastic case (1), there is a fundamental difference in the two cases: in the deterministic 
formulation the purpose of using additional variables is to faithfully reconstruct the system 
dynamics, whereas in the stochastic formulation the purposes are to better represent the dynamics 
and to reduce the prediction error, that is to minimize the variance of the random variable V.  
 According to the analogue (local linear) approach, the prediction is done without explicitly 
determining the function gd( ). Instead, the method tries to locate within the historical record a 
vector z1 that is nearest (in state) to the “current” vector z (i.e. an analogue past state of the 
system). The value w1

 next (in time) to z1, which is known from the record, could be used as a 
prediction for the future of the current system state. In fact, the algorithm uses more than one 
nearest past state, as will be explained later (Section 5.1). 
 In contrast, in the connectionist (artificial neural network) approach the function gd( ) is 
determined, although it is usually so complicated that we do not even write its mathematical 
expression. An understanding of the complex relationships between inputs (function arguments) z 
and outputs w within a connectionist model is offered by the so called Kolmogorov’s (1957) 
superposition theorem, according to which any continuous real function gd(z) of a vector variable z 
(defined on the m-dimensional hypercube [0, 1]m) can be represented as a superposition and 
composition of continuous functions of only one variable. Formally, the theorem says that there 
exist continuous real functions hij(z) and gi(z) such that:  

gd(z) = ∑
i = 1

2m+1
  gi

⎝⎜
⎜⎛

⎠⎟
⎟⎞ ∑

j = 1

m
hij(zj)  (3) 

As shown by Kurkova (1992), based on earlier results by Hecht-Nielsen (1987), and discussed by 
Beiu & Zawadzki (2005), it is possible to adapt Kolmogorov’s theorem to an artificial neural 
network and to approximate the functions h and g by staircase-like functions.  
 Connectionist models typically use sigmoidal elementary functions (σ(z) = 1/(1 + ebz – c)) and 
perform weighted sums and compositions of many of them, according to some rules determined by 
a geometric analogue of nodes and arcs forming a network. The network topology includes an 
“input layer” with m nodes, an output layer with one node and one or more “hidden” layers (in the 
case that (3) applies, there is only one hidden layer with 2m + 1 nodes). Kurkova (1992) showed 
that connectionist models with standard sigmoidal functions and only two hidden layers could 
approximate any continuous function with arbitrary precision, but the number of units needed for a 
good approximation is exponential on m. 
 The three models, one stochastic and two deterministic with the above general features, are 
applied here in several configurations that will be detailed in the following sections. A synopsis of 
models and configurations is given in Table 1. 
 
 
4 STOCHASTIC MODEL 

Before we can construct a stochastic model it is necessary to study the marginal and dependence 
properties of the process of interest, here the Nile flow. Its summary statistics on a monthly and 
annual basis are given in Table 2. The convention of a hydrological year is used, which for the 
Nile flows at Aswan, Egypt, is assumed to start on 1 August. From Table 2, two different regimes 
are typically observed. The flood period from August to October, when most of the flow comes 
from the Blue Nile, and the November to July base flow period when the flow is sustained  
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Table 1 List of all models of the study. 
Model type Model specifications Model 

abbreviation 
Cyclostationary with short- and long-range dependence, using normalizing 
transformation of time series 

S1 

As S1 but without normalizing transformation S2 

Stochastic 

PAR(2) without normalizing transformation S3 
Constant delay, 12 consecutive delay items, 11 neighbours A1 
Constant delay, 13 consecutive delay items, 24 neighbours A2 

Analogue (local 
linear) 

Variable delay, 4 delay items, 7 neighbours A3 
Constant delay, 5 inputs, 2 hidden layers, 2+2 hidden nodes C1 
Constant delay, 14 inputs, 2 hidden layers, 11+11 hidden nodes C2 

Connectionist 
(artificial neural 
network) Variable delay, 4 inputs, 2 hidden layers, 4+2 hidden nodes C3 
 
 
Table 2 Main marginal and dependence statistics of the untransformed 78-year record on monthly and 
annual basis. 
Month μ (km3) σ (km3) Cs Ck τ3 τ4 Η ρ1 ρ2 ρ12 
August 19.37 4.62 –0.09 –0.14 0.00 0.12 0.76 0.71 0.26 0.16 
September 22.98 4.29 –0.12 –0.57 –0.02 0.07 0.74 0.80 0.51 0.17 
October 16.33 3.65 0.41 0.31 0.08 0.14 0.76 0.88 0.70 0.24 
November 8.79 2.34 0.42 –0.27 0.09 0.11 0.80 0.90 0.77 0.26 
December 5.92 1.60 0.86 0.60 0.19 0.13 0.89 0.94 0.85 0.42 
January 4.37 1.20 0.64 0.31 0.15 0.15 0.88 0.98 0.91 0.44 
February 3.02 1.00 0.85 0.27 0.20 0.12 0.82 0.96 0.92 0.35 
March 2.51 0.96 1.25 1.34 0.26 0.17 0.78 0.91 0.84 0.31 
April 1.89 0.75 1.75 3.56 0.33 0.19 0.78 0.94 0.78 0.33 
May 1.68 0.63 2.13 6.30 0.33 0.23 0.72 0.93 0.85 0.30 
June 1.91 0.68 1.89 6.00 0.27 0.20 0.63 0.70 0.59 0.11 
July 5.06 1.84 0.75 0.24 0.16 0.12 0.89 0.65 0.44 0.47 
Average   0.90 1.50 0.17 0.14 0.79 0.86 0.70 0.30 
Annual 93.85 20.16 0.35 –0.08 0.09 0.09 0.85 0.35 0.35  
Notation μ: mean; σ: standard deviation; Cs: standard coefficient of skewness; Ck: standard coefficient of kurtosis, 
τ3: L-coefficient of skewness; τ4: L-coefficient of kurtosis, Η: Hurst coefficient; ρ1 and ρ2: autocorrelation coefficients 
for lags 1 and 2 (for the monthly series they are autocorrelations of the current month with one or two months before; for 
the annual series they are autocorrelations of the current year with one or two years before); ρ12 (for the monthly series): 
autocorrelation of current month to the same month one year before. 
 
 
by the White Nile. The two periods will be referred to as the high-flow and low-flow periods, 
respectively. 
 
4.1 Marginal distribution 
Generally, the selection of a distribution function for use in a stochastic hydrological model is 
done empirically, based on comparisons of empirical statistics with theoretical ones of a repertoire 
of common distribution functions. Koutsoyiannis (2005a) proposed that theoretical reasoning 
could also assist this selection, and pointed to ME as the physical and mathematical principle that 
can be the basis for such reasoning. For a continuous random variable X with density f(x) the 
standard entropy, also known as Boltzmann-Gibbs-Shannon entropy, is by definition (e.g. 
Papoulis, 1991): 

φ := Ε[–ln f(Χ)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx  (4) 

A generalization of this definition, fruitfully used in several scientific fields including physics, 
chemistry, biology, economics, medicine, computer sciences and social sciences, and also useful in 
hydrology has been offered by Tsallis (1998, 2004):  
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φq = 

1 – ⌡⌠
–∞

∞

 [f(x)]q dx

q – 1
 (5) 

It can be easily checked that the limit for q → 1 precisely reproduces the Shannon entropy, i.e. 
φ1 ≡ φ. The above definitions can be generalized for vectors of random variables, where f(x) is the 
joint density and φq or φ are joint entropies.  
 Maximization of standard entropy (equation (4)) (i.e. application of the ME principle) with 
simple constraints of known mean μ and variance σ2 results in (e.g. Papoulis, 1991): 

f(x) = exp(–λ0 – λ1 x – λ2 x2)  (6) 
where λ0, λ1 and λ2 are parameters depending on μ and σ. Inspection of equation (6) shows that it is 
the normal density function. If the variable under study X is by definition non negative, as is the 
case for hydrological and most geophysical variables, maximization of entropy should incorporate 
the additional inequality constraint x ≥ 0. In this case the resulting ME distribution is given by 
equation (6) again, but defined on x ≥ 0, and it is the truncated normal distribution.  
 As discussed in Koutsoyiannis (2005a), the truncated normal distribution fails to describe 
cases in which the variation σ/μ > 1. To find a ME solution for such cases, one should use Tsallis 
entropy (also known as nonextensive or non-additive entropy) in lieu of standard entropy. 
Maximization of Tsallis entropy φq in equation (5) with known μ and σ2 yields a hyper-exponential 
(power-type distribution), i.e.:  

f(x) = [1 + κ (λ0 + λ1 x + λ2 x2)] –1 – 1/κ (7) 
where κ := (1 – q)/q (Koutsoyiannis, 2005). For κ → 0 (q → 1), equation (7) switches to equation (6). 
Equation (7) is mathematically equivalent to the so-called Tsallis distribution (Tsallis et al., 1995; 
Prato & Tsallis, 1999), as can be verified replacing 1 – q with q – 1. Note that the latter distribution 
has been obtained by constraining optimization not with the typical first and second moments as 
above but with generalized ones, known as q-expectations.  
 The fact that high variation σ/μ is common in hydrological variables at fine time scales is a 
strong indication of the applicability of the Tsallis ME principle in hydrology. The most essential 
difference of equation (7) with respect to equation (6) is the implied hyper-exponential tail of 
distribution, which is quantified by parameter κ (for κ > 0). When the process of interest is 
aggregated from fine to coarser scales, σ/μ becomes smaller and smaller and the hyper-exponential 
behaviour of the tail becomes less and less visible from data due to the central limit theorem. 
However, it can be easily shown that theoretically the tail of the distribution is still hyper-
exponential with the same κ, although the mathematical form of the distribution (7) is not 
preserved exactly (in contrast to (6) which is preserved in aggregation). Nonetheless, equation (7) 
can be used as an approximation over a range of scales. 
 The above are investigated for the Nile flow as shown in Table 2 and Fig. 2. The latter depicts 
normal probability plots of the distribution functions of annual and monthly Nile flows for August 
and December, which are representative of the high-flow and low-flow periods, respectively. The 
variation σ/μ is 0.20 for the annual flows and ranges from 0.23 to 0.43 for the monthly flows; these 
values can support the appropriateness of the (truncated) normal distribution. It can be seen that 
the normal distribution is a satisfactory approximation for the annual flows, as well as for the 
monthly flows in August. This is also the case for September and October. Clearly, however, the 
flows in December exhibit a heavier tail, and this is observed for all months in the low flow 
period. In all these months, the empirical coefficients of skewness are positive (see Table 2) and 
those of kurtosis (and L-skewness and L-kurtosis) are higher than those of the normal distribution. 
Therefore, for the nine months of low flows, the departures of the empirical distributions from the 
normal could be attributed to over-exponential tails and could justify the use of (7) instead of (6).  
 As the normal distribution is very convenient in building a stochastic model for either 
simulation or prediction, one can think of applying a normalizing transformation Z = g(X) to the  
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Fig. 2 Normal probability plots of the distribution function (empirical and normal) of annual and 
monthly Nile flows: (a) annual; (b) August; (c); December; and (d) December, but after applying 
normalizing transformation (9). 

 
 
variable of interest X, instead of using the non-normal distribution (7). In this case, Z will have a 
distribution that is approximated by (6), whereas X has a distribution that is approximated by (7). For 
appropriate selection of a translation parameter c, based on equations (7) and (6), we can write:  

exp[– λ2 (z – c)2] ~ [1 + κ λ΄2 (x – c)2] –1 – 1/κ (8) 
from which (after algebraic manipulation and change of parameters) we obtain the following 
normalizing transformation: 

Z = g(X) – g(0); g(x) = c + sgn(x – c) λ ⎝
⎛

⎠
⎞1 + 

1
κ  ln⎣⎢

⎡
⎦⎥
⎤1 + κ ⎝

⎛
⎠
⎞x – c

λ

 2

 (9) 

This, in addition to the tail-determining dimensionless parameter κ, contains a scale parameter λ 
with the same units as x, which enables physical consistency of the transformation, and a trans-
lation parameter c, again with the same units as x. It is easily seen that: (a) z has the same units as 
x; (b) for x/λ ranging in [0, ∞), z/λ also ranges in [0, ∞); and (c) for κ = 0, z is identical to x.  
 To apply the normalizing transformation to the monthly Nile flows in the low flow period, one 
may think of using different parameters κ, λ and c for each month. However, due to the already 
mentioned high estimation uncertainty, accurate estimation of 9 × 3 = 27 parameters is hardly 
attainable. Therefore, we prefer to assume c = 0 and a single pair of parameters κ, λ for all nine 
 

(a) (b) 

(c) (d) 
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Table 3 Main marginal and dependence statistics of the transformed 78-year record on monthly basis. 
Month μ (km3) σ (km3) Cs Ck τ3 τ4 Η ρ1 ρ2 ρ12 
Aug 19.37 4.623 –0.09 –0.14 0.00 0.12 0.76 0.71 0.25 0.16 
Sep 22.98 4.292 –0.12 –0.57 –0.02 0.07 0.74 0.80 0.52 0.17 
Oct 16.33 3.649 0.41 0.31 0.08 0.14 0.76 0.88 0.70 0.24 
Nov 1.42 0.057 –0.30 –0.16 –0.05 0.11 0.76 0.89 0.77 0.23 
Dec 1.34 0.058 0.05 0.07 0.05 0.11 0.88 0.95 0.87 0.40 
Jan 1.27 0.065 –0.48 1.26 –0.02 0.17 0.83 0.98 0.92 0.36 
Feb 1.18 0.081 –0.13 0.18 0.02 0.11 0.77 0.96 0.93 0.30 
Mar 1.13 0.090 0.25 –0.19 0.07 0.12 0.80 0.89 0.81 0.36 
Apr 1.05 0.093 0.60 0.08 0.13 0.12 0.84 0.95 0.77 0.44 
May 1.02 0.087 0.67 0.72 0.13 0.14 0.77 0.93 0.86 0.36 
Jun 1.05 0.086 0.32 0.49 0.07 0.15 0.64 0.69 0.57 0.11 
Jul 1.30 0.084 –0.31 0.13 –0.04 0.11 0.90 0.64 0.45 0.50 
Average   0.07 0.18 0.03 0.12 0.79 0.86 0.70 0.30 
Notation as in Table 2. 
 
 
months, which we estimate by minimizing the departures of empirical skewness, kurtosis, L-
skewness, L-kurtosis of z, aggregated over all months, from those of the normal distribution. The 
resulting parameters, estimated for the fitting period (78 years) were κ = 2.76 and λ = 0.47 km3. 
Figure 2(d), which depicts a normal probability plot of the transformed monthly flows z in 
December, indicates that transformation (9) performed a satisfactory normalization of the distribu-
tion. The statistical characteristics of the transformed monthly flows are shown in Table 3. 
 
4.2 Dependence 
Given that the marginal distribution of the transformed flows Z is normal, from the discussion of 
Section 3 it follows that the multivariate distribution of the process Zi will be multivariate normal, 
as a result of the ME principle applied on Zi in a multivariate setting. This entails linear 
relationships among consecutive variables Zi. Using the inverse transformation of (9), we can find 
the relationships between consecutive Xi (this is the case with the curve marked as “Stochastic 
linear model 1” in Fig. 1(a), but it is more convenient to formulate the entire model in terms of Zi 
and use the inverse transformation only in the last phase to translate a prediction for normalized 
flow Z to a prediction of the actual flow X.  
 Because of the normality of Zi, the multivariate distribution can be fully expressed in terms of 
the autocorrelation function. Table 2 shows that the autocorrelations of the natural monthly Nile 
flows (corr[Xi, Xi + j] for month i = 1 (August) to 12 (July) and lag j = 1, 2, 12) are very high, but 
differ from month to month. Table 3 shows that the autocorrelations of the normalized flows  
(ρj = corr[Zi, Zi + j]) have essentially the same values as in the natural flows. Figure 3 depicts the 
autocorrelograms for two months, August and December, representative for the high- and low-
flow periods, respectively, for lags up to 60 (corresponding to five years). Here we can observe 
that monthly autocorrelations differ significantly from month to month for small lags (periodicity) 
but become very similar for large lags, for which they keep high values thus suggesting LRD. 
These autocorrelograms are constructed from the 78-year fitting period; had the complete 131-year 
record been used, the peaks of autocorrelograms would be higher, indicating enhancement of both 
the periodicity and LRD. LRD is better seen in Fig. 4, which depicts higher lag autocorrelations of 
monthly flows for lags that are multiples of 12 (corr[Xi, Xi + 12 j]), so as to eliminate periodicity, as 
well as autocorrelations of annual flows (corr[Yi, Yi + j], where Yi := X12(i – 1) + 1 + … + X12i, the 
annual flow at year i). The presence of LRD implies much higher uncertainty than in classical 
statistics, as well as bias in classical statistical estimators (Koutsoyiannis, 2003). Therefore, in 
Fig. 4, two series of estimates of ρj have been plotted, the classical statistical ones (marked as 
“empirical classical”) and the adapted ones (marked as “empirical SSS” where SSS stands here for 
simple scaling statistics; see below) that recover from bias (Koutsoyiannis, 2003). In addition to 
empirical estimates, some model curves are also plotted, which will be discussed later. All panels 
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Fig. 3 Correlation coefficients of the transformed (by (9)) monthly flows, i.e. corr[Zi, Zi + j] for i = 1 
(August) and 5 (December) and lag j up to 60.  
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in Fig. 4 verify the presence of LRD and interestingly, indicate that this behaviour is virtually the 
same in all months as well as annually.  
 All above observations support a modelling approach of a mixed type, with a cyclostationary 
description of dependence at small lags (different for each month) and a stationary description for 
large lags (same for all months). The former can be done easily, using a small number of empirical 
autocorrelation coefficients (as those shown in Tables 2 and 3 estimated from the fitting period). 
To specify this number, we use the notion of explained variance. From a detailed investigation, we 

(a) (b) 

(c) (d) 
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observed that the portion of total variance explained by two autocorrelations (ρ1 and ρ2) is 
increased considerably from the case of using only one (ρ1) whereas the introduction of additional 
autocorrelation coefficients (ρ3, ρ4, …) essentially does not increase the explained variance. Thus, 
the values of ρ1 and ρ2 given in Table 3 suffice to describe the dependence for small lags. This 
should not be confused with the adoption of a periodic AR(2) or ARMA(1,1) model as happens 
typically in stochastic modelling using two autocorrelations. These models would imply SRD, 
while here our aim is to preserve LRD. 
 A simple stationary structure with LRD is the simple scaling stochastic process (SSS process) 
with autocorrelation (e.g. Koutsoyiannis, 2002): 

ρj = (1/2) (|j + 1|2H + |j – 1|2H ) – |j|2H ≈ H(2H – 1) |j|2H–2 (10) 
where H is the so-called Hurst coefficient with values in the interval (0.5, 1) for positively 
autocorrelated processes. Here j is meant as the lag for the annual scale or the lag divided by 12 for 
the monthly scale. However, Fig. 4 suggests that autocorrelation in the Nile decays with lower 
rates than implied by equation (10). Therefore, we need to investigate it further, again using the 
ME principle.  
 To determine the dependence structure of a stochastic process, Koutsoyiannis (2005b) maxi-
mized average entropy on a range of timescales with appropriate constraints. That ME framework 
was revisited and advanced in light of the statistical behaviours observed in the Nile 
(Koutsoyiannis & Georgakakos, 2006). The results of the latter work are also used here. To 
summarize them, the entropy maximization is done on a time scale tending either to zero (a local 
setting) or to infinity (a global setting). Maximization of entropy is done numerically using a para-
metric form of the autocorrelation function, initially formulated in continuous time, as shown in 
Appendix 1. This parametric autocorrelation includes three components: a white noise term, an 
SRD term and an LRD term. This parametric representation is deliberately rich (it includes six 
parameters) in order to provide appropriate degrees of freedom for the entropy maximization. 
 Entropy maximization either at the local or the global setting results in virtually the same 
solution if two autocorrelation constraints are used. This solution is more complicated than SSS, 
but tends to SSS as scale increases. For this reason, we call it an asymptotic scaling stochastic 
process (ASS process). Both SSS and ASS structures are plotted in terms of the resulting 
autocorrelation functions in Fig. 4, also in comparison with empirical autocorrelations. Practically, 
the autocorrelation of either SSS and ASS is a power function of the lag; the difference is that in 
SSS both the slope and the intercept are dependent on each other (they are functions of the single 
parameter H, namely 2 H – 2 and ρ1 = 22 H – 1 – 1, respectively) whereas in ASS the intercept ρ1 
does not determine the slope of the autocorrelation decay. Here the SSS and ASS models were 
determined for the annual series and also applied in the monthly series. Thus, the model curves in 
all panels of Fig. 4 are exactly the same. It seems that ASS in all cases is in better agreement with 
the empirical points and therefore we use this in the development of the model. Even though, due 
to the adopted rich parameterization, the ASS autocorrelation is nominally dependent on six 
parameters, in fact, after entropy maximization, two parameters suffice to describe it (i.e. the 
intercept and slope in the plots of Fig. 4, which correspond to the two autocorrelations that were 
used as constraints).  
 The link of short-term dependence, described by the two small lag autocorrelations, with the 
long-term dependence, described with the ASS model, will be done in Section 4.3 to construct an 
operational stochastic model for prediction as well as for simulation.  
 
4.3 Model formulation 

In accordance with (1) and the linearity assumption justified in Section 3, our stochastic model 
will be a general linear one, i.e.:  

W = aT Z + V (11) 
where a is a vector of weights and V is a random term assumed independent of Z. The variable to 
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be predicted, W, and all items of the vector of explanatory variables, Z, are normalized monthly 
flows. Specifically, assuming that the current time is i – 1, denoting Zi the normalized flow at time i 
and Z(i) the ith item of Z, we will have: 

W ≡ Zi , Z(1) ≡ Zi – 1, Z(2) ≡ Zi – 2, Z(3) ≡ Zi – 12, Z(4) ≡ Zi – 24, …, Z(m) ≡ Zi – 12(m – 2) (12) 
Thus, the first two items of Z are the nearest in time normalized monthly past flows, whereas all 
other items are normalized past flows of the same month of the year as the month in time i. With 
this composition of Z, the model takes account of both long-term and short-term dependence. To 
account for LRD as much as possible, we should make m as large as possible. In fact, the size m of 
Z is determined by the available data record that conditions prediction. In our case, m – 2 = 78 (the 
length of the fitting period), so m = 80. It should be emphasized that the size m is not at all related 
to the number of parameters to be estimated from the data, and there is no reason to seek 
parsimony in this case.  
 To specify the model we need to determine the weights a and the statistical characteristics of 
V. Assuming (for convenience) that W and Z have zero mean and unit variance, V will have zero 
mean, variance var[V] < 1, and normal distribution. Multiplying both sides of (11) by ZT and 
taking expected values we obtain: 

aT = ηT h–1 (13) 
where η:= cov[W, Z] and h:= cov[Z, Z]. Squaring both sides of equation (11) and taking expected 
values we obtain:  

var[V] = 1 – ηT h–1 η = 1 – aT η (14) 
 We observe that the vector η contains 80 monthly autocorrelation items, the lag one and two, 
which are model parameters estimated from the data, and the lag 12, 24, etc., which, as described 
above, are equal to the lag 1, 2, … autocorrelations of the annual flows. The latter are determined 
from the ASS model described in Section 4.2 in terms of a couple of free parameters (annual 
autocorrelations for two lags). Thus the first two items of η change from month to month whereas all 
others are the same for all months. The matrix h contains numerous items (80 × 80 = 6400 for each 
month). However, most of them (the lower 78 × 78 part of the matrix) are determined from the ASS 
model and a few more (the upper 2 × 2 part of the matrix) contain lag one and two autocorrelations 
already appearing in η. The remaining part of the matrix (two, 2 × 78 areas, symmetric to each other 
because h is symmetric) contains unknown autocorrelations (cov[W, Zi] for several Zi).  
 According to prevailing practices in stochastic modelling, these unknown autocorrelations, 
whose number is very large (12 × 2 × 78 = 1872), would be estimated from the data. Even though 
this is technically feasible (and done in some cases such as in most disaggregation models) it 
makes no sense, given that the available data values are 12 × 78 = 936, i.e. half the number of 
these unknown autocorrelations.  
 Here we propose that these parameters should be left “unestimated” in the statistical sense and 
should be calculated by applying the ME principle. In this way, no additional parameter is intro-
duced in the stochastic model. As shown in Appendix 2, the entropy maximization in this case has 
an easy analytical solution that can be formulated as a generalized Cholesky decomposition of the 
matrix h (assuming that h = b bT, where b is a lower triangular matrix to be calculated). In this case 
the total number of autocorrelation parameters to be estimated statistically does not exceed (12 + 
1) × 2 = 26 (two autocorrelations per month plus two parameters for the annual autocorrelation 
function) for the entire model; thus, the proposed model is indeed parametrically parsimonious.  
 After the calculation of the matrix h, all other computational effort is trivial (typical matrix 
operations). Model (11) can perform either in forecast mode or in simulation mode. To apply 
model (11) to obtain a point prediction W for the observed values Z = z, it suffices to set V = 0; the 
resulting value of W from (11) will be the expected value conditional on Z = z. Interval predictions 
can be easily derived analytically based on the distribution of V which is normal with zero mean 
and variance var[V]. Furthermore, stochastic simulation is also easily performed using the same 
model with V generated from the normal distribution.  
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4.4 Results 

Figure 5 provides a graphical depiction of the vector of weights a for two months. Due to the 
higher value of lag one autocorrelation in December (0.94 against 0.71 in August) the relative 
weight of distant lagged past flows is much smaller in December than in August. The entire picture 
of weights changes significantly from month to month (cyclostationarity) even though most parts 
of matrices η and h represent stationary components. Generally, the weights decrease with the 
increase of lag, but this is reversed for very high lags. This seems counter-intuitive but it is totally 
justified: the non availability of information for lags higher than 78 years results in relatively 
higher weights near the 78-year lags.  
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Fig. 5 Graphical depiction of the vector of weights a (coefficients of time delayed standardized flows in 
the multivariate linear stochastic model) for the indicated months; full points indicate positive values 
and the single empty point indicates a negative value.  

 
 
 Based on the 12 vectors of weights, the model was applied to predict the flows of the 53-year 
validation period. Each time, the most recent 78-year historical information was used to condition 
the prediction. The results are shown graphically in Fig. 6, both in terms of natural and standard-
ized (by month) values, and indicate a very satisfactory proximity with actual values. A numerical 
index measuring performance is the attained coefficient of efficiency: 

CE = 1 – E[(W – X)2]/var[X] (15) 
where X is the actual variable that is predicted by W. As a benchmark model for assessing 
prediction skills of all models we use the so-called zero order (ZO) prediction, in which the flow 
of the current month is taken as the forecast for the next month. As shown in Table 4 (second 
column), the performance index of the stochastic model in its above described configuration (S1) 
is very high, impressively higher than in the ZO prediction (also shown in Table 4).  
 In addition to this full configuration of the stochastic model, two additional ones were 
examined (see Table 1), whose performances are also shown in Table 4. In configuration S2, 
which is similar to S1 but without normalizing transformation, the performance is only slightly 
lower than in S1. Even performance of the stochastic model S3, which is a typical PAR(2) process 
without a normalizing transformation, is good, but inferior to those of S1 and S2.  
 
5 DETERMINISTIC MODELS 

5.1 Analogue model  
As described in Section 3, the logic and the algorithm of the analogue model are very easy 
(Georgakakos & Yao, 1995; Kantz & Schreiber, 1997; Yao & Georgakakos, 2001). In operational  
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Fig. 6 Graphical depiction of the proximity of monthly predictions of model S1 to historical values: 
(a) natural values; and (b) monthly standardized values. 

 
 
Table 4 Coefficients of efficiency of the different prediction models for the validation period (53 years). 
Model Untransformed values Logarithmically transformed 

values 
Monthly standardized untransformed 
values 

ZO 0.327 0.463 –0.237 
S1 0.911 0.904 0.673 
S2 0.907 0.899 0.675 
S3 0.884 0.884 0.624 
A1 0.840 0.613 –0.145 
A2 0.847 0.623 –0.126 
A3 0.879 0.851 0.490 
C1 0.888 0.878 0.583 
C2 0.775 0.791 0.280 
C3 0.859 0.849 0.472 
 
 
mode, the only difference from the general description in Section 3 is that a number of neighbours 
z1, …, zn, instead of a single vector z1, is used and the prediction w is extracted as the average of 
w1, …, wn, the states next (in time) to the latest coordinate of z1, …, zn, respectively. The number n 
can be either fixed or varying determined in a manner that the vectors zi have distance from z 
smaller than a threshold; here the first option has been used. The vector z is formed from the 
current state and some earlier ones whereas the vectors zi are sought in the calibration period 
exclusively.  
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 Thus, the analogue model involves no parameters except the size of the vector z (embedding 
dimension, m) and the number of neighbour’s n. These adjustable quantities are determined by a 
trial-and-error procedure aiming at finding the optimal m and n that make the prediction error 
minimum for the verification period. Application of the method with the Nile flows resulted in the 
variation of the coefficient of efficiency in the verification period with m and n that is shown in 
Fig. 7. It is generally observed that if we exclude too low values (i.e. m = 1 and n = 1–2) the 
efficiency is very good. Two local optima were found corresponding to (m = 12, n = 11) and  
(m = 13, n = 24). The efficiencies of these two model configurations, abbreviated as A1 and A2, 
respectively (see Table 1) are shown in Table 5.  
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Fig. 7 Coefficient of efficiency attained by the analogue model for the verification period, as a function 
of (a) number of delay items assuming fixed (11 or 24) number of neighbours, and (b) the number of 
neighbours assuming the indicated delay items; UT untransformed (natural) values; LT logarithmically 
transformed values. 

 
 
Table 5 Coefficient of efficiency of the optimal configurations of the analogue model in the verification period; all 
coefficients refer to natural (not standardized) series. 

Model Untransformed values Logarithmically transformed values 
A1 0.959 0.945 
A2 0.945 0.942 
A3 0.955 0.954 
 
 
 We also studied an additional model configuration, inspired by the stochastic model. In this, 
to construct the vector z we assumed (similar to (12)) a variable (rather than constant) time delay, 

(a) 

(b) 
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i.e. z = [zi – 1, zi – 2, zi – 12, zi – 24, …, zi – 12(m – 2)]T. In this case, however, we cannot use a high m (like 
78 in the stochastic model) because we would run out of a pool of neighbours. Thus, we only 
tested the cases m = 3 and 4; with these values we cannot anticipate to capture the long-term 
dependence properties of the process, but only to simplify the model (using four instead of 24 
terms for the same effective total lag). The resulting efficiencies for these two cases are also 
plotted in Fig. 7 and are comparable to that of the constant time lag cases. Among the several 
configurations of this type shown in Fig. 7, the optimal was that with m = 4 and n = 7; this has also 
been included in Table 1 and Table 5 abbreviated as A3. The performances of all model 
configurations for the validation period are shown in Table 4. 
 
5.2 Connectionist model  
 

The connectionist model used in this study follows the logic described in Section 3; its details are 
described in Georgakakos & Yao (1995). In our case study, structures with one or two hidden 
layers have been examined. The model fitting, metaphorically known as “training” or “learning”, 
is a nonlinear optimization procedure that minimizes fitting errors. In this case it was executed by 
the “error backpropagation” method which is a version of a gradient descent method.  
 As opposed to the analogue model case, in which the natural flows were used, here the flows 
were standardized by the mean and standard deviation of each month. To avoid over-fitting (i.e. 
the use of too many components of elementary functions, a common propensity of connectionist 
models) an early stopping method was used combined with two fitting measures: the calibration 
error (in the calibration period) and the verification error (in the verification period; Georgakakos 
& Yao, 1995). Typically, the calibration error decreases steadily while the verification error 
initially decreases and eventually increases, exhibiting a minimum. Model calibration is typically 
terminated when the verification error achieves a minimum value.  
 Several model configurations were tested, which make two groups. In the first group a 
constant time delay (1 month) was assumed, the number of inputs varied from 1 to 15, the hidden 
layers from 1 to 2, and the hidden nodes in each layer from 1 to 15. In the second group the time 
delay was variable (as in the analogue model), the number of inputs was fixed to 4, the hidden 
layers were 1 or 2, and the hidden nodes in each layer varied from 1 to 10. The tradeoff of the two 
fitting measures for all examined configurations and the Pareto front formed are shown in Fig. 8. 
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Fig. 8 Plot of the attained verification error vs the attained calibration error of a series configurations of 
the connectionist model with 1–15 input nodes, 1 or 2 hidden layers, and 1–15 hidden nodes in each 
layer. The circled points in the Pareto front, for which the number of input and hidden nodes are 
marked, depict the solutions further explored (from left to right: C2, C3, C1).  
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Table 6 Performance indices of the optimal configurations of the connectionist model for the calibration and 
verification periods; all coefficients refer to standardized series. 

Mean square error: Coefficient of efficiency: Model  
Calibration Verification Calibration Verification 

C1 0.289 0.241 0.749 0.435 
C2 0.183 0.309 0.842 0.277 
C3 0.241 0.240 0.794 0.438 
 
 
From the solutions lying in the Pareto front, three were chosen as model configurations C1, C2 and 
C3, whose characteristics are shown in Fig. 8 and Table 1. Further, in Table 6, which depicts 
several fitting criteria, we observe that the performance of all configurations is very good (having 
in mind that the values given in the table are for the standardized variables) with C3 slightly 
outperforming the other two. The performances of all model configurations for the validation 
period are shown in Table 4. 
 
 
6 MODEL INTERCOMPARISON  

The intercomparison of models in terms of their prediction skill is made for the 53-year validation 
period, which was not used in any fitting procedure in any model. Three performance indices: the 
coefficients of efficiency of untransformed values, logarithmically transformed values, and 
monthly standardized untransformed values, are shown in Table 4. By all indices, all models in all 
their configurations give predictions much better than the ZO prediction. Among them, the 
stochastic models S1 and S2 have the best performance and are followed by the connectionist 
model C1 (which has almost equal performance with S3) and the analogue model A3. 
 In terms of simplicity and ease of application, the analogue model is best. A spreadsheet 
environment suffices to develop, calibrate, and run it, and its development can take place very 
quickly. In particularly, configuration A3, which gives the best performance in the validation 
period among the three analogue models, is also the simplest (as it involves only four variables) 
and fastest in calibration and running. The next model group in terms of simplicity is the 
stochastic. Configuration S3 is very simple but even the full proposed model S1 is simple enough 
to be implemented in a spreadsheet environment. Here we deliberately discussed the model in 
depth without simplifications. However, in a practical application simplifications are possible. For 
instance, the SSS model could be adopted by default, without entropy maximization. Another 
option is to use a generalized parametric autocorrelation as in Koutsoyiannis (2000) and determine 
its parameters by fitting it (e.g. by least squares) to the empirical autocorrelogram, again without 
entropy maximization. In contrast, the connectionist approach is not simple and cannot be 
implemented on a spreadsheet. 
 In terms of model ability to perform in simulation mode, in addition to forecast mode, only the 
stochastic model provides this option; its procedure was discussed in Section 4.3. To illustrate this, 
a synthetic record of length equal to that of the historical was generated by model S1. Comparisons 
of the statistics of the synthetic and historical monthly records are given in Fig. 9, which indicates 
a satisfactory performance. Some discrepancies of the skewness and lag 12 autocorrelations during 
low flows are usual due to the small sample size; to match such statistics a longer sample size by 
several orders of magnitude is needed, particularly because of the increased sampling variability 
due to LRD.  
 The analogue model cannot operate in simulation mode because it soon converges to an 
“attracting” periodic trajectory, the same for all years. The connectionist model, when the number 
of nodes is small, behaves similarly to the analogue model resulting in an “attracting” periodic 
trajectory. For more than 15–20 hidden nodes, it produces irregular trajectories, which do not 
resemble, and are statistically dissimilar to, the historical flows. 
 In terms of potential insights into the process, we can argue that the stochastic approach offers 
some, especially when combined with the ME principle. The latter, as discussed above provides an 
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Fig. 9 Comparison of statistics of the historic monthly record (continuous lines) and a synthetic record 
of equal length generated by model S1 (dashed lines).  
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Fig. 10 Coefficient of efficiency attained by the analogue model for the verification period for synthetic 
data generated by model S1 in comparison to the respective values for the historic data, as a function of 
(a) number of delay items assuming fixed (11) number of neighbours, and (b) the number of neighbours 
assuming fixed (12) delay items; UT untransformed (natural) values; LT logarithmically transformed 
values. 
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explanation of the observed linearity on a stochastic setting, of the marginal distribution and par-
ticularly its tail, and of the dependence structure, particularly the long-term one. The parametric 
setting of the stochastic approach, along with these insights, offers the ability of controlling the 
entire procedure. In contrast, the deterministic approaches, which are data driven, do not offer any 
control and are black-box rather than insightful. Furthermore, the deterministic models cannot 
have any control on the distribution tails and cannot describe LRD for technical reasons related to 
their data-driven aspect: as described above, an attempt to construct time delay vectors going far to 
the past will result in lack of a pool of such vectors.  
 It has been argued that such or similar deterministic approaches (e.g. time delay embedding, 
see Koutsoyiannis, 2006) offer insights because they reconstruct the dynamics of the process based 
on the observed time series and uncover its deterministic attractor. This is true for simple low 
dimensional experimentation systems (e.g. with one positive Lyapunov exponent) but it is unlikely 
to be the case for complex natural processes, such as the flow of the Nile. The fact that such 
deterministic models can cast good predictions should not necessarily be given the interpretation 
that the process is governed by purely deterministic dynamics. To illustrate this we used the 
aforementioned synthetic flows generated by the stochastic model S1, to which we applied the 
analogue model. As shown in Fig. 10, despite the a priori known stochastic character of the 
inflows, the analogue model gave good predictions and its performance is comparable to that with 
the historical data. Thus, a good prediction does not necessarily imply deterministic dynamics.  
 
 
7 CONCLUSION AND DISCUSSION 

A general conclusion of this work is that it is always worth constructing a good stochastic model 
of a hydrological process. Such a model can operate in simulation mode as well in forecast mode 
and thus can support strategic planning as well as real time management of a hydrosystem. In 
addition, the development of a good stochastic model is closely linked with understanding of 
natural behaviours in a bidirectional manner: a good model presupposes understanding and also 
supports understanding by providing insights into natural behaviours. These behaviours include 
extreme phenomena (distribution tails) and temporal dependences, particularly LRD. It becomes 
obvious then that good modelling practices should depart from the typical ARMA formalism.  
 The principle of maximum entropy can largely support the development of stochastic models, 
providing both a logical foundation and computational tools. Here the principle was used four 
times, i.e. (a) to infer the marginal distribution of the process, (b) to explain and model the long-
term dependence of the process, (c) to justify the (macroscopic) linearity in lagged flows of the 
Nile, and (d) to determine unknown covariances in the stochastic model structure. This study 
offers advances in (a) and (b) whereas to our knowledge propositions (c) and (d) are original. 
Particularly, proposition (d) offers a powerful yet very simple (because of the closed analytical 
solution) computational tool for the construction of a generalized stochastic model. 
 Deterministic modelling alternatives, which recently have been given great attention, are good 
practical tools, too. The analogue model in particular is very attractive due to its simplicity, non-
parametric character and easiness to construct and apply. However, care is needed in 
interpretation. Good predictions by deterministic models do not necessarily mean consistency of 
the natural process with determinism. In this case study, all configurations of deterministic models 
gave performance inferior to the advanced stochastic model. Perhaps however, in another 
application or with the use of more advanced deterministic techniques, they may perform better. 
Still, however, deterministic models are inferior on other grounds, such as in supporting Monte 
Carlo simulation of hydrosystems or in deriving interval predictions, in describing and exploiting 
the long-term persistence, and in offering insights into the process.  
 It may seem counterintuitive that the particular stochastic model developed in this study, which 
largely relies on the principle of maximum entropy, in other words on the postulation of large uncer-
tainty in nature, yields better forecasts than the deterministic models negating uncertainty. Perhaps 
stochasticity and the notion of maximum entropy explain natural behaviour better than determinism. 
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APPENDIX 1 

Entropy maximization to determine LRD 

We assume a continuous time representation of the process of interest with the following three-
component parametric autocovariance function: 

γ(τ) := cov[X(t), X(t + τ)] = λ0 δ(τ) + λ1 exp(–κ1|τ|) + λ2 (1 + κ2 β |τ|)–1/β  (A1) 
where δ(τ) is the Dirac delta function and λ0, λ1, λ2, κ1, κ2 and β are parameters. The three 
components of γ(τ) are respectively, a white noise term (Dirac delta), a SRD term (Markovian or 
exponential function of time lag) and an LRD term (generalized power function of time lag with 
exponent β manifesting LRD unless β = 0). For β = 0 the third term becomes a second exponential 
term and represents SRD at a second characteristic time scale. For β > 1 this term approaches the 
SSS autocovariance with Hurst exponent H = 1 – 1/(2β). When λ0 = λ1 = 0, λ2 ≠ 0, β > 1 and κ → 
∞, the process becomes precisely SSS.  
 Let Xi denote the process at discrete time with scale d, i.e.  

Xi := 
1
d ⌡⌠

(i – 1)d

id

 X(t) dt (A2) 

Then, the following equations can be obtained from typical calculus of stochastic processes: 
γ0 := var[Xi] = λ0 / d + 2 ε1 (ξ1, 1 + κ1

 d – 1) + 2 ε2 [ξ2, 1 – (2β – 1) κ2
 d – 1]  (A3) 

γ1 := cov[Xi, Xi + j] = ε1 (ξ1, j – 1 + ξ1, j + 1 – 2 ξ1, j) + ε2 (ξ2, j – 1 + ξ2, j + 1 – 2 ξ2, j), j > 0 (A4) 
where: 

ε1 := λ1 / (κ
2
1 d2), ε2 := λ2 / [(β – 1)(2β – 1) κ2

2 d2] (A5) 

ξ1, j := exp(–κ1 d j), ξ2, j: = (1 + κ2 β d j)2 – 1/β (A6) 
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 The details of the entropy maximization procedure, according to which the six parameters of 
the autocovariance function are determined, are given elsewhere (Koutsoyiannis & Georgakakos, 
2006). A summary of the method is as follows: (a) the maximization of entropy is done 
numerically based on the above parametric representation of the dependence structure for a time 
scale tending to 0 or ∞; (b) numerically, the limiting timescales are approximated by d = 2±s where 
it was chosen that s = 7; (c) the constraints used in the maximization deal with known variance 
(the mean is not necessary if the distribution is normal), and known annual autocorrelation at lag 
one and at a greater lag; and (d) in addition to these equality constraints, an inequality constraint is 
used, i.e. that the information gain (see definition in Koutsoyiannis, 2005b) at time scale tending to 
zero is greater than at any positive time scale (meaning that predictability at any timescale should 
be lower than that instantaneously after the measurement).  
 Application of the procedure with the 78-year record of standardized annual flows with 
constraints var[Y] = 1, ρ1 = 0.45 and ρ4 = 0.37 (which are the SSS sample estimates and differ from 
the values in Table 2) resulted in λ0 = 0.00484, λ1 = 24.87; λ2 = 1, κ1 = 46.80, κ2 = 0.179, and β = 
5.25. This solution has the properties of an ASS process as discussed in the text.  
 
 
APPENDIX 2 

Entropy maximization to determine unknown covariances in the stochastic model structure  

Let Z+ = [W, ZT]T be the vector that contains all variables of the problem, assumed to be 
standardized. Its covariance matrix is:  

c := cov [Z+, Z+] = ⎣
⎡

⎦
⎤1 ηT

η h   (A7) 

From a known result for Gaussian processes (Papoulis, 1991, p. 564), the joint entropy of Z+ is φ+ 
= ln( (2πe)s + 1 |c|) where |c| is the determinant of c. It is reasonable to assume that the unknown 
items of h are those that maximize φ+, or equivalently |c|. Any different consideration would imply 
that the information we have about Z+ is more than contained in the known elements of c.  
 The maximization of φ+ can be performed very easily. Since c is a symmetric matrix, it can be 
written as c = b bT where b is a lower triangular matrix, known as the square root of c. Then:  

|c| = ∏
i = 1

s + 1
 b2

ii (A8) 

so that maximization of |c| is equivalent to maximization of the product of the diagonal elements of 
b. Recall that the elements of b are calculated from c with a step-by-step algorithm (Cholesky 
decomposition, e.g. Bras & Rodriguez-Iturbe, 1985, p. 96) for growing i and then j, so that: 

bij = 

cij –∑
l = 1

j – 1
 bil bjl

bjj
 if j < i; bii = cii –∑

j = 1

i – 1
 b2

ij if j = i; bij = 0 if j > i (A9) 

Clearly then, maximization of the diagonal element bii demands that all “free” bij (which 
correspond to an unknown cij) should be zero. Thus, only a small modification of the algorithm is 
needed for the non-diagonal elements: if cij is unknown then bij = 0, else bij is calculated from 
(A9). Furthermore, one may observe that since Var[V] is related to the entropy of Z+ conditional 
on known Z, it can be (alternatively to (14)) estimated from (Papoulis, 1991, pp. 500, 568): 

var[V] = |c|/|h| (A10) 
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