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1. Should hydrologists study climate? 
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Element 1: Hydrologists as impact assessors
Climate modellers predict the future climate.
Hydrologists should:

Adopt the climate models outputs;
Downscale them at a catchment scale;
Feed their hydrological models with downscaled climatic 
projections;
Run their models to assess the impacts on freshwater 
quantity and quality.

Is this pathetic, one-way role of hydrologists useful for the 
scientific progress?

From SCIENCE
10 Oct 2008 Vol. 322 p. 182
www.sciencemag.org
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Element 2: Hydrologists and politicians
“Climate change” is more a political/economical enterprise than a 
scientific area.

“Tony Blair is due to take his post-prime ministerial earnings to 
more than £7m this year following his appointment to a six-figure-
salary job with Zurich Insurance, the Swiss financial firm, 
advising it on climate change. The company, which could pay 
out tens of millions of pounds for claims from businesses and 
householders over floods, hurricanes and droughts caused 
by global warming, is taking Blair on to advise it on the 
implications of climate change.” (The Guardian).
[www.guardian.co.uk/politics/2008/jan/29/uk.tonyblair]

Politicians claim that they know the scientific truth.
“The inconvenient truth” (film & book by Al Gore, 2006).

Yet they need scientists for sustaining alarmism and shaping and
backing catastrophic scenarios.
The role of hydrologists is not negligible because some of the most 
prominent predicted catastrophes are related to water shortage and 
extreme floods.
Is this pathetic role of hydrologists useful for the scientific progress?
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Element 3: Hydrologists and climate modellers

Climate is too serious a matter to entrust to climate modellers.
[Paraphrasing: “War is too serious a matter to entrust to military men”, Georges Clemenceau]

Traditionally hydrologists have some skills perhaps less  
encountered in the climatological community:

Pragmatism, related to the engineering background;
Expertise in supporting decision making under uncertainty;
Familiarity with long term predictions (for the design of major 
works), and particularly their infeasibility using deterministic
approaches.

Hydrological research has provided breakthrough contributions in
stochastics (Hurst, Mandelbrot, Hosking) whereas climatologists 
still use simplistic and unrealistic stochastic representations 
(Markov/AR(1) model; classical statistics based on independent 
identically distributed – IID – variables).
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Element 4: 
Hydrology 
and nature of the 
climate system
The climate system, consisting 
of the atmosphere, oceans, 
land, and cryosphere, with the 
Sun and  volcanic emissions 
considered as external agents
[From Fig. 1-1 of US NRC, 2005; 
books.nap.edu/openbook.php? 
record_id=11175&page=12]

Climate, despite being the state of the atmosphere (similar to weather) at long 
time scales, cannot be described based on solely the atmospheric processes (in 
contrast to weather). Additional natural processes should be taken into account. 
Water is a key factor, the regulator of the entire climate system. 
From the prevailing definitions of hydrology (e.g., Ad Hoc Panel on Hydrology, 
1962; US Committee on Opportunities in the Hydrological Sciences, 1992; 
Dingman, 1994) which emphasize its involvement on the terrestrial, oceanic and 
atmospheric compartments, and the physical and chemical processes 
accompanying the movement of water, we may easily infer hydrology’s key role 
in all these components of the climate system and their mutual interaction. 



2. What is climate and climate 
change?



D. Koutsoyiannis, From climate certainties to climate stochastics 8

Common definition of “climate”
“Climate: The average of weather over at least a 30-year period. 
Note that the climate taken over different periods of time (30 years, 
1000 years) may be different. The old saying is climate is what we 
expect and weather is what we get.” (Authoritative answer given in 
NOAA’s glossary) [http://www.cpc.noaa.gov/products/outreach/glossary.shtml]

Observation 1: By definition, climate is a statistical concept (average).
Observation 2: Why “at least a 30-year period ”? Is there anything 
special with 30 years? 

Tacit reply: It has been generally believed that 30 years are 
enough to smooth out “random” weather components and 
establish a constant mean. Such belief is incorrect.

Observation 3:  Why the climate taken over 30 or 1000 years is 
different?

Obvious reply: Because different 30-year periods have different 
climate (which contradicts the tacit belief of constancy).

Observation 4: Is the saying “climate is what we expect and weather 
is what we get ” scientifically meaningful?

Reply: No (to be discussed later).
Arguably, the entire definition is not scientific.
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Common definition of “climate change”
“Climate Change: A non-random change in climate that is 
measured over several decades or longer. The change may be due to 
natural or human-induced causes.” (Authoritative answer given in the 
same NOAA’s glossary) [http://www.cpc.noaa.gov/products/outreach/glossary.shtml]

Observation 1: What is the meaning of “non-random”? 
Reply 1: It is just a manifestation of confusion between natural 
processes on the one hand and the modeling convenience we 
use and our ability to explain the change (attribute it to some 
causative mechanism) on the other hand.
Reply 2: It is just a manifestation of a logical inconsistency of the 
definition: If a change in climate is random (we cannot explain it), 
isn’t it a “climate change”?

Observation 2: Is the term “climate change” meaningful and useful? 
Reply 1: In a scientific context No, because by definition the 
climate changes. The introduction of the term into the scientific 
vocabulary just indicates a false perception of a static climate.
Reply 2: In a political context Perhaps, because of the implied link 
of “climate change” with “human-induced causes”. 

Arguably, the definition is not scientific – and the term 
redundant.



3. Advertized climate “certainties”
(or elements of consensus) –
and some question marks
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A trick to convert any observed event into 
climate certainty

“Global warming can mean colder, it can mean drier, it can 
mean wetter.” (Stephen Guilbeault, Greenpeace, 2005; 
Telegraph). [www.telegraph.co.uk/opinion/main.jhtml?xml=/opinion/2005/12/06/do0602.xml]

We can blame it for any negative sign we see:
Hot summers;
Cold winters;
Floods, typhoons, cyclones, hurricanes;
Droughts, desertification.

We can predict every conceivable catastrophe for the future:
All above will worsen, and even …
… the Earth can end up like Venus with temperature rises 
of several hundreds degrees and sulfuric acid rain (Stephen 
Hawking).
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Climate “certainty” 1: The current period is 
characterized by global warming

Satellite-derived temperature of lower troposphere; Data from the US National Space and Technology 
Center (Monthly means of lower troposphere lt5.2)
[vortex.nsstc.uah.edu/; vortex.nsstc.uah.edu/public/msu/t2lt/tltglhmam_5.2]

!

?
?

In the last 
ten years, 
alarmism 
about global 
warming 
has 
burgeoned. 
Is there 
global 
warming in 
this period?  
Or a slight 
cooling?
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Climate “certainty” 2: The recent warming is 
anthropogenic IPCC (2007; Figure SPM.4 partly 

reproduced) has concluded that 
it is likely that there has been 
significant anthropogenic 
warming over the past 50 years. 
The observed patterns of 
warming, are only simulated by 
models that include 
anthropogenic forcing. ?

? Are models good enough to 
support such a conclusion? 
They did not capture the cooling 
trend in 1940s; perhaps for the 
same reason the first decade of 
1900, which had a cooling trend, 
has been deleted from the figure.
Further, is such a conclusion 
supported by statistical testing?
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Climate “certainty” 3: Climate models are able to 
predict the climate in 2050 or 2100
Koutsoyiannis et al. (2008) tested retrodictions of three IPCC AR4 and three 
TAR climatic models at 8 test sites worldwide that had long (> 100 years) 
temperature and precipitation series of observations. They found that model 
outputs are irrelevant with reality. 
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Comparisons of observed temperature at 
Albany, Georgia, USA, and modelled
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Change of climatic (30-year moving 
average) temperature (in the 20th 
century: models vs. reality

Models cannot reproduce past climate. How can then predict future climate?
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Climate “certainty” 4: Arctic sea ice is 
melting

Satellite-derived sea ice extent in the Arctic Ocean. Data from the FIARC-JAXA Information 
System (IJIS) of the International Arctic Research Center in corporation with the Japan 
Aerospace Exploration Agency and the Advanced Earth Science and Technology Organization of 
Japan [http://www.ijis.iarc.uaf.edu/en/home/seaice_extent.htm]
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Do data justify the 
fears and verify this  
“certainty”? 
(The melting in 2008 
was lower than in 
2007). 

Climate modellers 
expect that the North 
and South Poles will 
show the most dramatic 
effects of global 
warming. In June 2008 
there were predictions 
of an ice-free North 
Pole for first time in 
history during the 
summer of 2008 
(Mehta, 2008).
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Climate “certainty” 5: Antarctic sea ice is 
melting

Trend (?)

Do data verify 
this  “certainty”? 
(There is no 
decreasing 
trend). 

Satellite-derived sea ice extent in Antarctica. Data from the US National Snow and Ice Data Center 
[nsidc.org/data/smmr_ssmi_ancillary/area_extent.html; sidads.colorado.edu/DATASETS/seaice/polar-stereo/trends-
climatologies/ice-extent/nasateam/gsfc.nasateam.daily.extent.1978-2007.s]



D. Koutsoyiannis, From climate certainties to climate stochastics 17

Climate “certainty” 6: Extreme weather 
phenomena are becoming more frequent

Frequency of hurricanes and major hurricanes (categories 3-5) landfalling in 
the USA (by decade, 1906-2005)
[www.ncdc.noaa.gov/oa/climate/research/hurricane-climatology.html]

Do data verify 
this  “certainty”? 
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Climate certainty 6 (cont.): Extreme weather 
phenomena are becoming more frequent

Frequency of tropical cyclones and typhoons (with maximum sustained 
wind speed > 32.7 m/s) in China; source: Ren et al. (2006)

Tropical cyclones

Typhoons
Do data verify 
this  “certainty”? 
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Climate “certainty” 7: Catastrophic floods are 
becoming more intense and more frequent

Catastrophic flood threshold

Annual maximum water level of the Vistula River in 
Warsaw, 1813-2005 (Cyberski et al., 2006)

Do data verify 
this  “certainty”? 
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Climate “certainty” 7 (cont.): Catastrophic floods 
are becoming more intense and more frequent

Historical evidence for flood frequency in Spain in the last 
millennium from documents and archives (Barriendos et al., 
2006)
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Do data verify 
this  “certainty”? 



4. Climate stochastics
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What is Stochastics?
“To predict something is to measure 
its probability. The Science of Prediction 
or Stochastics is therefore defined as the 
science of measuring as exactly as possible 
the probabilities of events so that in our 
decisions and actions we can always 
choose or follow that which seems to be 
better, more satisfactory, safer and more 
considered. In this alone consists all the 
wisdom of the Philosopher and the 
prudence of the Statesman.”
[Jakob Bernoulli, Ars Conjectandi, 1684-1689, published in 
1713; quoted from von Collani, 2005, 2006]

The modern meaning of “stochastics”
points to a mathematically based science, 
the subject of which is chance and 
uncertainty. It comprises probability 
theory, mathematical statistics and 
stochastic processes, as well as their 
applications.
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Simplified random processes are insufficient for 
climatic processes
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The Hurst-Kolmogorov
(HK) pragmaticity
The recognition that real world 
processes behave differently from an 
ideal roulette wheel (where the 
differences mainly rely on long 
excursions of local averages from the 
global mean) has been termed the 
Hurst-Kolmogorov pragmaticity
(Koutsoyiannis and Cohn, 2008)

Kolmogorov (1940) studied the stochastic 
process that describes this behaviour 10 
years earlier than Hurst.

Hurst (1950) studied numerous geophysical 
time series and observed that: “Although in 
random events groups of high or low values 
do occur, their tendency to occur in natural 
events is greater. This is the main difference 
between natural and random events.”
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Multi-scale stochastic properties of a HK process

A natural process usually evolves in continuous time t : X (t ) 

… but we observe or study it in discrete time, 
averaging it over a fixed time scale k and using 
discrete time steps i = 1, 2, … 

X (k)
i  := 

1
k ⌡⌠

(i – 1) k

i k
  X(t) dt

 

Properties of the 
HK process  

At an arbitrary 
observation scale  
k = 1 (e.g. annual) 

At any scale k 

Standard deviation σ ≡ σ (1) 

σ (k) = k H – 1 σ   
(can serve as a definition of the 
HK process; H is the Hurst 
coefficient; 0.5 < H <1) 

Autocorrelation 
function (for lag j) ρj ≡ ρ

(1)
j  =ρ

(k)
j  ≈ H (2 H – 1) |j |2H – 2 

Power spectrum 
(for frequency ω) 

s(ω) ≡ s(1)(ω) ≈  
4 (1 – H) σ 2 (2 ω)1 – 2 H

s(k)(ω) ≈  
4(1 – H) σ 2 k 2H – 2 (2 ω)1 – 2 H 

 

In classical 
statistics
σ (k) = σ/√k

All equations are power laws 
of scale k, lag j, frequency ω
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Example 1: Tendency of grouping of floods

Flood discharges of the Vltava River in Prague during the last 5 centuries (Brázdil
et al., 2006).

1845-90: Three flood events 
greater than the 100-year flood 
in 45 years

1900-45: No flood event 
greater than the 10-year flood 
in 40 years
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Example 2: 
Annual 
minimum 
water levels 
of the Nile

The longest available 
instrumental hydroclimatic 
data set (813 years).
Hurst coefficient H = 0.84.
The same H is estimated 
from the simultaneous 
record of maximum water 
levels and from the modern 
record (131 years) of the 
Nile flows at Aswan.
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Example 3: The lower 
tropospheric
temperature

Suggests an HK 
behaviour with a very 
high Hurst coefficient: 
H = 0.94
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Estimation bias and 95% 
prediction limits were determined 
by Monte Carlo simulation (200 
simulations with length equal to 
the historical series)
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Example 4: The 
Moberg et al.
proxy series of 
the Northern 
Hemisphere 
temperature
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Example 5: The Greenland temperature proxy 
during the Holocene

Reconstructed from the GISP2 Ice Core (Alley, 2000, 2004). Data from: 
ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt
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Example 5 (cont.): The Greenland temperature 
proxy on multi-millennial time scales
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Example 5 
(cont.): The 
Greenland 
temperature 
proxy on all 
scales
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All three periods 
suggest an HK 
behaviour with a 
very high Hurst 
coefficient: 
H ≈ 0.94

Estimation bias and 95% 
prediction limits were determined 
by Monte Carlo simulation (200 
simulations with length equal to 
the historical series)
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Application 1: Significance testing of temperature 
changes

Koutsoyiannis and 
Montanari (2007) 
developed a statistical 
“pseudo-test” on an 
analytical basis for 
detection of changes 
assuming HK climatic 
behaviour; this gives a 
lower bound of the 
significance level.
Application of the test on 
the CRU series of the 
Northern Hemisphere 
temperature did not reject 
the null hypothesis of no 
change. 
A real test (instead of the 
pseudo-test) would even 
less likely reject the null 
hypothesis of no change.
This result agrees with 
Cohn and Lins (2005) who 
developed a test based on 
Monte Carlo simulation.
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Application 2: Perception and quantification of uncertainty

Classical model (cf. common definition 
of climate)
Climate is what we expect
Weather is what we get

HK model
Weather is what we get … immediately
Climate is what we get 

… if you keep expecting for a long time

Total uncertainty in runoff 
(due to variability and 
parameter estimation)

% of average
Statistical model

Annual scale 30-year scale

HK 270 200

Classical 200 501 year

30 years

Boeoticos Kephisos River runoff (close to 
Athens, Greece); H = 0.84; 
from Koutsoyiannis et al. (2007)
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Application 3: Comparison 
of GCM projections with 
HK climatic confidence 
limits 
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Boeoticos Kephisos catchment;
temperature, precipitation and runoff;
from Koutsoyiannis et al. (2007)

Outputs from three GCMs for two scenarios 
were superimposed to confidence zones 
produced under the HK hypothesis with 
stationary conditions.
For the past, despite adaptations 
performed to make GCM outputs consistent 
with reality (downscaling), the proximity of 
models with reality is not satisfactory.
The GCM projected evolution of temperature 
for the future is too high and (for some 
models) has been already falsified by reality.
The GCM projected trajectories of 
precipitation and runoff are too stable (in 
comparison to HK uncertainty zone) and 
their adoption increases risk.
Conclusion: It is dangerous to use GCM 
future predictions.
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A future investigation
Vostok temperature and 
atmospheric CO2 history for 
the past 420 thousand years, 
showing that Antarctic 
warming tends to lead the 
rise in CO2 concentrations by 
several hundred years during 
the last deglaciations and 
that relatively high CO2 levels 
can be sustained for 
thousands of years during 
glacial inception scenarios 
when the temperature has 
dropped significantly (from 
Soon, 2007).

A stochastic relationship between atmospheric temperature and CO2
concentration would enable a more realistic approach to current climate 
research targets.
Proxy data would be very useful in establishing such a relationship.
This task is not easy because even the direction of the causative relationship 
between temperature and CO2 (which is the cause and which the effect), as 
well as the related time lags, are not clear.
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Concluding remarks 
Even the explanation of observed or estimated present and past climate 
evolution, based on hypothetical “sharp” causal mechanisms, and the 
reproduction by deterministic climatic models, encounter greatest difficulties.

A fortiori, deterministic predictions for the future of the complex global 
climate system on long time horizons must be infeasible.
Taking such predictions seriously and using them in decision making is 
dangerous: it underestimates uncertainty and thus increases the risk.
A paradigm change is needed in climate:

From ambiguous terms and definitions to clear concepts;
Form fallacious certainties to recognition of uncertainty;
From deterministic approaches to stochastics.

Hydrological experience in complex systems and contribution in stochastics 
justifies and qualifies a more active role of hydrologists in climate research.

“The infinite diversity which is manifest in the works of nature as well as in human 
activities and which constitutes the universe’s extraordinary beauty cannot have 
any other source than the diverse combination, mixture and grouping of its parts. 
The set of entities which interact in generating a phenomenon or event is often so 
big and varied that the exploration of all ways that may lead or not lead to its 
combination or mixture encounters the greatest difficulties.” (Jakob Bernoulli) 
[Ars Conjectandi, 1684-1689, published in 1713; quoted from von Collani, 2005, 2006]
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