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Multiobjective optimization in computer and
engineering science: The progress so far

O Expansion of research progress from the early 1990’s, providing already three
“generations” of evolutionary multiobjective algorithms.

O Many domains of application, including water resources technology and
hydroinformatics.
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Important steps in the history of multiobjective
hydrological calibration

O 1991: Early hybrid attempts (Harlin).

O (1998;)Recognition of the value of multiple criteria information in calibration
(Gupta et al.; Kuczera & Mroczkowski) and first Pareto-based approach, within
the presentation of the Multiobjective Complex Evolution method (Yapo et al.).

O 2000: First calibration study involving more than two objectives to optimize
(Madsen) and first conjunctive calibration based on criteria accounting for
discharge and groundwater level information (Seibert).

O 2002: The concept of “soft” data (Seibert & McDonnell).

O 2003: Development of the Multiobjective Shutfled Complex Evolution
Metropolis method (Vrugt et al.).

O 2005: First application of the NSGA-II algorithm in hydrological calibration
(Khu & Madsen).

O 2006: First comparative assessment study, involving three well-recognized
techniques (NSGA-II, SPEA-II, MOSCEM) (Tang et al.).

O 2007: Parallel implementations of multiobjective algorithms in time-consuming
calibration problems (Confesor & Whittaker; Tang et al.).



Model calibration: The (diachronic) dilemma
between consistency and optimality

O A calibration based on the concept of consistency:

m aims to represent as faithfully as possible the whole aspects of the real
system (not only the observed responses);

m recognises the major and inherent role of uncertainty;
m requires some manual guidance (difficult to fully automate);

m reveals the importance of hydrological experience within all modelling
stages (conceptualization, schematization, parameterization, calibration).

O A calibration based on the concept of optimality:

® aims to ensure the most accurate fitting on observed data, which is trivial
to automate (formulation of a global optimization problem);

m usually assumes a single numerical criterion as an overall evaluator of
the model performance;

m is proved too weak against errors and uncertainties;

m is possible to degenerate to a black box procedure, providing over-fitted
schemes with limited predictive capacity.



Model calibration: Back to the fundamentals

O General formulation of model fitting to observed data:
minimize e(0) = {le;(0)1, lex(0)1, ..., le,(O) 1}
where ¢(0) model residuals (departures of observed responses from the
computed ones), M number of observations, and O vector of parameters.
O The above formulation:

m is inherently multiobjective (since models are imperfect simulators of
highly complex systems);

m is impractical to interpret (the number of residuals is too large, thus the
Pareto front tends to cover the entire M-dimensional objective space);

m is unnecessarily not parsimonious in multiobjective terms (the residuals
are highly correlated).
O “Reduced” formulation of the calibration problem:
maximize g[e(0)] = {g,[e(0)], g,[e(0)], ..., &,[e(O)]}

where g,(0) scalar fitting criteria that account for representative aspects of the
model performance (should be approximately uncorrelated), and m the
reduced dimension, with m << M.



Pareto optimality: An alternative to equifinality?

O

Both concepts reject the concept of a unique optimal parameter set, thus
dividing the feasible parameter space into two sub-areas, containing the
acceptable (called Pareto-optimal and behavioral, respectively) and non-
acceptable solutions (the sub-areas are not identical).

The equifinality hypothesis:

is more general, since it is also applicable to model structures;

requires a scalar likelihood function (LF) and an arbitrary cut-off threshold
to distinguish between behavioral and non-behavioral solutions;

is widely used within Bayesian inference methods, which evaluate model
uncertainty around the LF, employing Monte-Carlo approaches.

The Pareto optimality concept :

requires at least two fitting criteria to make sense;

is based on a strict mathematical notion, i.e. the principle of dominance, to
distinguish between optimal and non-optimal solutions;

allows to effectively handle non-commensurable criteria;
is computationally much simpler, if compared to Bayesian methods;

is more practical and easier to understand.



Why multiobjective calibration?
(a) A view based on the principle of parsimony

O

Parsimony is a key principle in mathematical and
statistical modelling, where model parameters
are estimated through data-fitting, which favours
models having the simplest possible structure.

In lumped modelling, it is accepted that only 5-6
parameters can be identified from external
variables (e.g. runoff), while a more detailed
structure, in the absence of supplementary
control data, may result to poorly identified
parameters; therefore non-parsimony is a major
source of uncertainty.

Given that semi- and fully-distributed modelling
involves a large number of free parameters to
identify, a multiobjective approach is essential to
include more information in calibration.

Models should allow for more flexible
parameterizations, adapted to the available data.

Traditional approach
1. A priori specified
parameterization

2. Control data —
objective function

3. Calibration
|
Splitting
schematization and
parameterization

{

Alternative approach

1. Control data —
multiple objectives

2. Parameterization
adapted to data

3. Multiobjective
calibration



Why multiobjective calibration?
(b) Controlling multiple system components

O Typical multiobjective formulation of calibration problems, based on “hard”
data, i.e. systematic observations (terminology taken by Madsen, 2003):

multi-variable data (fitting criteria for different types of fluxes);
multi-site data (fitting criteria for a flux measured at different sites);

multi-response models (different aspects of a single flux).

O In complex models, the number of observations is usually incompatible with
the principle of parsimony in parameterization; this makes it necessary to
also take advantage of “soft” types of information, including:

sparse and non-systematic measurements;
average water balance statistics;
long-term fluctuation of internal fluxes (e.g. storage variables);

any qualitative information about the system behaviour.

O An effective combination of “hard” and “soft” data within a multiobjective
framework allows for augmenting the information contained in calibration
and taking advantage of the hydrological experience — an enhanced view of
manual calibration practices.



Why multiobjective calibration?
(c) Optimization of conflicting criteria—made easy

O Should fitting criteria be conflicting?

m In theory, the augmentation of information embedded in calibration should
systematically improve the quality of model fitting against all controlled
aspects of the real system.

m In practice, due to errors and uncertainties in both model structure and data, it
is not always easy to recognize a priori whether two criteria are conflicting or
not; moreover, their behaviours may differentiate across the search space.

O What is the practical value of Pareto-based approaches?

m  Objectivity, since the user avoids to employ arbitrary aggregating approaches,
thus risking to hide significant competitions among criteria.

m Efficiency, since state-of-the-art algorithms provide representative and well-
dispersed solutions in a single run and with reasonable computational effort
(much less if compared to step-by-step approximations of the Pareto front).

m Feasibility, since the searching procedure is not easy to be trapped due to
geometrical peculiarities of the Pareto front (e.g. non-convexities).

m  Comprehensibility, since the irregularities in the shape of the Pareto front may
help to explain (and possibly remedy) model weaknesses, while the bounds of

the Pareto set may be associated with parameter uncertainty ranges. .



Example A: Lumped conceptual modeling of the
Boeoticos Kephisos river basin

O Input data for monthly hydrological simulation (1984-1994):

m Precipitation, potential evapotranspiration, pumping, river abstractions.

m Observed runoff at the basin outlet.

m Monthly average and standard deviation of baseflow series (estimated by

aggregating the hydrographs of the six major springs).

O Hydrological characteristics:

m Significant contribution of
baseflow, with small variability.

m Mediterranean climate, substantial
losses due to evapotranspiration.

O Simulation via the Zygos model:

m Soil and aquifer processes
represented by two tanks.

m Runoff made up by four
components.

m Up to 8 parameters to estimate.

File Edit

Simulation | Calibration | Dates

Consider potential evapotranspiration Fainfall

5oil tank

Initial soil storage (S0, mm]:

Initial ground storage [¥'0, mm):
140

002

Groundwater luumow
tank

Outflow

Soil moisture
accounting
tank




Example A: Multiobjective calibration attempts
with augmenting information

O Calibration A: Single criterion, efficiency of total basin runoff (“hard” data);
m Very satisfactory reproduction of runoff; efficiency = 87.8%.

m  Unrealistic fluctuation of spring runoff; ~2 times greater mean value, 4 times
greater standard deviation.

O Calibration B: A + Penalty for departure from mean and standard deviation of
monthly basetlow series (statistics provided by “hard” data)

m Decrease of runoff efficiency from 87.8% to 78.4%.
m Faithful fluctuation of basetlow, very close to the “observed” one.

m Unrealistic overall water balance (mean annual evapotranspiration = 1/3 of
mean annual rainfall, which is unexpectedly low).

O Calibration C: B + Empirical criterion to maximize actual evapotranspiration
(combination of “hard” and “soft” information)

m Satisfactory high efficiency (80.7%) and faithful fluctuation of baseflow.

m Realistic increase of mean annual evapotranspiration contribution up to half
of the mean annual precipitation.

m Consistent parameter values.

11
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Example B: Semi-distributed modeling of Boeoticos
Kephisos basin through the Hydrogeios model

Low permeability, low slope
Low permeability, high slope
High permeability, low slope
: Il High permeability, high slope
2T T A Moderate permeability, low slope
: 1= 2 I Moderate permeability, high slope
37 .

Control site
(karst spring)

Parsimonious
parameterization,
6 hydrological
response units

Coarse system
schematization,

5 sub-basins .
Control site

(basin outlet)

O Observed variables = discharge series at the
basin outlet and downstream of six major karst
springs (7 control responses).

O Parameterization through 6 Hydrological
Response Units (HRUs; product of three types

Detailed system of permeability and two types of terrain slope).

schematization,

. O The processes of each HRU are represented by
13 sub-basins

a conceptual model of 6 parameters.

O The total number of parameters remains 36,

independently of the number of sub-basins.
13

(*) Model and case study description (coarse
schematization): Efstratiadis et al. (2008)



Example B: Groundwater modelling issues

O Groundwater modelling through a multi-cell approach

Conceptualization: Darcian representation of flow field.

Schematization: 36 cells (conceptual tanks stressed by percolation, infiltration
and pumping), 4 dummy cells representing underground losses, 6 dummy cells
representing springs; delineation based on topography and permeability.

Parameterization: 3 categories of permeability and porosity, particular
permeability values for cells representing springs and underground losses.

O Criteria used in conjunctive calibration:

Efficiency of observed hydrographs (“hard data”, sufficient for reproducing the
water balance, not sufficient for representing of the entire groundwater regime).
Additional criteria for reproducing
spring flow intermittency (easily
observable information of major
interest in water management).

Underground
losses

Penalty functions to prohibit
unrealistic water level “trends”,
indicating systematic evacuation or
filling of tanks (“soft” data ensuring
reasonable fluctuation of the non-
observable groundwater variables). 14




Example B: Why use “trend penalties” for the
simulated groundwater level series?
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Example B: Calibration approaches

O Hybrid calibration (weighted objective function)

Step-by-step optimization of relatively small groups of parameters.

Manual rejection of solutions performing poorly against even one criterion (either
in calibration or in validation) or providing unreasonable parameter values.

Very effective while particularly time-consuming strategy, primarily driven by the
hydrological experience.

O Pareto-based calibration

Estimation of 30 out of 54 parameters (the rest obtained from the hybrid approach).

“Decomposition” of the performance measure into three components: (i) efficiency
and intermittency penalty for outlet runoff; (ii) sum of efficiency values and
intermittency penalties for spring runoffs; (iii) sum of penalty functions (trend
criteria) for ensuring reasonable fluctuation of all groundwater levels.

Optimization employed through the multiobjective evolutionary annealing-simplex
method (Efstratiadis & Koutsoyiannis, 2008), allowing at most 3000 function
evaluations (fewer, if compared to the hybrid calibration approach).

Constrained approach, i.e. search for promising compromises across the Pareto
front, by imposing feasibility limits to the three objectives.

Choice of the most promising compromises, by comparing the overall model

performance in calibration and validation.
16



Example B: Characteristic trade-offs
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Conclusions and perspectives

O Key issues of the actual multiobjective calibration research ...

Impressively rapid development of novel computational tools, provided by
many disciplines - quest for more comparative studies and wider
dissemination of them in the every-day hydrological practice.

Adaptation of the principle of parsimony to distributed and conjunctive
hydrological models — quest for more flexibility on model schematization and
parameterization, based on data availability.

Recognition of the value of multi-criteria information in calibration — quest for
more “hard” data (the foundation of hydrology!), quest for formulating
criteria accounting for “soft” data and the engineering experience.

Effective optimization of conflicting criteria — quest for “filtering” principles
and related procedures, to detect the most promising solutions through the
Pareto-optimal set (e.g. calibration across “space”, validation across time).

O ... and some questions to be answered:

How close (or far) is a unified approach to model calibration and uncertainty
assessment?

How can the multiobjective paradigm be effectively combined with Bayesian
approaches of parameter uncertainty?

Can the hydroinformatics community help hydrologist of practice via
developing tools allowing interactive multiobjective calibration? 18
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