European Geosciences Union Vienna, Austria, Session: S8.1/AS4.1/NH1.2/NP3.6

General Assembly 2009 19 - 24 April 2009 Precipitation: from measurement
to modelling and application in
catchment hydrology

An all-timescales rainfall probability distribution

S.M. Papalexiou and D. Koutsoyiannis

Department of Water Resources and Environmental Engineering,
National Technical University of Athens, Greece




1. Abstract

The selection of a probability distribution for rainfall intensity at many different timescales
simultaneously is of primary interest and importance as typically the hydraulic design
strongly depends on the rainfall model choice. It is well known that the rainfall distribution
may have a long tail, is highly skewed at fine timescales and tends to normality as the
timescale increases. This behaviour, explained by the maximum entropy principle (and for
large timescales also by the central limit theorem), indicates that the construction of a
“universal” probability distribution, capable to adequately describe the rainfall in all
timescales, is a difficult task. A search in hydrological literature confirms this argument, as
many different distributions have been proposed as appropriate models for different
timescales or even for the same timescale, such as Normal, Skew-Normal, two-and three-
parameter Log-Normal, Log-Normal mixtures, Generalized Logistic, Pearson Type 1II, Log-
Pearson Type III, Wakeby, Generalized Pareto, Weibull, three-and four-parameter Kappa
distribution, and many more. Here we study a single flexible four-parameter distribution for
rainfall intensity (the JH distribution) and derive its basic statistics. This distribution
incorporates as special cases many other well known distributions, and is capable of
describing rainfall in a great range of timescales. Furthermore, we demonstrate the excellent

fitting performance of the distribution in various rainfall samples from different areas and

for timescales varying from sub-hourly to annual.




2. Distribution’s basic characteristics

|

The JH distribution (Papalexiou and Koutsoyiannis, 2008), is an extremely versatile distribution.

Its basic statistical characteristics are presented here.
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3. Special cases of the JH distribution

Name Probability density Comments
X“ L+ x)“7

B(«, B)
Burr-type Il fX)=afx”1+x?)*", x>0,a>0, >0

This is a simple transformation of the Beta
distribution in order to support the whole real axis.

A flexible distribution introduced by Burr (1942)
with many application (see also Rodriguez, 1977).

A simple transformation of the Burr-type 111
introduced by Burr (1942).

Beta prime f(x)= , X20,a>0,4>0

Burr-Type VIl  f(X)=a gx" (1+x")*", x>0,a>0, >0

my,n n+m

f(x) = _m® n® 57 (1+ Nl x>0meN.neN The well-known F-distribution with n and m
B(” mj m degrees of freedom used in classical statistics.
2' 2

The celebrated power-type Pareto distribution

Pareto f(x) = _( ﬂxj( 2 , X=0,a>0, >0 with many applications in economy, geophysics

and other scientific fields.

P ,6’ X A similar in shape distribution with the log-normal
Log-Logistic (%) = 1+ o  x20,2>0, >0 distribution but with heavier tails.
(

F[l/ q-1) |(q- X Derived by Queiros (2006) based on a possible

dynamical scenario using the compounding

g-Gamma f(x)= —
()T |1/ (g~ p technique (Beck and Cohen, 2003).

J2 ﬂr[ 1+m ~(1+a)/2 3¢ Derived using the non-extensive entropy by De
g-Student f(x)= 1+ , XeR, >0, m= a1 1<q<3 Souzaand Tsallis (1997). Similar with the

7 (L+m)L( q- Student's t.
~1/(1-q)

g-Weibul S Sl —(1- , X>0,09>1

Similar with the Burr-type 111 but derived using
the compounding technique (Picoli et al., 2003).

The famous Student's t distribution that is the

Student's t basis of the Student's t-tests.




4. Distribution’s flexibility
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5. Parameter estimation

The JH distribution is an extremely versatile power-type, distribution. In its general case, it incorporates

four parameters that can be estimated using several different methods. Unfortunately, explicit expressions

do not exist—at least for the general four-parameter case—and thus, numerical techniques are necessary.

Methods we have tested include:

1.

The maximum likelihood estimation (MLE). ML estimates may be obtained by numerically
minimizing the log-likelihood function for the observed sample.

. The least square estimation (LSE). LS estimates may be obtained by numerically minimizing the square

error between the empirical distribution function and the theoretical distribution function.

. The classical method of moments. In general, this method should be avoided in cases of highly skewed

samples that are expected to follow a power-type distribution. It is clear, that the sample estimates of
higher moments, i.e., third and fourth, based on such samples are extremely sensitive and thus may

lead to bad estimates. Furthermore, if the tail is Pr{X > x} ~ x with scaling exponent bd > 3, then the

higher theoretical moments do not exist, whereas finite sample estimates are always obtained.

. The method of fractional moments. In order to avoid using higher-order moments, fractional moments

may be used of orders, e.g., 1/2, 1, 3/2, 2, for which closed expressions exist. The method consists of
equating the fractional theoretical moments with their corresponding sample estimates, and solving
the resulting equations for the unknown parameters, or minimizing the sum of square errors thereof.

. The method we used to estimate the JH parameters in this study consists of two parts. First, we

estimate the scaling exponent, i.e., bd = p, and second, we use the method of fractional moments for
orders 2/3, 4/3, and 2 under the constrain bd = p.




6. Datasets of the study

Temporal
St. ID  Station name Area Country Latitude  Longitude Elevation resolution Startdate End date

NOA Nat. Observatory Athens Greece 37°58' 23°43' 107 m 60 min  01/01/1927 31/12/1996
1405  St. Mawgan Cornwall UK 50°26 4°59' 103 m 10 min  25/06/1987 27/05/2003
16108 Ardeemore Tyrone UK 54°40' 7°54' 253 m 10 min  01/08/1986 01/04/2005
Faskally Perthshire UK 56°46' 3°46' 94 m 10 min  03/03/1987 29/03/2003
Lerwick Shetland UK 60°89' 1°10' 82m 10 min ~ 18/09/1986 31/12/2002

@e hourly rainfall dat@
from the National Observatory

of Athens, Greece, and four
datasets from different regions
of the UK, available from the v
StD 214
British ~ Atmospheric  Data 8 <
Centre (BACD) are studied. > |
The UK data, originally
available as tipping bucket
measurements, were converted
in 10-min temporal resolution.
We aggregated each dataset
over several timescales,
estimated basic statistics and

fitted the JH distribution to J o045
\gsess its performance. / .-

J St/Di161085
*.:...




7. Station ID GR-NOA

@ N
Statistics of the aggregated (average) rainfall

intensity over several timescales. The vast
variation of statistics across the timescales is 10!
\ clearly manifested.

102

Scale Pr{wet} Mean "Cv
1h 0.06 0.70
2h 0.07 0.58
3h 0.08 0.51
4 h 0.09 0.45
6 h 0.10 0.38
8 h 0.12 0.33
12 h 0.14 0.28
24 h 0.21 0.18
3d 0.38 0.10
6d 0.53 0.07
15d 0.74 0.05
30d 0.86 0.04
60 d 0.96 0.04

120d  1.00  0.04 Return period 7 (yr)
180 d 1.00 0.04

10°

Rainfall intensity (mm/h)

102 10~ 10° 10

365d  1.00 0.04 (Empirical distributions of the aggregated rainfall intensity

Standard deviation over several timescales and the fitted theoretical JH
Coefficient of variation

“Coefficient of skewness distributions. Timescales from above to below: 1 h, 2 h, 4 h,
“Coefficient of kurtosis .8 h,24h,3d,6d,15d,30d,60d, 120 d, 180 d. P




8. Station 1D UK-1405

Statistics of the aggregated rainfall intensity over
several timescales.

Scale Pr{wet} Mean SD Cv Cs Ck
10 min 011 104 1.69
20min 011 099 148
30min 012 094 133
1h 0.13 083 1.09
2h 0.16 066 0.86
3h 019 056 0.73
4 h 022 049 0.65
6 h 027 041 0.52
8h 031 036 0.46
12 h 037 030 0.36
24 h 049 022 024
3d 073 015 0.14 l

6d 085 013 011 10—4 10—3 10—2 10—] 100 101
098 011 0.08

1.00 0.11 0.7 Return period 7 (yr)

Rainfall intensity (mm/h)

1.00 011 0.05 -~
1.00 011 0.04 Empirical distributions of the aggregated rainfall intensity
100 011 0.3 over several timescales and the fitted theoretical JH

distributions. Timescales from above to below: 10 min,
\30min,1h,2h,4h,8h,24h,3d,6d, 15d,30d, 120 d, 365 d. y

1.00 011 0.02




9. Station ID UK-16108

Statistics of the aggregated rainfall intensity over
several timescales.

Scale Pr{wet} Mean SD Cv Cs Ck

10min 020 098 147

20min 021 095 131

30min 021 092 121

1h 023 084 104

2h 027 072 087

3h 031 064 077

4h 034 058 071

6 h 039 051 0.60

g h 043 046 054 |

12h 049 040 046 {1 |
|

Rainfall intensity (mm/h)

24 h 060 033 0.35
3d 0.75 026 024 .

091 022 0.17

096 020 0.13 Return period 7 (yr)

099 020 0.12 -
1.00 020 0.09 Empirical distributions of the aggregated rainfall intensity
100 020 008 over several timescales and the fitted theoretical JH

100 019 006 distributions. Timescales from above to below: 10 min,
K?)Omin,1h,2h,4h,8h,24h,3d,6d, 15d,30d, 120 d, 365 d. )




10. Station ID UK-214

Statistics of the aggregated rainfall intensity over
several timescales.

&

Scale Pr{wet} Mean SD Cv Cs Ck
10min 011 085 1.32
20min 012 081 117
30min 012 0.78 1.08
1h 014 069 0.90
2h 0.17 057 0.72

3h 020 049 062 .
4h 022 043 055 11
6h 026 036 046 | 11K

\

LU
LIRRAN

N
NN

Rainfall intensity (mm/h)

8 h 030 032 041

12h 037 026 0.33 )

24h 051 019 0.23 {

3d 075 013 0.14 |

6d 088 011 0.0 03 102 10 10° 10

098 010 0.08
099 010 0.06 Return period 7 (yr)

1.00 010 0.04 -~
1.00 0.0 0.03 Empirical distributions of the aggregated rainfall intensity
100 010 0.02 over several timescales and the fitted theoretical JH

distributions. Timescales from above to below: 10 min,
K?)Omin,1h,2h,4h,8h,24h,3d,6d, 15d,30d, 120 d, 365 d. )

1.00 010 0.01




11. Station 1D UK-9

Statistics of the aggregated rainfall intensity over
several timescales.

Scale Pr{wet} Mean SD Cv Cs Ck
10min 014 079 1.10
20min 014 0.75 0.98
30min 015 072 0.90
1h 0.17 0.63 0.77
2h 021 051 0.62
3h 025 043 054
4 h 028 038 048
6 h 033 032 040
8h 038 028 0.35
12 h 045 024 0.28
24 h 060 0.18 0.19
3d 083 013 0.12
6d 091 0.12 0.09 10—1 100 lOI 102 103

097 011 0.07
098 011 0.6 Return period 7 (yr)

Rainfall intensity (mm/h)

0.99 0.11 0.05 -~
1.00 011 0.04 Empirical distributions of the aggregated rainfall intensity
100 011 0.03 over several timescales and the fitted theoretical JH

distributions. Timescales from above to below: 10 min,
K?)Omin,1h,2h,4h,8h,24h,3d,6d, 15d,30d, 120 d, 365 d. )

1.00 011 0.02




12. Conclusions

* A single flexible four-parameter distribution for rainfall intensity (the JH distribution) is studied and its
basic statistics are derived.

The distribution is very flexible with a power-type tail while its density varies from ] shaped,
unbounded in zero, to bell shaped that resembles the Gaussian curve.

This distribution incorporates as special cases many other well-known distributions, e.g., Burr, Beta
prime, Student, F and g-distributions.

The closed forms of the expressions of the distribution’s moments for integer and fractional order, allows
a robust parameter estimation by replacing the highly uncertain high order moments by lower order
fractional moments.

The application of the distribution with rainfall data from ditferent locations in Europe, shows an
excellent performance in describing rainfall for different climates and for a wide range of timescales
(from sub-hourly to annual).

The excellent performance at multiple timescales suggests that the distribution may be used in the
construction of theoretically consistent ombrian curves (also known as IDF curves).
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