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Summary statistics of the average rainfall

One of the major tools in hydrological design is the ombrian curves, more widely Sunm 0.8
. . . . . intensity data (mm h'), for several ' T=1000y
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scaling) and resulted in oversimplified relationships that are not good for

. .o S . . 1 - : ' 7/Within particular timescale
ombrian curves based on a probability distribution suitable for describing the 24h 021 0.8 031 1.69 424  6.08 | ; | 3 ranges, the parameter b

varies almost linearly in the
log-log plot; however, the
variation over the entire Return period 7' (yr)

range is difficult to describe / - - . \
2 H\by a simple expression. o Empirical distributions of the aggregated rainfall
intensity for the Ardeemore station over several
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, ) . - Ombrian curves constructed for the NOA /Ombrian curves constructed for the NOA | .o timescales, and the Burr type VII distributions fitted
120d 1.00 0.04 0.03 076 0.85 0.14 tgleoretlclzﬂ le.xpress.lciln was ﬁttied to the erflpmcal data station using Approximation 1. station using Approximation 2. The estimated _ ‘.,-"l by using parameter values the ones resulted by the
. . 180d 1.00 0.04 0.02 0.57 045 0.10 ( 11e SOU ;lne), XVlt est1rlrl1.a tlf pargmeters. Pwio) u 0'?4’ parameters are: « =41.16, =0.18, y =22.15, 6 , o*® interpolation functions a(k) and b(k), with a(k) b(k) =
engineering. ¢ = 24074 h, ¢, = 0.71, which permits extrapolation for =041, £ = 0.82. 6.5 (= 1/0.15). Timescales from above to below: 10
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*Probability wet *Standard deviation whereas for very large timescales p, (k) = 1). / Timescale k (h) 0d, 604d. /

‘Coefficient of variation YCoefficient of skewness
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not as simple as other widely used forms in practice. In this study, we present 30d 086 0.04 004 100 1.66 0.34 /The figure depicts the empirical probability wet (red\

simplified ombrian relationships, which are approximations of the theoretically 60d 096 0.04 003 092 149 025 dots) for several different timescales. Additionally, a

yearly). The mathematical form of those theoretically derived ombrian curves is
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consistent one for a typical range of timescales, suitable for use in hydrological

2. Approximation 1 (more accurate) 5. Moments vs. timescale (NOA Greece) 8. Probability wet vs. timescale (Ardeemore UK) 11. Ombrian curves (Ardeemore UK)

* In a previous study (Papalexiou and Koutsoyiannis, 2008), we suggested that the expression of / . \
theoretically consistent ombrian curves should be of the form i(k, T) = Q (1 - (k/T)(1/p,,(k)); O(k)), The mean m; of the nonzero rainfall
where k is the timescale, T is the return period, Q is the quantile function of a 4-parameter intensity in timescale k is explicitly related
probability distribution (the JH distribution) capable of describing the rainfall intensity i in a wide to the probability wet. In the figure the red
range of timescales, p,, (k) is the probability wet for timescale k, and O(k) is a vector of the et — 1 . : Soal v D C c
distribution parameters (Note: the expression assumes consistent units). Ofs fepresent. the sample mean 7, d car _pw ¥eoam M

In this study, in order to simplify the Flrocedure and to construct a consistent approximation, we Various tlmesca.lles, for the NOA. S [0min 020 098 1.47
use a three-parameter version of the JH distribution, known in the literature as the Burr type VII while the solid blue line depicts the , 20min 0.21  0.95  1.31

distribution. Its quantile function is Q(u)= a[(1 — u) e - 1]/ &heoretical expression m, (k) = m/p, (k). / \\ 30min 021 092 1.21

The proposed methodology for constructing approximations of ombrian curves includes: I h 023 084 104
~y————t

. Estimation of the tail exponent. It can be fproved mathematically, that the exponent of the power- o h 027 072 087
tylpe decay of the exceedence probability function of the average rainfall intensity i is the same for ' ] 5 ; s i 031 064 o \
all timescales. For the Burr type VII distribution this implies that the product b(k;/c(k) =:1/B is 10 10 10 10 - - 77 \\
constant for all scales. Timescale & (h) 4h 0.34 058 0.71 | \\\

. Estimation of probability wet p_ (k). A suitable function for the probabili’?l wet in all timescales N
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ma}l;bg.lf.(j)[und {cn. the ggneral fatf.nﬂy of guncl’ilo.ns Pal(k) = (1,; pw'(O)ll) f16) + p(0), E/vhe;e Pa(0) (1)5 the {he figure depicts the sample estimatesm 8h 043 046 0.54 a . N
%?h?‘a;;gg [V(\)]ﬁ].m continuous time, and f,(k) is any monotonically increasing function in [0,) the second raw moment m, of the rainfall 12h 049 040 0.46 | ) - 1 235 102030 60 234681224 2 4 7 1530 60 1 235 102030 60 234681224 2 4 7 1530 60

. Estimation of the first and second raw moments (k) and m,(k). The first raw moment 1, (k), or intensity in various timescales (red dots) for 24h  0.60 033 035 107! Minutes Hours Days Minutes Hours Days
the mean, of the rainfall intensity of nonzero rainfall periods is explicitly related to the probability the NOA station, and a fitted theoretical
wet, i.e., my(k) = m/p,(k), where m is the mean value of the rainfall intensity including zeros, expression (blue solid line) of the form 6 d 083 024 020
constant over all timescales. For the second raw moment, an appropriate function may be found () = 1/{c, In[(k/co)es +1] + 1/[my(0) — n2]} + m? . . . p ~
in the family m,(k) = {f,(k) + [m,(0) — m?] 1} -1 + m?, where m,(0) is the second raw moment in 2 NG . 2 N\ 091 022 0.17 The figure depicts the empirical probability wet (red ~ ~ ~
continuous time and f;(k) is any monotonically increasing function in [0,00) with range [0,00]. The estimated parameters are m,(0) = \ 096 020 0.13 dots) for several different timescales. Additionally, a Ombrian curves constructed for the Ombrian curves constructed for the

. Estimation of the distribution’s parameter functions a(k) and b(k). The parameters a and b at 5.80 mm?h, ¢, = 858.41 mm~h? ¢; = 915.05 h, ~—— 0.99 020 0.12 theoretical expression was fitted to the empirical data Ardeemore station using Approximation 1. Ardeemore station using Approximation 2.
timescale k can be estimated by solving the system that results by equating the first two raw c,=1.29. (blue solid line), with estimated parameters: p, (0) = The estimated parameters are: o = 18.44 , § =
moments of the theoretical distribution with the respective numerical estimates resulting from the \ / 1 N ; . 0.26 h, ¢; =0.00002, ¢, = 0.12, ¢;=111.77. 0.15, y =6.87, 6 = 0.04, ¢ = 0.52.
fitted laws in step 3. If the parameters a and b are estimated in a sufficiently large number of 10 10 10 10 1.00 020 0.08 \_ J N AN /
timescales, the interpolation function a(k) and b(k) may be constructed. Timescale k (h) 100 019  0.06
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3. Approximation 2 (more parsimonious) 6. Distribution parameters vs. timescale (NOA Greece) 9. Moments vs. timescale (Ardeemore UK) 12. Conclusions
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/The mean m,; of the nonzero rainfah 0.7
intensity in timescale k is explicitly related 0.6

Ombrian curves are expressions linking the probability distribution of average
rainfall intensity 7 with the timescale k on which the average is taken.

to the probability wet. In the fioure the red Thus a theoretically consistent expression of ombrian curves is non other than
J s S 2 - the expression of the multi-scale probability distribution of average rainfall
ots represent the sample mean m,, at

various timescales, for the Ardeemore 04 1nten81ty° . . .
soriflam, walkfile (e eolfidl Bve e clpies e It has been demonstrated (Papalexiou and Koutsoyiannis, 2009) that a 4-

ihe swetiiesl qpriegzion ) = 7z ) / 0.3 N\ parameter distribution can accurately represent this multi-scale distribution for

e Substitution in the theoretically consistent ombrian relationship of the quantile 20
function of the Burr VII distribution results in 10

i(k, T) = a(k) {{(k/T)(1/p,,(k))]P® F - 1}10® = a(k) [g(k) T0F - 1]1/0E) : J 10!
where g(k) = [p,, (k)/k]?® 8, ~

Numerical investigation shows that b(k) can be cancelled out in the term [g(k) T °2 ent
b0 B — 11120 and thus this term can be well approximated as ¢’(k) (T - C), so that 3] ean be expressed by a

i(k, T) = a'(k) (TF - ) | oo
where a’(k) := a(k) ¢’ (k) and C is a constant. TR e
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scales ranging from sub-hourly to yearly.

\ Two approximations of this expression are developed that may facilitate a
consistent development of ombrian curves for engineering practice.

The firstis i(k, T) = a(k) [g(k) T?®F — 1]/*®) where the functions a(k), b(k) and g(k)
can be estimated by a simple but laborious methodology.

The second is a simplification of the first one and implies the functional
separability of return period T and timescale k in the form

< i(k, T) = ( TF = ) | (k + 0)-.
AN
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Numerical investigation shows that the function a’(k) can be approximated as
a’(k) = (k + 0)¢/a, where a, 6 and ¢ are constants.

. . . . ' V/VVithin particular timescale . . .
This leads to the Slmple ombrian expression | ranges, the parameter b AR The figure depicts the sample estimates of

: varies almost linearly in the ; the second raw moment m, of the rainfall
i(k, T) = (a TP - k+0)¢ - 107 102 10 10010 . o o :
(k, ) = ( V)1 ) log-log plot; however, the intensity in various timescales (red dots) for

The above derivation would also be obtained by assuming a generalized Pareto variation over the entire Return period 7 (y) the NOA station, and a fitted theoretical
range is difficult to describe

distribution for i and functional separability of return period T and timescale k ”\by a simple expression. /Empirical distributions of the aggregated ainfall expression (blue solid line) of the form

. . . . . . . . ) = 1/4c. Inl(k/c)es +11 + 1/1m1-(0) = 17221} + 1172 rainfall inferences, Natural Hazards, 22 (1), 31-51, 2000.
(See Koutsoylanms et Ell., 1998’ Kouts Oylanmnis and BalOUtSOS/ 2000) o iy for fae WOR - sEidon vt gonel 2(k) = 1/1c, In[(K/cs) I+ 1/1m;(0) I Koutsoyiannis, D., D. Kozonis, and A. Manetas, A mathematical framework for studying rainfall intensity-duration-frequency

. . . ) , vt timescales, and the Burr type VII distributions fitted The estimated parameters are m,(0) = | relationships, Journal of Hydrology, 206 (1-2), 118-135, 1998.
The final form resembles the expressions used in practlce except for the constant by using parameter values the ones resulted by the 2.83 mm?2h?2, c, = 61.98 mm-=2h2, cs = 546.33 h, \ Papalexiou, S.M., and D. Koutsoyiannis, Probabilistic description of rainfall intensity at multiple time scales, IHP 2008 Capri

term y in the numerator. T . interpolation functions a(k) and b(k), with a(k) b(k) = Q: 0.83. /
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