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Abstract
The non-static, ever changing hydroclimatic processes 
are often described as nonstationary. However, revisiting 
the notions of stationarity and nonstationarity, which 
are defined within stochastics, it may be understood that 
claims of nonstationarity cannot stand unless the evolution 
in time of the statistical characteristics of the process is 
known in deterministic terms, in particular for the future. 
This however can hardly be the case, because deterministic 
predictions are difficult, especially of the future. Thus, change 
is not synonymous to nonstationarity, and even prominent 
change at a multitude of time scales, small and large, can be 
described satisfactorily by a stochastic approach admitting 
stationarity. This “novel” description does not depart from 
the 60- to 70-year old pioneering works of Hurst on natural 
processes and of Kolmogorov on turbulence. Contrasting 
stationary with nonstationary has important implications in engineering and management. The stationary description 
with Hurst-Kolmogorov stochastic dynamics demonstrates that nonstationary and classical stationary descriptions 
underestimate the uncertainty. This is illustrated using several examples of hydrometeorological time series, which also 
show the consistency of the Hurst-Kolmogorov approach with reality. A final example demonstrates how this framework 
was implemented in the planning and management of the water supply system of Athens, Greece, also in comparison with 
alternative nonstationary modelling approaches, including a trend-based and a climate-model-based approach. 

Introduction
Perhaps the most significant contribution of the intensifying climatic research is the accumulation of evidence that climate 
has never in the history of Earth been static. Rather, it has been ever changing at all time scales. This fact, however, has 
been hard, even for scientists, to accept, as displayed by the inflationary (and thus non scientific) term “climate change”. 
The introduction of this term reflects a belief, or expectation, that climate would normally be static, and that its change 
is something extraordinary which to denote we need a special term (“climate change”) and which to explain we need to 
invoke a special agent (e.g. anthropogenic influence). Examples indicating this problem abound, e.g., “climate change is 
real” (Tol, 2006) or “there is no doubt that climate change is happening and that we should be taking action to address it now” 
(Institute of Physics, 2010). More recently the scientific term “nonstationarity”, contrasted to “stationarity”, has also been 
recruited to express similar, or identical ideas to “climate change”. Sometimes their use has been dramatized, perhaps to 
better communicate a non-scientific message, as in the recent popular title of a paper in Science: “Stationarity is Dead” 
(Milly et al., 2008). We will try to show below, in section 2, that such use of these terms is in fact a diversion and misuse of 
the real scientific meaning of the terms. 

Insisting on the proper use of the scientific terms “stationarity” and “nonstationarity” is not just a matter of semantics and 
of rigorous use of scientific terminology. Rather, it has important implications in engineering and management. As we 
demonstrate in section 2, nonstationary descriptions of natural processes use deterministic functions of time to predict 
their future evolution, thus explaining part of the variability and eventually reducing future uncertainty. This is consistent 
with reality only if the produced deterministic functions are indeed deterministic, i.e., exact and applicable in future times. 
As this is hardly the case as far as future applicability is concerned (according to a quotation attributed to Niels Bohr, 
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“prediction is difficult, especially of the future”), 
the uncertainty reduction is a delusion and 
results in a misleading perception and under-
estimation of risk. 

In contrast, proper stationary descriptions, 
which, in addition to annual (or sub-annual) 
variability, also describe the over-annual 
climatic fluctuations, provide more faithful 
representations of natural processes and 
help us characterize the future uncertainty 
in probabilistic terms. Such representations 
are based on the Hurst-Kolmogorov (HK) 
stochastic dynamics (section 3), which has 
essential differences from typical random 
processes. The HK representations are essential 
for water resources planning and management, 
which apparently demand long time horizons 
and can have no other rational scientific 
basis than probability (or its complement, 
reliability).

It is thus essential to illustrate the ideas 
discussed in this paper and the importance 
of rigorous use of scientific concepts through 
a real-world case study of water resources 
management. The case study we have chosen 
for this purpose is the complex water supply 
system of Athens. While Athens is a very small 
part of Greece (about 0.4% of the total area), 
it hosts about 40% of its population. The fact that Athens is a dry place (annual rainfall of about 400 mm) triggered the 
construction of water transfer works from the early stages of the long history of the city (Koutsoyiannis et al., 2008b) . The 
modern water supply system transfers water from four rivers from up to about 200 km away from Athens. 

Figure 1 (upper panel) shows the evolution of the runoff of one of these rivers, the Boeoticos Kephisos River (in units of 
equivalent depth over its about 2,000 km2 catchment) from the beginning of observations to 1987. A substantial falling 
trend is clearly seen in the time series. The middle panel of Figure 1 shows the time series of rainfall in a raingauge in the 
basin, where a trend is evident and explains (to a large extent) the trend in runoff. Most interesting is the runoff in the 
following seven years, 1988-1994, shown in the last panel of Figure 1, which is consistently below average, thus manifesting 
a long-lasting and severe drought that shocked Athens during that period. The average during these seven years is only 
44% of the average of the previous years. A typical interpretation of such time series would be to claim nonstationarity, 
perhaps attributing it to anthropogenic global warming, etc. However, we will present a different interpretation of the 
observed behaviour and its implications on water resources planning and management (section 4). For Athens, these 
implications were particularly important even after the end of the persistent drought, because it was then preparing for the 
Olympic games—and apparently these would not be possible in water shortage conditions. Apparently, good planning and 
management demand a strong theoretical background and proper use of fundamental (but perhaps forgotten or abused) 
notions. 

Visiting Names, Stationarity and Nonstationarity 

Finding invariant properties within motion and change is essential to science. Newton’s laws are eminent examples. The 
first law asserts that, in the absence of an external force, the position x of a body may change in time t but the velocity u 
:= dx/dt is constant. The second law is a generalization of the first for the case that a constant force F is present, whence 
the velocity changes but the acceleration a = du/dt is constant and equal to F/m, where m is the mass of the body. In turn, 
Newton’s law of gravitation is a further generalization, in which the attractive force F (weight) exerted, due to gravitation, 
by a mass M on a body of mass m at a distance r is no longer constant. In this case, the quantity G = F r 2/(m M) is constant, 
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Figure 1. Time series of runoff (upper) and rainfall (middle) in the Boeoticos Kephisos River 
basin from the beginning of observations to 1987, with focus of the runoff during the severe, 
7-year (1988-94) drought period (lower). 
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whereas in the application of the law 
for planetary motion another constant 
emerges, i.e., the angular momentum per 
unit mass, (dθ/dt) r 2, where θ denotes 
angle.

However, whilst those laws give elegant 
solutions (e.g., analytical descriptions 
of trajectories) for simple systems 
comprising two bodies and their 
interaction, they can hardly derive the 
irregular trajectories of complex systems. 
Complex natural systems consisting of 
very many elements are impossible to 
describe in full detail and their future 
evolution is impossible to predict in 
detail and with precision. Here, the great 
scientific achievement is the materializa-
tion of macroscopic descriptions that 
need not model the details. This is essentially done using 
probability theory (laws of large numbers, central limit 
theorem, principle of maximum entropy). Here lies the 
essence and usefulness of the stationarity concept, which 
seeks invariant properties in complex systems. 

According to the definitions quoted from Papoulis (1991), 
“A stochastic process x(t) is called strict-sense stationary 
… if its statistical properties are invariant to a shift of the 
origin” and “… is called wide-sense stationary if its mean 
is constant (E[x(t)] = η) and its autocorrelation depends 
only on [time difference] τ…, (E[x(t + τ) x(t)] = R(τ)]”. We 
can thus stress that the definition of stationarity applies to 
stochastic processes (rather than to time series; see also 
Koutsoyiannis, 2006b). Processes that are not stationary 
are called nonstationary and some of their statistical 
properties are deterministic functions of time. Figure 2 
helps us to further clarify the definition. The left part of 
this graphic symbolizes the real world. Any natural system 
we study has a unique evolution (a unique trajectory in 
time), and if we observe this evolution, we obtain a time 
series. The right part of the graphic symbolizes the abstract 
world, the models. Of course, we can build many different 
models of the natural system, any one of which can give us 
an ensemble, i.e., mental copies of the real-world system. 
The idea of mental copies is due to Gibbs, known from 
statistical thermodynamics. An ensemble can also be 
viewed as multiple realization of a stochastic process, from 
which we can generate synthetic time series. Clearly, the 
notions of stationarity and non-stationarity apply here to 
the abstract objects—not to the real-world objects. In this 
respect, profound conclusions such as that hydroclimatic 
processes are nonstationary or that “stationarity is dead” 
may be pointless.
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Figure 2 Schematic for the clarification of the notions of stationarity and nonstationarity.

Figure 3. A synthetic time series for the clarification of the notions of 
stationarity and nonstationarity (see text); (upper) the first 50 terms; (middle) 
the first 100 terms; (lower) 1000 terms.
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To further illustrate the notion of stationarity we use an example of a synthetic time series, shown in Figure 3, whose 
generating model will be unveiled below, along with some indication that it could be a plausible representation of a 
complex natural system. The upper panel of the figure depicts the first 50 terms of the time series. Looking at the details of 
this irregular trajectory, one could hardly identify any property that is constant. However, in a macroscopic—i.e., statis-
tical—description one could assume that this time series comes from a stochastic process with a mean constant in time 
(E[xi] = μ, where E denotes expected value, i denotes discrete time, xi is the time series and xi is the stochastic process). In 
a similar manner, one can assume that the process has a standard deviation σ constant in time (i.e., E[(xi – μ)2] = σ2) and 
so on. Both μ and σ are not material properties of the process (that for instance could be measured by a certain device), but 
abstract statistical properties.

The middle panel of Figure 3 depicts 100 terms of the time series. One could easily identify two periods, i < 70 with a local 
time average m1 = 1.8 and i ≥ 70 with a local time average m2 = 3.5. One could then be tempted to use a nonstationary 
description, assuming a “change” or “shift” of the mean at time i = 70. But this is just a temptation (explained by the 
adherence to the classical views of natural phenomena as either “clockwork” or “dice throwing”; see Koutsoyiannis, 2009); 
it does not reflect any objective scientific truth and it is not the only option. Rather, a stationary description is still possible. 

In fact, as is more evident from the lower panel of Figure 3, the stationary description corresponds to the actual model 
used to generate the time series. This model consists of the superposition of: (a) a stochastic process, with values mj derived 
from the normal distribution N(2, 0.5), each lasting a period τj exponentially distributed with E[τj] = 50 (the thick line with 
consecutive plateaus); and (b) white noise, with normal distribution N(0, 0.2). Nothing in this model is nonstationary and, 
clearly, the process of our example is stationary.

In this example, distinguishing stationarity from nonstationarity is a matter of answering a simple question: Does the thick 
line of plateaus in Figure 3 represent a known (deterministic) function or an unknown (random) function? In the first case 
(deterministic function), we should adopt a nonstationary description, while in the second case (random function, which 
could be assumed to be a realization of a stationary stochastic process), we should use a stationary description. As stated 
above, contrasting stationary with nonstationary descriptions has important implications in engineering and management. 
To see this we have copied in Figure 4 the lower panel of Figure 3, now in comparison to a “mental copy”, which was 
constructed assuming nonstationarity. We also did the same in Figure 5, but assuming stationarity. In Figure 4 (the 
nonstationary description), because nonstationarity implies that the sequence of consecutive plateaus is a deterministic 

Figure 4. The time series of Figure 3 (upper) along with a mental copy of it 
(lower) assuming that the local average is a deterministic function and thus 
identical with that of the upper panel.

Figure 5. The time series of Figure 3 (upper) along with a mental copy 
of it (lower) assuming that the local average is a random function, i.e. a 
realization of the stochastic process described in text, different from that of 
the upper panel.
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function of time, the thick lines of plateaus is exactly the same in the two copies. The uncertainty, expressed as the unex-
plained variance, i.e., the variance of differences between the thick line of plateaus and the rough line, is (by construction of 
the process) 0.22 = 0.04. However, in Figure 5 (the stationary description) the two copies have different random realizations 
of the line of plateaus. As a result, the total variance (that of the “non-decomposed” time series) is unexplained, and this is 
calculated to be 0.38, i.e., almost 10 times greater than in the nonstationary description. Thus, a nonstationary description 
reduces uncertainty, because it explains part of the variability. This is consistent with reality only if the produced determin-
istic functions are indeed deterministic, i.e., exact and applicable in future times. As this is hardly the case, as far as future 
applicability is concerned, the uncertainty reduction is a delusion and results in a misleading perception and underestima-
tion of risk.

In summary, the example illustrates that (a) stationary is not synonymous to static; (b) nonstationary is not synonymous 
to changing; (c) in a nonstationary process the change is described by a deterministic function; (d) nonstationarity reduces 
uncertainty (because it explains part of variability); and (e) unjustified/inappropriate claim of nonstationarity results in 
underestimation of variability, uncertainty and risk. In contrast, a claim of nonstationarity is justified and thus, indeed, 
reduces uncertainty, if the deterministic function of time is constructed by deduction (the Aristoteleian apodeixis), and 
not by induction (direct use of data). Thus, to claim nonstationarity, we must: (a) establish a causative relationship; (b) 
construct a quantitative model describing the change as a deterministic function of time; and (c) ensure applicability of the 
deterministic model in future time. 

Because recently the inflationary use of the term “nonstationarity” in hydrology has been closely related to “climate 
change”, it is useful to examine whether the terms justifying a nonstationary description of climate do hold true or not. 
The central question is: Do climate models (also known as general circulation models—GCMs) enable a nonstationary 
approach? More specific versions of these question are: Do GCMs provide credible deterministic predictions of the future 
climate evolution? Do GCMs provide good predictions for temperature and somewhat less good for precipitation (as often 
thought)? Do GCMs provide good predictions for global and continental scales and, after downscaling, for local scales? Do 
GCMs provide good predictions for the distant future (albeit less good for the nearer future, e.g., for the next 10-20 years—
or for the next season or year)? To the author’s opinion, the answers to all these questions should be categorically negative. 
Not only are GCMs unable to provide credible predictions for the future, but they also fail to reproduce the known past 
(see Koutsoyiannis et al., 2008a; Anagnostopoulos et al., 2009). An additional, very relevant question is: Is climate predict-
able in deterministic terms? Again the author’s answer is negative (Koutsoyiannis, 2006a; 2009). Only stochastic climatic 
predictions could be scientifically meaningful. In principle, these could also include nonstationary descriptions wherever 
causative relationships of climate with its forcings are established. But until such a stochastic theory of climate, which 
includes nonstationary components, could be shaped, there is room for developing a stationary theory that characterizes 
future uncertainty as faithfully as possible; the main characteristics of such a theory are outlined in section 3 (see also 
Koutsoyiannis et al., 2007).

While a nonstationary description of climate is difficult to establish or infeasible, in other cases, related to water resources, 
it may be much more meaningful. For example, in modelling of streamflow downstream of a dam we would use a 
nonstationary model with a shift in the statistical characteristics before and after the construction of the dam. Gradual 
changes in the flow regime, e.g., due to urbanization that evolves in time, could also justify a nonstationary description, 
provided that a solid information or knowledge (as opposed to ignorance) of the agents affecting a hydrological process is 
available. Even in such cases, as far as modelling 
of future conditions is concerned, a stationary 
model of the future is sought most frequently. A 
procedure that could be called “stationarization” 
is then necessary to adapt the past observations 
to the future conditions. For example, the flow 
data prior to the construction of the dam could be 
properly adapted, by deterministic modelling, so 
as to determine what the flow would be if the dam 
existed. Also, the flow data at a certain phase of 
urbanization could be adapted so as to represent 
the future conditions of urbanization. Such 
adaptations enable building a stationary model of 
the future.
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Change Under Stationarity and the Hurst-Kolmogorov Dynamics
It was asserted earlier that nonstationarity is not synonymous to change. Even in the simplest stationary process, the white 
noise, there is change all the time. But in this case, which is characterized by independence in time, the change is only 
short-term. There is no change of long-term time averages. However, a process with dependence in time exhibits longer-
term changes. Thus, change is tightly linked to dependence and long-term change to long-range dependence. Hence, 
stochastic concepts that have been devised to study dependence also help us to study change.

Here we remind of three such concepts, or stochastic tools, stressing that all are meaningful only for stationary processes 
(albeit this is sometimes missed). The autocorrelogram, which is a plot of the autocorrelation coefficient vs. lag time, 
provides a very useful characterization and visualization of dependence. Figure 6 depicts the empirical autocorrelogram 
estimated from the 1000 items of the time series of Figure 3. The fact that the autocorrelation is positive even for lags 
as high as 100 is an indication of long-range dependence. The classical Markovian dependence would give much lower 
autocorrelation coefficients, as also shown in Figure 6, whereas a white noise process would give zero autocorrelations, 
except in lag 0, which is always 1 irrespectively of the process. We recall that the process in our example involves no 
“memory” mechanism; it just involves change in two characteristic scales, 1 (the white noise components) and 50 (the 
average length of the plateaus). Thus, interpretation of long-range dependence as “long memory”, despite being very 
common, is misleading; it is more insightful to interpret long-range dependence as long-term change (this has been first 
pointed out—or implied—by Klemes, 1974).

The power spectrum, which is the inverse finite Fourier transform of the autocorrelogram, is another stochastic tool for the 
characterization of change with respect to frequency. The power spectrum of our example is shown in Figure 7, where a 
rough line appears, which has an overall slope of about –1. This negative slope, which indicates the importance of variation 
at lower frequencies relative to the higher ones, provides a clue of long-range dependence. However, the high roughness 
of the power spectrum does not allow accurate estimations. A better depiction is provided in Figure 8 by the climacogram 
(from the Greek climax, i.e., scale), which provides a multi-scale stochastic characterization of the process. Based on the 
process xi at scale 1, we define a process xi

(k) at any scale k ≥ 1 as:
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To estimate the climacogram, the standard deviation σ(k) could be calculated either from the autocorrelogram by means 
of (2) or directly from time series xi

(k) aggregated by (1). It is readily verified (actually this is the most classical statistical 
law) that in a white noise process, σ(k) = σ/ k , which implies a slope of –1/2 in the climacogram. Positively autocorrelated 
processes yield higher σ(k) and perhaps milder slopes of the climacogram. Figure 8 illustrates the constant slope of –1/2 

Figure 7. Empirical power spectrum of the time series of Figure 3.
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of a white-noise process, which is also asymptotically 
the slope of a Markovian process, while the process 
of our example suggests a slope of –0.25 for scales k 
near 100. 

Recalling that our example involves two time scales 
of change (1 and 50), we can imagine a process with 
additional time scales of change. The simplest case of 
such a process (which assumes theoretically infinite 
time scales of fluctuation, although practically, three 
such scales suffice; Koutsoyiannis, 2002), is the one 
whose climacogram has a constant slope H – 1, i.e. 

σ (k) = k H – 1 σ   (3)

This simple process, which is essentially defined 
by (3), has been termed the Hurst-Kolmogorov 
(HK) process (after Hurst, 1951, who first analyzed 
statistically the long-term behaviour of geophysical 
time series, and Kolmogorov, 1940, who, in studying 
turbulence, had proposed the mathematical form of 
the process, also known as simple scaling stochastic 
model or fractional Gaussian noise). The constant 
H is called the Hurst coefficient and in positively-
dependent processes ranges between 0.5 and 1. The 
elementary statistical properties of the HK process 
are shown in Table 1, where it can be seen that all 
properties appear to be power laws of scale, lag and 
frequency.

Fluctuations at multiple temporal or spatial scales, 
which may suggest HK stochastic dynamics, are 
common in Nature. One characteristic example for 
visualization is the hydraulic jump shown in Figure 
9. In this case we have molecular motion or change, 
as well as micro-turbulence, because the Reynolds number is high; downstream of the hydraulic jump (in the right part of 
the photo), we have also macro-turbulence, i.e., turbulence at larger scales. The energy associated with each scale increases 
with scale length (e.g., without the macro-turbulence of the hydraulic jump, the energy loss due to molecular motion and 
micro-turbulence would be much lower).

We owe the most characteristic example of a large spatial-scale phenomenon that exhibits HK temporal dynamics to the 
Nilometer time series, the longest available instrumental record. Figure 10 shows the record of the Nile minimum water 
level from the 7th to the 15th century AD (813 years). Comparing this Nilometer time series with synthetically generated 
white noise, also shown in Figure 10 (lower panel), we clearly see a big difference on the 30-year scale. The fluctuations 
in the real-world process are much more intense and frequent than the stable curve of the 30-year average in the white 
noise process. The climacogram of the Nilometer series, shown in Figure 11, suggests that the HK model is a very good 

Figure 9. Development of turbulence in a hydraulic jump in a controlled experiment 
in laboratory, whose window, with the help of reader’s imagination, reveals the outer 
uncontrolled turbulence (courtesy of Panos Papanicolaou).

Statistical property At scale k = 1 (e�g� annual) At any scale k
Standard deviation σ ≡ σ (1) σ (k) = k H – 1 σ 
Autocorrelation 
function (for lag j) ρj ≡ ρj

(1) =ρj
(k) ≈ H (2 H – 1) |j |2H – 2

Power spectrum (for 
frequency ω)

s(ω) ≡ s(1)(ω) ≈ 
4 (1 – H) σ 2 (2 ω)1 – 2 H

s(k)(ω) ≈ 
4(1 – H) σ 2 k 2H – 2 (2 ω)1 – 2 H

Table 1. Elementary statistical properties of the HK process

Figure 8. Empirical climacogram of the time series of Figure 3 in 
comparison to the theoretical climacograms of a white-noise and a 
Markovian process.
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Figure 10. The annual minimum water level of the Nile River from the Nilometer 
(upper) and, for comparison, a synthetic series, each value of which is the 
minimum of 36 outcomes of a roulette wheel (lower); both time series have 
equal standard deviation (about 1.0).

Figure 11. Climacogram of the Nilometer time series of Figure 10.
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True values → Mean, μ Standard deviation, σ Autocorrelation ρl for lag l

Standard estimator

Relative bias of 
estimation, CS 0 ≈ 0 ≈ 0

Relative bias of 
estimation, HKS 0

(–22%) (–79%)

Standard deviation of 
estimator, CS

(10%) (7.1%)

Standard deviation of 
estimator, HKS (63%)

(9.3%)
Table 2. Impacts to statistical estimation: Hurst-Kolmogorov statistics (HKS) vs. classical statistics (CS) (sources: Koutsoyiannis, 2003; Koutsoyiannis and 
Montanari, 2007).

Notes (a) n’ := n 2 – 2H is the “equivalent” or “effective” sample size: a sample with size n’ in CS results in the same uncertainty of the 
mean as a sample with size n in HKS; (b) the numbers in parentheses are numerical examples for n = 100, σ = 1, H = 0.90 (so that n΄ 
= 2.5) and l = 10.
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representation of reality. The Hurst coefficient is H = 0.84 and the same value is verified from the simultaneous record of 
maximum water levels and from the modern record (131 years) of the Nile flows at Aswan.

The same behaviour can be verified is several geophysical time series; examples are given in most related publications 
referenced herein. Two additional examples are depicted in Figure 12, which refers to the monthly lower tropospheric 
temperature, and in Figure 13, which refers to the monthly Atlantic Multidecadal Oscillation (AMO) index. Both examples 
suggest consistency with HK behaviour with a very high Hurst coefficient, H = 0.99.

One of the most prominent implications of the HK behaviour concerns the typical statistical estimation. The HK dynamics 
implies dramatically higher intervals in the estimation of location statistical parameters (e.g., mean) and highly negative 
bias in the estimation of dispersion parameters (e.g., standard deviation). The HK framework allows calculating the statis-
tical measures of bias and uncertainty of statistical parameters, as summarized in Table 2, and even of future predictions 
(Koutsoyiannis et al., 2007). It is thus striking that in most of the literature the HK behaviour is totally neglected and even 
studies recognizing the presence of HK dynamics usually miss to account for these implications in statistical estimation 
and testing.

Naturally, the implications magnify as the “intensity” of the HK behaviour increases, i.e., as H approaches 1. Table 2 
provides, in addition to the theoretical formulae, a numerical example for n = 100 and H = 0.90, whereas Figure 12 and 
Figure 13 depict the huge bias in the standard deviation when H = 0.99. This bias increases with increased time scale 
because the sample size for higher time scales becomes smaller. Obviously, the comparison of the sample standard 
deviation, estimated by the classical statistical estimator, with the theoretical one of the HK model must be done after 
subtraction of the bias from the latter.
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Figure 12. Monthly time series (upper) and climacogram (lower) of the 
global lower tropospheric temperature (data for 1979-2009, from http://
vortex.nsstc.uah.edu/public/msu/t2lt/tltglhmam_5.2).

Figure 13. Monthly time series (upper) and climacogram (lower) of the 
Atlantic Multidecadal Oscillation (AMO) index (data for 1856-2009, from 
NOAA, http://www.esrl.noaa.gov/psd/data/timeseries/AMO/).
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Implications in engineering design and water resources management
Coming back to the Athens water supply system, it is inter-
esting to estimate the return period of the multi-year drought 
mentioned in the Introduction. Assuming that the annual 
runoff in the Boeoticos Kephisos basin can be approximated 
by a Gaussian distribution and that the multi-year standard 
deviation at scale (number of years) k is given by the classical 
statistical law, σ(k) = σ/ k , we can easily assign a theoretical 
return period to the lowest (as well as to the highest) recorded 
value for each time scale. Figure 14 shows the assigned return 
periods of the lowest and highest values for time scales k = 1 
to 10. Empirically, since the record length is about 100 years, 
we expect that the return period of lowest and highest values 
would be of the order of 100 years for all time scales. This 
turns out to be true for k = 1 to 2, but the return periods reach 
10,000 years at scale k = 5. Furthermore, the return period 
of the lowest value at scale k = 10 (10-year drought) reaches 
100,000 years! 

Is this sufficient evidence that Athens experienced a very 
infrequent drought event, which happens on the average once 
every 100,000 years, in our lifetime? In the initial phase of our 
involvement in this case study we were inclined to believe that 
we witnessed an event that extraordinary, but gradually, we 
understood that the answer should be negative. History is the 
key to the past, to the present, and to the future; and the 
longest available historical record is that of the Nilometer 
(Figure 10). This record offers a precious empirical basis 
of long-term changes. It suffices to compare the time 
series of the Beoticos Kephisos runoff (shown in its 
entirety in Figure 15) with that of the Nilometer series. 
We observe that a similar pattern had appeared in the Nile 
flow between 680 and 780 AD: a 100-year falling trend 
(which, notably, reverses after 780 AD), with a clustering 
of very low water level around the end of this period, 
between 760 and 780 AD. Such clustering of similar events 
was observed in several geophysical time series by Hurst 
(1951),  who stated: “Although in random events groups 
of high or low values do occur, their tendency to occur in 
natural events is greater. This is the main difference between 
natural and random events.” 

Thus, the Athens story simply tells us that we should 
replace the classical statistical framework with a HK 
framework. As shown in Figure 15 (lower panel) the 
Boeticos Kephisos runoff time series is consistent with 
the HK model, with a Hurst coefficient H = 0.79. Redoing 
the calculations of return period, we find that the return 
period for scale k reduces from the extraordinary value 
of 100,000 years to a humble value of 270 years. Also, the 
HK framework renders the observed downward trend a 
natural and usual behaviour (Koutsoyiannis, 2003). The 
Boeticos Kephisos runoff is another “naturally trendy” 
process (Cohn and Lins, 2005). 

Figure 14. Return periods of the lowest and highest observed annual 
runoff, over time scale k = 1 to 10 years, of the Boeoticos Kephisos 
basin assuming normal distribution (adapted from Koutsoyiannis et al., 
2007). 

Figure 15. The entire annual time series (upper) and the climacogram (lower) 
of the Boeoticos Kephisos runoff.
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Thus, the HK framework implies a perspective of natural 
phenomena that is very different  from that of classical 
statistics, particularly in aggregate scales. This is further 
demonstrated in Figure 16, which depicts normal prob-
ability plots of the distribution quantiles of the Boeoticos 
Kephisos runoff at the annual and the climatic, 30-year, 
time scale. At the annual time scale (k = 1) the classical 
and the HK statistics yield the same point estimates of 
distribution quantiles (i.e. the same amount of uncertainty 
due to variability), but the estimation (or parameter) 
uncertainty, here defined by the 95% confidence limits 
constructed by a Monte Carlo method, is much greater 
according to the HK statistics. The confidence band is 
narrow in classical statistics (shaded area in Figure 16) 
and becomes much wider in the HK case. More inter-
esting is the lower panel of Figure 16, which refers to the 
typical climatic time scale (k = 30). The low variability and 
uncertainty in the classical model is depicted as a narrow, 
almost horizontal, band in the lower panel of Figure 16. 
Here, the HK model, in addition to the higher parameter 
uncertainty, results in uncertainty due to variability 
much wider than in the classical model. As a result, 
while the total uncertainty (by convention defined as the 
difference of the upper confidence limit at probability of 
exceedence 97.5% minus the lower confidence limit at 
probability of exceedence 2.5%) is about 50% of the mean 
in the classical model, in the HK case it becomes about 
200% of the mean, or four times larger. Interestingly, it 
happens that the total uncertainty of the classical model 
at the annual scale is 200% of the mean. In other words, 
the total uncertainty (due to natural variability and 
parameter estimation) at the annual level according to the 
classical model equals the total uncertainty at the 30-year 
scale according to HK model. This allows paraphrasing 
a common saying (which sometimes has been used to clarify the definition of climate, e.g., NOAA Climate Prediction 
Center, 2010) that “climate is what we expect, weather is what we get” in the following way: “weather is what we get immedi-
ately, climate is what we get if you keep expecting for a long time”. 

For reasons that should be obvious from the above discussion, the current planning and management of the Athens 
water supply system are based on the HK framework. Appropriate multivariate stochastic simulation methods have 
been developed (Koutsoyiannis, 2000, 2001) that are implemented within a general methodological framework termed 
parameterization-simulation-optimization (Nalbantis and Koutsoyiannis, 1997; Koutsoyiannis and Economou, 2003; 
Koutsoyiannis et al., 2002, 2003; Efstratiadis et al., 2004). The whole framework assumes stationarity, but simulations 
always use the current initial conditions (in particular, the current reservoir storages) and the recorded past conditions: 
apparently, in a Markovian framework, only the latest observations affect the future probabilities, but in the non-
Markovian HK framework the entire record of past observations should be taken into account to condition the simulations 
of future (Koutsoyiannis, 2000). 

Nonetheless, it is interesting to discuss two alternative methods that are more commonly used than the methodology 
developed for Athens. The first alternative approach, which is nonstationary, consists of the projection of the observed 
“trend” into the future. As shown in Figure 17, according to this approach the flow would disappear by 2050. Also this 
approach would lead to reduced uncertainty (because it assumes that the observed “trend” explains part of variability); the 
initial standard deviation of 70 mm would decrease to 55 mm. Both these implications are glaringly absurd. 

Figure 16. Point estimates (PE) and 95% Monte Carlo confidence limits 
(MCCL) of the distribution quantiles of the Boeoticos Kephisos runoff at the 
annual (upper) and climatic (30-year; lower) time scales, both for classical 
and HK statistics (adapted from Koutsoyiannis et al., 2007). 
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The second alternative, again admitting 
nonstationarity, is to use outputs of climate 
models and to feed them in hydrological 
models to predict the future runoff. This 
approach is illustrated in Figure 18, also in 
comparison to the HK stationary approach 
and the classical statistical approach. Outputs 
from three different GCMs (ECHAM4/
OPYC3, CGCM2, HadCM3), each one 
for two different scenarios, were used, 
thus shaping 6 combinations shown in the 
legend of Figure 18 (each line of which 
corresponds to each of the three models 
in the order shown above; see more details 
in Koutsoyiannis et al., 2007). To smooth 
out the annual variability, the depictions of 
Figure 18 refer to the climatic (30-year) scale. 
In fact, outputs of the climate models exhibited huge departures from reality (highly negative efficiencies at the annual 
time scale and above); thus, adjustments, also known as “statistical downscaling”, were performed to make them match 
the most recent observed climatic value (30-year average). Figure 18 shows plots of the GCM-based time series after the 
adjustments. For the past, despite adjustments, the proximity of models with reality is not satisfactory (they do not capture 
the falling trend, except one part reflecting the more intense water resources exploitation in recent years). Even worse, the 
future runoff obtained by adapted GCM outputs is too stable. All different model trajectories are crowded close to the most 
recent climatic value. Should one attempt to estimate future uncertainty by enveloping the different model trajectories, this 
uncertainty would be lower even from that produced by the classical statistical model. Hence, the GCM-based approach 
is too risky, as it predicts a future that is too stable, whereas the more consistent HK framework entails a high future 
uncertainty (due to natural variability and unknown parameters), which is also shown in Figure 18. The planning and 
management of the Athens water supply system is based on the latter uncertainty.

Figure 17. Illustration of the alternative method of trend projection into the future for modelling 
of the Boeoticos Kephisos runoff.

Figure 18. Illustration the alternative GCM-based method for modelling of the Boeoticos Kephisos runoff, vs. the uncertainty limits (Monte Carlo 
Confidence Limits—MCCL) estimated for classical and HK statistics; runoff is given at climatic scale, i.e. runoff y at year x is the average runoff of 
a 30-year period ending at year x (adapted from Koutsoyiannis et al., 2007).
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Additional Remarks
While this exposition has focused on climatic averages and low extremes (droughts), it may be useful to note that change, 
which underlies the HK dynamics, also affects high extremes such as intense storms and floods. This concerns both the 
marginal distribution tail as well as the timing of high intensity events. For example, Koutsoyiannis (2004) has shown that 
an exponential distribution tail of rainfall may shift to a power tail if the scale parameter of the former distribution changes 
in time; and it is well known that a power tail yields much higher rainfall amounts in comparison to an exponential tail 
for high return periods. Also, Blöschl and Montanari (2010) demonstrated that five of the six largest floods of the Danube 
at Vienna (100 000 km2 catchment area) of the 19th century were grouped in its last two decades. This is consistent with 
Hurst’s observation about grouping of similar events and should properly be taken into account in flood management—
rather than trying to speculate about human-induced climate effects. (Interestingly, Blöschl and Montanari, by plotting the 
19th century peak flows in a separate graph so that the grouping appear as if it indeed were in “the last two decades”, try to 
tease the recent “trend” to regard the most recent hydroclimatic phenomena as extraordinary and human induced).

Overall, the “new” HK approach exposed herein is as old as Kolmogorov’s (1940) and Hurst’s (1951) expositions. It is 
stationary (not nonstationary) and demonstrates how stationarity can coexist with change at all time scales. It is linear 
(not nonlinear) thus emphasizing the fact that stochastic dynamics need not be nonlinear to produce realistic trajectories 
(while, in contrast, trajectories from linear deterministic dynamics are not representative of the evolution of complex 
natural systems). The HK approach is simple, parsimonious, and inexpensive (not complicated, inflationary and expensive) 
and is honest (not deceitful) because it does not hide uncertainty and it does not pretend to predict the distant future 
deterministically.

Conclusions
•	 Change is nature’s style.

•	 Change occurs at all time scales.

•	 Change is not nonstationarity.

•	 Hurst-Kolmogorov dynamics is the key to perceive multi-scale change and model the implied uncertainty and risk.

•	 In general, the Hurst-Kolmogorov approach can incorporate deterministic descriptions of future changes, if available.

•	 In the absence of credible predictions of the future, Hurst-Kolmogorov dynamics admits stationarity.
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