
1 Ab t t1.�Abstract
The Nobelist physicist Niels Bohr once said thaThe Nobelist physicist Niels Bohr once said tha
about the future. Nowadays, the scene has

it t d i it j it th t thcommunity accepted, in its majority, that the e
that also echoes in public, scientists all over th
many climate related processes, e.g., global tem
etc. Furthermore, if we adopt the suggested trenp gg
projections we should expect a horrifying f
scienti�cally sound are these trend based scenascienti�cally sound are these trend based scena
expressed as a linear regression line �tted to an
investigation In addition the decision of wheinvestigation. In addition, the decision of whe
inferences regarding the regression line coef�ci
h i li f� i lthe regression line coef�cients assume normal
generally not valid in natural processes. Particu
hold in some cases, it is well documented tha
autocorrelation structures, exponential or pp p
independently distributed data is violated. In th
simulations the effect of different autocorrelatiosimulations the effect of different autocorrelatio
signi�cance. We demonstrate that trends con
framework are actually insigni�cant if autocorreframework are actually insigni�cant if autocorre

at prediction is very dif�cult especially if it isat prediction is very dif�cult, especially if it is
changed. It seems that since the scienti�c
th’ li t i idl h i i iearth’s climate is rapidly changing, an opinion

he world have identi�ed signi�cant trends in
mperature, rainfall, river discharges, ice melting
nds in those natural processes and their futurep
future. But is that so? How consistent and
arios? A trend in its most common form can bearios? A trend in its most common form can be
n observed sample of the natural process under
ether or not a trend is signi�cant is based onether or not a trend is signi�cant is based on
ients. However, classical statistics inferences of
l d i d d d i hl and independent data, assumptions that are
ularly, while the assumption of normality may
at natural processes exhibit a great variety of
power type, and thus the assumption ofp yp p
his study, we investigate based on Monte Carlo
on structures in the inference of the trend lineon structures in the inference of the trend line
nsidered as signi�cant in a classical statistics
elation structures are incorporatedelation structures are incorporated.

2 M ti ti2.�Motivation
It was 2500 year ago when the famous ancientIt was 2500 year ago when the famous ancient
Greek philosopher Heraclitus of Ephesus said that
“����	 
��”, i.e., everything is under constant
 y g
change. Nevertheless, and while it is hard to
imagine a natural process that does not vary, mildly

l h ’ “ ” h hor severely, in time, the nature’s “picture” that the
majority of scientists have adopted nowadays,
seems to be that of a peaceful lake Thereforeseems to be that of a peaceful lake. Therefore,
events that frequently or largely deviate from the
average, human�centered, ideal “picture”, suggestaverage, human centered, ideal picture , suggest
an alarming change of the whole scheme. This is
exactly the case in our time, where the agreement iny g
a rapidly changing climate by the scientific
community seems to have triggered a trend�
h ll l l d Th blhysteria in all climate related processes. The table
on the right verifies this.
Th f thi t d i i l i tThe purpose of this study is simple, i.e., to
investigate linear trends in samples generated from
autocorrelated stationary processes with differentautocorrelated stationary processes with different
autocorrelation structures, and to exhibit that the
presence of autocorrelation makes the difference,p e e e o o o e o e e e e e,
that is, significant trends, assuming independence
in the observed sample, are actually insignificant
and very probable in autocorrelated processes.

 Results number 

Keyword Google  Google Scholar y g g

rainfall trends 1,670,000 408,000 

“rainfall trends” 13 100 1 720“rainfall trends” 13,100 1,720

“sea level” trends 1,400,000 170,000 

“sea level trends” 13,800 1,320 

“river flow” trends 89,400 20,900 

“river flow trends” 211 36 

“river runoff” trends 20 600 6 300river runoff trends 20,600 6,300

“river runoff trends” 232 10 

t t t d 17 900 000 2 400 000temperature trends 17,900,000 2,400,000

“temperature trends” 123,000 12,300 

hurricane trends 3,450,000 41,600 

“hurricane trends” 1790 141 

tornado trends 825,000 19,900 

“tornado trends” 454 24tornado trends 454 24

“malaria trends” 3,120 843 

l i dmalaria trends 1,890,000 96,500 

3 T d t ti it3.�Trends�vs.�stationarity
{ } b lLet {X(t), t �T} be a stationary normal process

{xi}n a random sample of size n and x = � t +
intercept �, fitted to the random sample. As
density of any order remains the same in timedensity of any order remains the same in time
intercept � will tend to the mean of the pro
N th l f fi it l i d fNevertheless, for finite sample sizes and for
estimator of the slope A, and the estimator of
Specifically, it is well known (e.g., Soong, 20
normal, the r.v.’s A and B form a bivariate no,
function (pdf) fAB(	,�; �A, �B, ��, ��, ���), whe
deviations of A and B respectively and � isdeviations of A and B, respectively, and ��� is
the parameters of the joint pdf of the r.v. (A
deviation �	, the autocorrelation structure of {
conditional pdf of the r.v. A, for a given value
can be easily proven (e.g., Feller, 1970, p. 7
�A|B,��|B), with �A|B= �A + ���(��/��)(�B + �)�A|B,��|B), with �A|B �A + ���(��/��)(�B + �)
confidence intervals (CI) for the slope A, can b
f th f ti d di t ib ti i Q (of the afore�mentioned distribution, i.e., QA|B(u

h d d d d dwith mean �	 and standard deviation �	, and
+ � a linear regression line, with slope � and
the process {X(t)} is stationary, i.e., the joint
, the slope �, clearly, will tend to zero and the, the slope �, clearly, will tend to zero and the
ocess �	 as the sample size n tends infinity.

ll ibl li ti f th thr all possible realizations of the process, the
the intercept B, are random variables (r.v.’s).
004, ch. 11 ) that when the process {X(t)} is
ormal r.v. (A,B) with joint probability density( , ) j p y y
ere �A, �B, ��, �� are the means and standard
the correlation coefficient of A and B Clearlythe correlation coefficient of A and B. Clearly,
A,B), depend on the mean �	, the standard
X(t)}, and the sample size n. Additionally, the
of B, is given by fA|B(	|�) = fAB(	,�)/ fB(�), that
72) that is a normal pdf given by fA|B(	|�;
and ��|B = (1 � ���)0.5 �� As a consequence,and ��|B (1 ���) ��. As a consequence,
be easily estimated using the quantile function

)u; �A|B,��|B).

4 Th M t C l i l4.�The�Monte�Carlo�simula
Short term persistence processShort�term�persistence�process

AR(1)�synthetic�series�generation

Model statistics: �	 = 0, �	 = 1Model�statistics:��	 
0,��	 
1�
Number�of�series:�10000

Lag�1 autocorrelation coefficients:Lag 1�autocorrelation�coefficients:�
�1 =�{0,�0.2,�0.4,�0.6,�0.8,�0.9,�0.95,�0.99}

Sample sizes:Sample�sizes:�
n =�{10,�20,�50,�100,�200,�500,�1000,�2000,�5000}

Regression�coeffic
for�every�syn

Slope A
and intercept�B statistics�estimat
Estimated statistics: means � � standard deEstimated�statistics:�means �A,��B, standard�de

Construction�of�interpolation�functions
��(�1,n), ��(�1,n),����(�1,n)�and�thus�of�the�

di t ib ti f ti F ( � )distribution�function�FAB(	,�;��A,��B,���,���,����)

ti hation�scheme
Long term persistence processLong�term�persistence�process

FGN�synthetic�series�generation

Model statistics: �	 = 0, �	 = 1Model�statistics:��	 
0,��	 
1�
Number�of�series:�10000

Hurst exponents:Hurst�exponents:�
H =�{0.5,�0.6,�0.7,�0.8,�0.9,�0.95,�0.99}

Sample sizes:Sample�sizes:�
n =�{10,�20,�50,�100,�200,�500,�1000,�2000,�5000}

cients�estimation
nthetic�series

tion�for�every�pair�of�(�1, L)�and�of�(H, L)
eviations � � and correlation coefficient �eviations ��,���,�and�correlation�coefficient����

Construction�of�interpolation�functions
��(H,n), ��(H,n),����(H,n)�and�thus�of�the�

di t ib ti f ti F ( � )distribution�function�FAB(	,�;��A,��B,���,���,����)

5 Sl l i5.�Slope�vs.�sample�size

Three realizations of an AR(1) process with lag 1 autocorreThree realizations of an AR(1) process with lag�1 autocorre
last 10, 18 and 30 values. The regression coefficients are the
conditional distribution reveals, the exceedence probability
= 18 case is approximately F*A|B(	|0) � 2.5% and in the n = 3

elation coefficient � = 0 8 and the fitted trend lines to theelation coefficient �1 = 0.8 and the fitted trend lines to the
e same in all cases, i.e., � � 0.1 and � � 0, but as the slope’s
y F*A|B(	|0) = 1� FA|B(	|0) in the n = 10 case is high, in the n
30 case the F*A|B(	|0) is very small.

6 Sl ti l i i6.�Slope�vs.�vertical�axis�in

Three realizations of an AR(1) process with lag 1 autocorreThree realizations of an AR(1) process with lag�1 autocorre
last 20 values. The slope is the same in all cases, i.e., � � 0
right). Inspection of the slope’s conditional distribution re
F*A|B(	|0) � 2.5% while the F*A|B(	|1) is very small.

t tntercept

elation coefficient � = 0 8 and the fitted trend lines to theelation coefficient �1 = 0.8 and the fitted trend lines to the
0.08 and the intercepts are � � �1, � � 0 and � � 1 (left to
eveals that the exceedence probability F*A|B(	|�1) is high,

7 Sl t l ti7.�Slope vs.�autocorrelation

The first sample was generated from an independent procThe first sample was generated from an independent proc
the third from an FGN process with Hurst exponent H = 0.
H = 0.9 is 0.74). The regression coefficients are the same in
case is very small while in the AR(1) and the FGN cases are

n

cess the second from an AR(1) process with � = 0 74 andcess, the second from an AR(1) process with �1 = 0.74 and
.9 (the lag�1 correlation coefficient of an FGN process with
all cases, i.e., � � 0.04 and � � 0. The F*A|B(	|0) in the first
e very high.

8 AR(1) E i i l d th8. AR(1):�Empirical�and�th

The empirical joint densities of the regression coefficient
autocorrelation coefficients as resulted from the simulation
corresponding theoretical fitted joint densities.

h ti l j i t d itiheoretical�joint�densities�

ts � and � for three AR(1) processes with different lag�1
n of 10000 samples of size n = 20 for each process, and thep p

9 FGN E i i l d th9.�FGN:�Empirical�and�the

The empirical joint densities of the regression coefficients �
Hurst exponent as resulted from the simulation of 100p
corresponding theoretical fitted joint densities.

ti l j i t d itieoretical�joint�densities

� and � for three FGN processes with different values of the
000 samples of size n = 20 for each process, and thep p

10 Th “Cl ff t” d10.�The�“Claw�effect”�and�
The�“Clae C a

The figures dep
of the slope �,
i � 0intercept � = 0
process (left) a
process (righ
autocorrelation
both processes
a shape thatp
claw, i.e., the
up to a point a
of the aof the a
structure incre
starts to narrow

The�“Funn
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th “F l ff t”the�“Funnel�effect”
aw�effect”a e ec
pict the 99% CI
given that the
0 f AR(1)0, of an AR(1)
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s, the CI forms
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11 Th “Cl ff t” i l11.�The�“Claw�effect”�in�la
It th tIt seems that
and larges
the “Claw e
slope’s CI va
AR(1) proces
replaced byp y
effect. In
remains in
process (rightprocess (right
that value of
decrease of
starts gets hstarts gets h
sample size in

It is worthy to
the sample sthe sample s
and so the slo
and the CI ra
th diffthe difference
minimum C
appears for Hpp
= 0 (indepe
and the m
range that arange, that a
certain value
also increases

large�samples
t f d tt for moderate
sample sizes,
effect” in the
anishes in the
ss (left) and is
the “Funnel”
contrast, it
the FGN

t) but it seemst), but it seems
f H where the
the CI range
higher as thehigher as the
ncreases.

o note, that as
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ope’s variance
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b t the between the

I range, that
H = 0.5 or for ��
endent data),
maximum CI
appears for aappears for a
e of H or �,
s.

12 C l i12.�Conclusions
• The regression line coefficients, i.e., the slopeThe regression line coefficients, i.e., the slope

realizations generated from a stationary
distribution that its characteristics dependp
autocorrelation structure of the process.

• A corollary of the previous conclusion, is th
sample�size dependent, but also, strongly d
process’s autocorrelation structure.

• The effect of the autocorrelation structure in
autocorrelations structures the resulted slop

d t th i l i th i dcompared to the variance value in the indepe
exceedence probability in independent data h
data are autocorrelateddata are autocorrelated.

• This study revealed a phenomenon we na
deviation or the u% CI range of the slope vsdeviation or the u% CI range of the slope vs.
resembles a claw, i.e., their values increa
autocorrelation structure increases, and the
decrease.

• This phenomenon, regarding the AR(1) prop g g ( ) p
approximately 100, while, in contrast, the phe
very large samples.
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